Assessing the Fresh–Saline Groundwater Distribution in the Nile Delta Aquifer Using a 3D Variable-Density Groundwater Flow Model
Abstract
:1. Introduction
2. Physical Settings
2.1. Study Area
2.2. Geology and Aquifer Characterization
3. Methodology and Model Setup
3.1. Code Description
3.2. Model Setup
Spatial Discretization
3.3. Boundary Conditions
3.4. Hydrogeological Parameters
3.5. Hydrological Stresses
3.5.1. Irrigation Canals and Drains
3.5.2. Recharge
3.5.3. Salinity Concentrations Canals and Recharge
3.5.4. Extraction Wells
3.5.5. Solute Transport Characteristics
3.6. Determining Salinity Concentration Distribution of the Year 2010
4. Results and Discussion
4.1. Comparing Modeling Results and Observed Salinity Data for Different Simulation Periods
4.2. Salinity Concentration Distribution
5. Conclusions and Recommendations
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Custodio, E. Aquifer overexploitation: What does it mean? Hydrogeol. J. 2002, 10, 254–277. [Google Scholar] [CrossRef]
- Werner, A.D.; Bakker, M.; Post, V.E.A.; Vandenbohede, A.; Lu, C.; Ataie-Ashtiani, B.; Simmons, C.T.; Barry, D.A. Seawater intrusion processes, investigation and management: Recent advances and future challenges. Adv. Water Res. J. 2013, 51, 3–26. [Google Scholar] [CrossRef]
- El Raey, M.; Nasr, S.; Frihy, O.; Desouki, S.; Dewidar, K. Potential Impacts of Accelerated sea-level rise on Alexandria Governorate, Egypt. Coast. Res. J. 1995, 14, 190–204. [Google Scholar]
- IPCC; Field, C.B.; Barros, V.R.; Dokken, D.J.; Mach, K.J.; Mastrandrea, M.D.; Bilir, T.E.; Chatterjee, M.; Ebi, K.L.; Estrada, Y.O.; et al. Climate Change 2014. Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects; Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Morsy, W.S. Environmental Management to Groundwater Resources for Nile Delta Region. Ph.D. Thesis, Faculty of Engineering, Cairo University, Cairo, Egypt, 2009. [Google Scholar]
- Mabrouk, M.B.; Jonoski, A.; Solomatine, D.; Uhlenbrook, S. A Review of Seawater Intrusion in the Nile Delta Groundwater System—The basis for Assessing Impacts due to Climate Changes, Sea Level Rise and Water Resources Development. Nile Water Sci. Eng. J. 2017, 10, 46–61. [Google Scholar]
- Pennington, B.T.; Sturt, F.; Wilson, P.; Rowland, J.; Brown, A.G. The fluvial evolution of the Holocene Nile Delta. Quat. Sci. Rev. J. 2017, 170, 212–231. [Google Scholar] [CrossRef] [Green Version]
- Dahab, K. Hydrogeological Evaluation of the Nile Delta after High Dam Construction. Ph.D. Thesis, Faculty of Science, Menoufia University, Menoufia, Egypt, 1993. [Google Scholar]
- Farid, M.S. Management of Groundwater System in the Nile Delta. Ph.D. Thesis, Faculty of Engineering, Cairo University, Cairo, Egypt, 1980. [Google Scholar]
- Stanley, J.; Clemente, P.L. Increased Land Subsidence and Sea-Level Rise are Submerging Egypt’s Nile Delta Coastal Margin. Geol. Soc. Am. J. 2017, 27, 5–doi10. [Google Scholar] [CrossRef]
- Stanley, D.J. Subsidence in the northeastern Nile delta: Rapid rates, possible causes, and consequences. Sci. J. 1988, 240, 497–500. [Google Scholar] [CrossRef] [PubMed]
- Geriesh, M.H.; Balke, K.D.; El-Rayes, A.E.; Mansour, B.M. Implications of climate change on the groundwater flow regime and geochemistry of the Nile Delta, Egypt. Coast. Conserv. J. 2015, 19, 589–608. [Google Scholar] [CrossRef]
- Abd-ElMoati, M.A.R.; El-Sammak, A.A. Man-made impact on the geochemistry of the Nile Delta Lakes. A study of metals concentrations in sediments. Water Air Soil Pollut. J. 1997, 97, 413. [Google Scholar] [CrossRef]
