Reconstruction of Thermal Conditions in the Subboreal Inferred from Isotopic Studies of Groundwater and Calcareous Tufa from the Spring Mire Cupola in Wardzyń (Central Poland)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Analytical Methods
2.3. Mathematical Model
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Seppa, H.; Bjune, A.E.; Telford, R.J.; Birks, H.J.B.; Veski, S. Last Nine-Thousand Years of Temperature Variability in Northern Europe. Clim. Past 2009, 5, 523–535. [Google Scholar] [CrossRef]
- Cuffey, K.M.; Clow, G.D. Temperature, Accumulation, and Ice Sheet Elevation in Central Greenland through the Last Deglacial Transition. J. Geophys. Res. 1997, 102, 26383–26396. [Google Scholar] [CrossRef]
- Alley, R.B. The Younger Dryas Cold Interval as Viewed from Central Greenland. Quat. Sci. Rev. 2000, 19, 213–226. [Google Scholar] [CrossRef]
- Davies, B.A.S.; Brewerb, S.; Stevensona, A.C.; Guiotc, J. The Temperature of Europe during the Holocene Reconstructed from Pollen Data. Quat. Sci. Rev. 2003, 22, 1701–1716. [Google Scholar] [CrossRef]
- Dobrowolski, R.; Ziułkiewicz, M.; Okupny, D.; Forysiak, J.; Bałaga, K.; Alexandrowicz, W.P.; Buczek, A.; Hałas, S. Origin and Neoholocene Evolution of Spring-Fed Fens in Wardzyń, Łódź Upland, Central Poland. Golog. Q. 2017, 61, 413–434. [Google Scholar]
- Pazdur, A.; Pazdur, M.F.; Starkel, L.; Szulc, J. Stable Isotopes of Holocene Calcareous Tufa in Southern Poland as Paleoclimatic Indicators. Quat. Res. 1988, 30, 177–189. [Google Scholar] [CrossRef]
- Stansell, N.D.; Klein, E.S.; Finkenbinder, M.S.; Fortney, C.S.; Dodd, J.P.; Terasmaa, J.; Nelson, D.B. A Stable Isotope Record of Holocene Precipitation Dynamics in the Baltic Region from Lake Nuudsaku, Estonia. Quat. Sci. Rev. 2017, 175, 73–84. [Google Scholar] [CrossRef]
- Zak, K.; Lozek, V.; Kadlec, J.; Hladikova, J.; Cilek, V. Climate-Induced Changes in Holocene Calcareous Tufa Formations, Bohemian Karst. Quat. Int. 2002, 91, 137–152. [Google Scholar] [CrossRef]
- Gruszczyński, T.; Małecki, J.J.; Ziułkiewicz, M. Reconstruction of Paleohydrological Conditions in the Late Holocene Based on the Study of Calcareous Tufa in the Spring Mire of the Wolbórka River Drainage Basin (Central Poland). J. Elem. 2017, 22, 1049–1065. [Google Scholar]
- Epstein, S.E.; Buchsbaum, R.; Lowenstam, H.A.; Urey, H.C. Revised Carbonate-Water Isotopic Temperature Scale. Geol. Soc. Am. Bull. 1953, 64, 1315–1326. [Google Scholar] [CrossRef]
- Clark, I.; Fritz, P. Environmental Isotopes in Hydrogeology; CRC Press: Boca Raton, FL, USA, 1997. [Google Scholar]
- Marks, L.; Dzierżek, J.; Janiszewski, R.; Kaczorowski, J.; Lindner, L.; Majecka, A.; Makos, M.; Szymanek, M.; Tołoczko-Pasek, A.; Woronko, B. Quaternary Stratigraphy and Palaeogeography of Poland. Acta Geol. Pol. 2016, 66, 403–427. [Google Scholar] [CrossRef]