- Abd-Elhamid, H.F.; Javadi, A.A.; Abd-Elaty, I.; Sherif, M.M. Simulation of seawater intrusion in the Nile Delta aquifer under the conditions of climate change. Hydrol. Res. J. 2016, 47, 1198–1210. [Google Scholar] [CrossRef]
- Darwish, M.M. Effect of Probable Hydrological Changes on the Nile Delta Aquifer System. Ph.D. Thesis, Cairo University, Cairo, Egypt, 1994. [Google Scholar]
- Sherif, M.M.; Singh, V.P. Effect of climate change on sea water intrusion in coastal aquifers. Hydrol. Process. J. 1999, 13, 1277–1287. [Google Scholar] [CrossRef]
- Nosair, A. Climatic Change and Their Impacts on Groundwater Occurrence in Eastern Part in Nile Delta. Master’s Thesis, Faculty of Science, Zagazig University, Zagazig, Egypt, 2011. [Google Scholar]
- Sherif, M.M.; Sefelnasr, A.; Javad, A. Incorporating the concept of equivalent freshwater head in successive horizontal simulations of seawater intrusion in the Nile Delta aquifer, Egypt. Hydrogeol. J. 2012, 464, 186–198. [Google Scholar] [CrossRef]
- Sefelnasr, A.; Sherif, M.M. Impacts of seawater rise on seawater intrusion in the Nile Delta aquifer, Egypt. Groundw. J. 2014, 52, 264–276. [Google Scholar] [CrossRef] [PubMed]
- Nofal, E.R.; Amer, M.A.; El-Didy, S.M.; Fekry, A.M. Delineation and modeling of seawater intrusion into the Nile Delta Aquifer: A new perspective. Water Sci. J. 2015, 29, 156–166. [Google Scholar] [CrossRef] [Green Version]
- Gelhar, L.W.; Welty, C.; Rehfeldt, K.R. A Critical Review of Data on Field-Scale Dispersion in Aquifers. Water Resour. Res. J. 1992, 28, 1955–1974. [Google Scholar] [CrossRef]
- Werner, A.D.; Gallagher, M.R. Characterization of sea-water intrusion in the Pioneer Valley, Australia using hydrochemistry and three-dimensional numerical modelling. Hydrogeol. J. 2006, 14, 1452–1469. [Google Scholar] [CrossRef]
- Oude Essink, G.H.P.; Van Baaren, E.S.; De Louw, P.G.B. Effects of climate change on coastal groundwater systems: A modeling study in the Netherlands. Water Resour. Res. J. 2010, 46, 10. [Google Scholar] [CrossRef]
- Zeghici, R.M.; Oude Essink, G.H.P.; Hartog, N.; Sommer, W. Integrated assessment of variable density–viscosity groundwater flow for a high temperature mono-well aquifer thermal energy storage (HT-ATES) system in a geothermal reservoir. Geotherm. J. 2015, 55, 58–68. [Google Scholar] [CrossRef]
- Abd-Elhamid, H.F. Investigation and control of seawater intrusion in the Eastern Nile Delta aquifer considering climate change. Water Sci. Technol. Water Supply J. 2017, 17, 311–323. [Google Scholar] [CrossRef]
- Yang, J.; Graf, T.; Ptak, T. Impact of climate change on freshwater resources in a heterogeneous coastal aquifer of Bremerhaven, Germany: A three-dimensional modeling study. Contam. Hydrol. J. 2015, 177, 107–121. [Google Scholar] [CrossRef]
- Gingerich, S.B.; Voss, C.I. Three-dimensional variable-density flow simulation of a coastal aquifer in southern Oahu, Hawaii, USA. Hydrogeol. J. 2005, 13, 436–450. [Google Scholar] [CrossRef]
- Schulz, S.; Walther, M.; Michelsen, N.; Rausch, R.; Dirks, H.; Al-Saud, M.; Merz, R.; Kolditz, O.; Schüth, C. Improving large-scale groundwater models by considering fossil gradients. Adv. Water Res. J. 2017, 103, 32–43. [Google Scholar] [CrossRef]
- Langevin, C.D.; Thorne, D.T.; Thorne, D.T., Jr.; Sukop, A.M.; Guo, W. SEAWAT Version 4: A Computer Program for Simulation of Multi-Species Solute and Heat Transport: U.S. Geological Survey Techniques and Methods; Geological Survey (U.S.): Leston, VA, USA, 2008; p. 39. [Google Scholar]
- CAPMAS. Central Agency for Public Mobilization and Statistics Egypt. 2017. Available online: www.capmas.gov.eg (accessed on 1 February 2017).