- Ziułkiewicz, M. Pionowa Strefowość Hydrochemiczna Wód Podziemnych Na Obszarze Aglomeracji Łódzkiej (Vertical Hydrochemical Zonation of Groundwater on the Łódź Metropolitan Area); Łódzkie Towarzystwo Naukowe: Łódź, Poland, 2003. [Google Scholar]
- Bronk Ramsey, C. Bayesian Analysis of Radiocarbon Dates. Radiocarbon 2009, 51, 337–360. [Google Scholar] [CrossRef] [Green Version]
- Parkhurst, D.L.; Appelo, C.A.J. Description of Input and Examples for PHREEQC Version 3—A Computer Program for Speciation, Batch Reaction, One Dimensional Transport and Inverse Geochemical Calculations; U.S. Geological Survey Techniques and Methods: Reston, VA, USA, 2013; Volume 43. [Google Scholar]
- Deines, P.; Langmuir, D.; Harmon, R.S. Stable Carbon Isotope Ratios and the Existence of Gas Phase in the Evolution of Carbonate Groundwaters. Geochim. Cosmochim. Acta 1974, 38, 1147–1164. [Google Scholar] [CrossRef]
- Mook, W.G.; Bommerson, J.C.; Staverman, W.H. Carbon Isotope Fractionation between Dissolved Bicarbonate and Gaseous Carbon Dioxide. Earth Planet. Sci. Lett. 1974, 22, 169–176. [Google Scholar] [CrossRef]
- Vogel, J.C.; Grootes, P.M.; Mook, W.G. Isotope Fractionation between Gaseous and Dissolved Carbon Dioxide. Z. Phys. 1970, 230, 255–258. [Google Scholar]
- Bottinga, Y. Calculation of Fractionation Factors for Carbon and Oxygen in the System Calcite—Carbon Dioxide—Water. J. Phys. Chem. 1968, 72, 800–808. [Google Scholar] [CrossRef]
- Friedman, I.; O’Neil, J.R. Compilation of Stable Isotope Fractionation Factors of Geochemical Interest. US Geol. Surv. Bull. 1977, 440, 1–12. [Google Scholar]
- D’Obyrn, K.; Grabczak, J.; Zuber, A. Maps of Isotopic Composition of the Holocene Meteoric Waters in Poland (in Polish with English Summary). In Współczesne Problemy Hydrogeologii; Adam Mickiewicz University: Poznań, Poland, 1997; Volume 8, pp. 331–333. [Google Scholar]
- Różański, K.; Araguas-Araguas, L.; Gonfiantini, R. Isotopic Patterns in Modern Global Precipitation. In Continental Isotope Indicators of Climate; American Geophysical Union Monograph: Warsaw, Poland, 1993. [Google Scholar]
- Krogulec, E.; Zabłocki, S.; Sawicka, K. Changes in Groundwater Regime during Vegetation Period in Groundwater Dependent Ecosystems. Acta Geol. Pol. 2016, 66, 525–540. [Google Scholar] [CrossRef]
- Sternberg, L.S.L.; Anderson, W.T.; Morrison, K. Separating Soil and Leaf 180 Isotopic Signals in Plant Stem Cellulose. Geochem. Cosmochim. Acta 2003, 67, 2561–2566. [Google Scholar] [CrossRef]
- Leng, M.J.; Marshall, J.D. Palaeoclimate Interpretation of Stable Isotope Data from Lake Sediment Archives. Quat. Sci. Rev. 2004, 23, 811–831. [Google Scholar] [CrossRef]
- Starkel, L.; Michczyńska, D.J.; Krąpiec, M.; Margielewski, W.; Nalepka, D.; Pazdur, A. Progress in the Holocene Chrono-Climatostratigraphy of Polish Territory. Geochronometria 2013, 40, 1–21. [Google Scholar] [CrossRef]