- Sestini, G. Nile Delta: A review of depositional environments and geological history. Geol. Soc. J. 1989, 41, 99–127. [Google Scholar] [CrossRef]
- Said, R. The Geologic Evolution of the River Nile; Springer: New York, NY, USA, 1981. [Google Scholar]
- Zheng, C.; Wang, P.P. MT3DMS: A Modular Three-Dimensional Multispecies Transport Model for Simulation of Advection, Dispersion and Chemical Reactions of Contaminants in Groundwater Systems; Documentation and User’s Guide, Strategic Environmental Research and Development Program; US Army Corps of Engineers: Boston, MA, USA, 1999. [Google Scholar]
- GAEB. Geotechnical Encyclopedia of Egypt; General Authority for Educational Buildings Publishing Unit: Cairo, Egypt, 2011; ISBN 977-6079-23-7. [Google Scholar]
- RIGW (Research Institute for Groundwater); Ministry of Water Resources and Irrigation. Hydrogeology Map of the Nile Delta, Scale 1: 50000000, 1st ed.; MWRI Publishing Unit: Cairo, Egypt, 1992. [Google Scholar]
- EGSA. Egyptian General Survey and Mining, Topographical Map Cover Nile Delta, Scale 1:2.000.000; Alameria Publishing Unit: Cairo, Egypt, 1997. [Google Scholar]
- Walther, M.; Graf, T.; Kolditz, O.; Liedl, R.; Post, V. How significant is the slope of the sea-side boundary for modelling seawater intrusion in coastal aquifers? Hydrol. J. 2017, 551, 648–659. [Google Scholar] [CrossRef]
- Huisman, L. Groundwater Recovery; Besleys Books: Blyburgate, UK, 1972. [Google Scholar]
- Aly, A.I.M.; Simpson, H.J.; Hamza, M.S.; White, J.W.C.; Nada, A.; Awad, M.A. Use of environmental isotopes in the quantification of the water budget of the Nile Delta, Egypt. Isot. Radiat. Res. J. 1991, 21, 31–40. [Google Scholar]
- Awad, M.A.; Nada, A.A.; Aly, A.I.M.; Farid, M.S. Tritium content of groundwater aquifer in western Nile Delta. Isot. Environ. Health Stud. J. 1993, 28, 167–173. [Google Scholar] [CrossRef]
- Awad, M.A.; Farid, M.S.; Hamza, M.S. Studies on the recharge of the aquifer systems in the southern portion of the Nile Delta. Isot. Radiat. Res. J. 1994, 26, 21–25. [Google Scholar]
- Awad, M.A.; Sadek, M.A.; Salem, W.M. Use of mass balance and statistical correlation for geochemical and isotopic investigation of the groundwater in the quaternary aquifer of the Nile Delta, Egypt. Arab J. Nucl. Sci. Appl. J. 1999, 32, 43–58. [Google Scholar]
- Hamza, M.S.; Aly, A.I.M.; Swailem, F.M.; Nada, A. Environmental stable isotopes indicate possible sources of groundwater recharge in eastern Nile Delta. Isot. Radiat. Res. J. 1987, 19, 7–14. [Google Scholar]
- Salem, W.M.; Sadek, M.A. Chemical and isotopic signature for mapping zones of seawater intrusion and residual saline pockets in coastal aquifers of the Egyptian Nile Delta. Arab Nucl. Sci. Appl. J. 2006, 39, 111–127. [Google Scholar]
- Shohaib, R. A Study of Environmental Isotopes and Trace Elements Abundance in Egyptian Water. Ph.D. Thesis, Faculty of Science, Cairo University, Cairo, Egypt, 1980. [Google Scholar]
- Salem, W.M.M. Application of environmental isotopes and hydrochemical modelling to study groundwater in tenth of Ramadan city, Egypt. Isot. Radiat. Res. J. 2001, 33, 243–259. [Google Scholar]
- Webster, D.S.; Procter, J.R.; Marine, J.W. Two-Well Tracer Test in Fractured Crystalline Rock; USGS: Leston, VA, USA, 1970. [Google Scholar]
- Segol, G.; Pinder, G.F. Transient simulation of saltwater intrusion in southeastern Florida. Water Resour. Res. J. 1976, 12, 65–70. [Google Scholar] [CrossRef]
- Bear, J. Hydraulics of Groundwater; Dover Publications: Mineola, NY, USA, 2007; ISBN 0-486-45355-3. [Google Scholar]
- CDS (Canal Distribution Sector). Ministry of Water Resources and Irrigation in Egypt, National Yearly Report; MWRI Publishing Unit: Cairo, Egypt, 2010; Volume 10. [Google Scholar]
- El-Sadek, A.; El Kahloun, M.; Meire, P. Ecohydrology for integrated water resources management in the Nile Basin. Ecohydrol. Hydrobiol. J. 2008, 8, 77–84. [Google Scholar] [CrossRef]