- Różański, K.; Klisch, M.; Wachniew, P.; Gorczyca, Z.; Goslar, T.; Edwards, T.W.D.; Shemesh, A. Oxygen-Isotope Geothermometers in Lacustrine Sediments: New Insights through Combined δ18O Analyses of Aquatic Cellulose, Authigenic Calcite and Biogenic Silica in Lake Gościąż, Central Poland. Geochim. Cosmochim. Acta 2010, 74, 2957–2969. [Google Scholar] [CrossRef]
Point Number | Stratygraphy | Temperature | pH | Eh | SEC | Ca2+ | Mg2+ | Na+ | K+ | NH4+ | Cl− | HCO3− | SO42− | NO3− | NO2− | TDS |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(°C) | - | (mV) | (μS/cm) | (mg/L) | ||||||||||||
1 | K2 | 9.9 | 7.78 | −47 | 402 | 72.3 | 5.1 | 5.6 | 1.5 | 0.51 | 3.2 | 311.1 | 0.6 | <0.01 | 0.08 | 400.0 |
2 | K2 | 9.3 | 7.38 | −88 | 382 | 64.5 | 3.6 | 3.3 | 0.9 | 0.19 | 9.1 | 231.8 | 13.6 | <0.01 | 0.065 | 327.1 |
3 | Q | 9.9 | 7.36 | −46 | 594 | 91.8 | 7.5 | 9.8 | 3.3 | 0.302 | 23 | 298.9 | 55.7 | <0.01 | 0.08 | 490.4 |
4 | Q | 9.9 | 7.47 | 89 | 407 | 69.5 | 3 | 3.4 | 0.7 | <0.001 | 10.1 | 183 | 33.5 | 21.79 | 0.073 | 325.1 |
5 | Q | 9.8 | 7.3 | −96 | 608 | 117.2 | 6.1 | 10.3 | 1.6 | <0.001 | 38.9 | 244 | 112.7 | <0.01 | 0.026 | 530.8 |
6 | Q | 9.7 | 7.24 | −97 | 496 | 100.8 | 5.5 | 8.1 | 1.9 | 0.234 | 38.9 | 244 | 41.3 | <0.01 | 0.094 | 440.8 |
7 | Q | 9.9 | 7.2 | −3 | 663 | 111.3 | 5.7 | 11.2 | 5.1 | 0.025 | 27 | 256.2 | 111.3 | 0.6 | 0.134 | 528.6 |
8 | K2 | 10.9 | 7.2 | −79 | 545 | 95.7 | 8 | 5 | 1.6 | 2.14 | 5.7 | 390.4 | 6.8 | <0.01 | 0.08 | 515.4 |
9 | Q | 9.9 | 7.49 | −28 | 357 | 63.3 | 3.2 | 5.4 | 2.1 | 0.044 | 10.6 | 170.8 | 39.5 | 1.62 | 0.092 | 296.7 |
10 | K2 | 9.6 | 7.4 | −69 | 487 | 88.3 | 7 | 4.8 | 1.4 | 0.293 | 5.2 | 359.9 | 6.8 | <0.01 | 0.027 | 473.7 |
11 | Q | 10.4 | 1.66 | 217 | 472 | 71.1 | 2.4 | 6.6 | 2.2 | <0.001 | 15.6 | 97.6 | 47.9 | 57.18 | 0.08 | 300.7 |
12 | Q | 9.5 | 7.05 | 128 | 450 | 85.5 | 4.1 | 4 | 0.4 | <0.001 | 5.6 | 280.6 | 17.1 | <0.01 | <0.001 | 397.3 |
Mean | 9.9 | 7.38 | −9.9 | 488.6 | 85.9 | 5.1 | 6.5 | 1.9 | 0.31 | 16.1 | 255.7 | 40.6 | 20.30 | 0.08 | 418.9 | |
Standard deviation | 0.4 | 0.20 | 96.9 | 92.9 | 17.4 | 1.8 | 2.6 | 1.2 | 0.6 | 12.3 | 77.9 | 36.2 | 22.9 | 0.0 | 86.3 |
Sampling Points | Measured Values | Calculated Values | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Temperature (K) | δ18O (‰) | δ18O (‰) | δ13CDIC (‰) | DIC (mol/L) | mCO3 (mol/L) | mHCO3 (mol/L) | mCO2(aq) (mol/L) | |||||
1 | 283.05 | −11.43 | −75.71 | −13.46 | 5.10 × 10−3 | 2.77 × 10−5 | 4.86 × 10−3 | 2.13 × 10−4 | −15.17 | −13.02 | −23.59 | −22.49 |
2 | 282.45 | −10.40 | −76.20 | −13.53 | 3.80 × 10−3 | 7.15 × 10−6 | 3.41 × 10−3 | 3.84 × 10−4 | −14.62 | −12.44 | −23.09 | −21.99 |
3 | 283.05 | −10.48 | −74.57 | −12.92 | 4.90 × 10−3 | 1.06 × 10−5 | 4.39 × 10−3 | 5.00 × 10−4 | −13.98 | −11.82 | −22.41 | −21.31 |
4 | 283.05 | −10.53 | −74.34 | −13.06 | 3.00 × 10−3 | 7.41 × 10−6 | 2.75 × 10−3 | 2.48 × 10−4 | −14.34 | −12.19 | −22.77 | −21.67 |
5 | 282.95 | −10.48 | −72.27 | −12.62 | 4.00 × 10−3 | 8.21 × 10−6 | 3.53 × 10−3 | 4.59 × 10−4 | −13.55 | −11.39 | −22.00 | −20.89 |
6 | 282.85 | −9.96 | −78.57 | −13.19 | 4.00 × 10−3 | 6.66 × 10−6 | 3.47 × 10−3 | 5.24 × 10−4 | −13.96 | −11.79 | −22.41 | −21.30 |
7 | 283.05 | −10.22 | −78.48 | −13.49 | 4.20 × 10−3 | 6.48 × 10−6 | 3.60 × 10−3 | 5.90 × 10−4 | −14.15 | −11.99 | −22.58 | −21.48 |
8 | 284.05 | −9.35 | −77.90 | −14.09 | 6.40 × 10−3 | 9.92 × 10−6 | 5.50 × 10−3 | 8.87 × 10−4 | −14.76 | −12.64 | −23.10 | −22.00 |
9 | 283.05 | −10.36 | −78.65 | −12.46 | 2.80 × 10−3 | 6.94 × 10−6 | 2.57 × 10−3 | 2.22 × 10−4 | −13.78 | −11.62 | −22.21 | −21.11 |
10 | 282.75 | −9.67 | −78.89 | −14.17 | 5.90 × 10−3 | 1.39 × 10−5 | 5.33 × 10−3 | 5.60 × 10−4 | −15.33 | −13.16 | −23.77 | −22.67 |
11 | 283.55 | - | - | −13.82 | 1.60 × 10−3 | 6.46 × 10−6 | 1.51 × 10−3 | 8.68 × 10−4 | −15.36 | −13.22 | −23.74 | −22.64 |
12 | 282.65 | - | - | −15.35 | 4.60 × 10−3 | 4.23 × 10−6 | 3.71 × 10−3 | 8.82 × 10−4 | −15.48 | −13.30 | −23.93 | −22.82 |
Profile Number | Depth [m] | Radiocarbon Determination (Years BP) | Calibrated Date [BP] | |
---|---|---|---|---|
68.2% Probability | 95.4% Probability | |||
23 | 0.63 | 2810 ± 50 | 2975–2850 (68.2%) | 3059–2789 (95.4%) |
23 | 1.83 | 4690 ± 90 | 5577–5535 (13.2%) 5479–5319 (55.0%) | 5605–5272 (90%) 5183–5120 (3.1%) 5112–5066 (2.4%) |
22 | 1.18 | 2780 ± 50 | 2946–2843 (59%) 2820–2800 (9.2%) | 2998–2769 (95.4%) |
22 | 1.48 | 3130 ± 50 | 3440–3433 (2.7%) 3401–3325 (44.3%) 3295–3253 (21.1%) | 3450–3220 (95.4%) |
22 | 1.76 | 3340 ± 70 | 3679–3670 (2.8%) 3641–3479 (65.4%) | 3820–3794 (1.9%) 3761–3752 (0.5%) 3725–3440 (90.5%) 3433–3400 (2.5%) |
22 | 2.33 | 4600 ± 60 | 5459–5375 (31.4%) 5331–5280 (21.8%) 5164–5135 (7.8%) 5105–5076 (7.3%) | 5569–5559 (0.8%) 5471–5212 (68.4%) 5193–5050 (26.2%) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gruszczyński, T.; Małecki, J.J.; Romanova, A.; Ziułkiewicz, M. Reconstruction of Thermal Conditions in the Subboreal Inferred from Isotopic Studies of Groundwater and Calcareous Tufa from the Spring Mire Cupola in Wardzyń (Central Poland). Water 2019, 11, 1945. https://doi.org/10.3390/w11091945
Gruszczyński T, Małecki JJ, Romanova A, Ziułkiewicz M. Reconstruction of Thermal Conditions in the Subboreal Inferred from Isotopic Studies of Groundwater and Calcareous Tufa from the Spring Mire Cupola in Wardzyń (Central Poland). Water. 2019; 11(9):1945. https://doi.org/10.3390/w11091945
Chicago/Turabian StyleGruszczyński, Tomasz, Jerzy J. Małecki, Anastasiia Romanova, and Maciej Ziułkiewicz. 2019. "Reconstruction of Thermal Conditions in the Subboreal Inferred from Isotopic Studies of Groundwater and Calcareous Tufa from the Spring Mire Cupola in Wardzyń (Central Poland)" Water 11, no. 9: 1945. https://doi.org/10.3390/w11091945
APA StyleGruszczyński, T., Małecki, J. J., Romanova, A., & Ziułkiewicz, M. (2019). Reconstruction of Thermal Conditions in the Subboreal Inferred from Isotopic Studies of Groundwater and Calcareous Tufa from the Spring Mire Cupola in Wardzyń (Central Poland). Water, 11(9), 1945. https://doi.org/10.3390/w11091945