- RIGW/IWACO. Environmental Management of Groundwater Resources (EMGR); Final Technical Report TN/70.0067/WQM/97/20; Kanater: El-Khairia, Egypt, 1999. [Google Scholar]
- Azab, A. Surface Water Quality Management in Irrigated Watersheds. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2012. [Google Scholar]
- Elewa, H.H.; El Nahry, H. Hydro-Environmental Status and Soil Management of the River Nile Delta, Egypt. Environ. Geol. J. 2009, 57, 759–774. [Google Scholar] [CrossRef]
- Taha, A.A.; El-Mahmoudi, A.S.; El-Haddad, I.M. Pollution sources and related environmental impacts in the new communities southeast Nile Delta, Egypt. Emir. J. Eng. Res. J. 2004, 9, 35–49. [Google Scholar]
- Delsman, J.R.; Hu-a-ng, K.R.M.; Vos, P.C.C.; De Louw, P.G.B.; Oude Essink, G.H.P.; Stuyfzand, P.J.; Bierkens, M.F.P. Paleo-modeling of coastal saltwater intrusion during the Holocene: An application to the Netherlands. Hydrol. Earth Syst. Sci. J. 2014, 18, 3891–3905. [Google Scholar] [CrossRef]
- Meisler, H.; Leahy, P.P.; Knobel, L.L. Effect of Eustatic Sea-Level Changes on Saltwater-Freshwater in the Northern Atlantic Coastal Plain; USGS Water Supply Paper 2255; USGS: Leston, VA, USA, 1984. [Google Scholar]
- Misut, P.E.; Voss, C.I. Freshwater-saltwater transition zone movement during aquifer storage and recovery cycles in Brooklyn and Queens, New York City, USA. Hydrol. J. 2007, 337, 87–103. [Google Scholar] [CrossRef]
- Post, V.E.A.; Groen, J.; Kooi, H.; Person, M.; Ge, S.; Edmunds, W.M. Offshore fresh groundwater reserves as a global phenomenon. Nat. J. 2013, 504, 71–78. [Google Scholar] [CrossRef]
- Larsen, F.; Tran, L.V.; Van Hoang, H.; Tran, L.T.; Christiansen, A.V.; Pham, N.Q. Groundwater salinity influenced by Holocene seawater trapped in incised valleys in the Red River delta plain. Nat. Geosci. J. 2017, 10, 376–381. [Google Scholar] [CrossRef] [Green Version]
- Delsman, J.; Van Baaren, E.S.; Siemon, B.; Dabekaussen, W.; Karaoulis, M.C.; Pauw, P.; Vermaas, T.; Bootsma, H.; De Louw, P.G.B.; Gunnink, J.L.; et al. Large-scale, probabilistic salinity mapping using airborne electromagnetics for groundwater management in Zeeland, the Netherlands. Environ. Res. J. 2018. [Google Scholar] [CrossRef]
- Faneca Sànchez, M.; Gunnink, J.L.; Van Baaren, E.S.; Oude Essink, G.H.P.; Auken, E.; Elderhorst, W.; De Louw, P.G.B. Modelling climate change effects on a Dutch coastal groundwater system using airborne electromagnetic measurements. Hydrol. Earth Syst. Sci. J. 2012, 16, 4499–4516. [Google Scholar] [CrossRef] [Green Version]
- Jorgensen, F.; Scheer, W.; Thomsen, S.; Sonnenborg, T.O.; Hinsby, K.; Wiederhold, H.; Schamper, C.; Burschil, T.; Roth, B.; Kirsch, R. Transboundary geophysical mapping of geological elements and salinity distribution critical for the assessment of future sea water intrusion in response to sea level rise. Hydrol. Earth Syst. Sci. J. 2012, 16, 1845–1862. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, P.; Sonnenborg, T.O.; Goncear, G.; Hinsby, K. Assessing impacts of climate change, sea-level rise, and drainage canals on saltwater intrusion to coastal aquifer. Hydrol. Earth Syst. Sci. J. 2013, 17, 421–443. [Google Scholar] [CrossRef]
- Siemon, B.; Christiansen, A.V.; Auken, E. A review of helicopter-borne electromagnetic methods for groundwater exploration. Near Surf. Geophys. J. 2009, 7, 629–646. [Google Scholar] [CrossRef]
Category | Variable | Source |
---|---|---|
Hydrogeology | Hydraulic conductivity Effective porosity Salinity concentration Groundwater extraction wells | MWRI 1 (RIGW 2) Literature review CCC 3 GAEB 4 EGSM 5 |
Climate | Meteorological data (rain) | Literature review |
Land use | Agricultural zones Model boundaries | FAO 6 Literature review |
Irrigation | Main canals and drains Discharge and water balance component | MWRI (CDS 7) Literature review |
Time Interval of Model Simulation Periods (years) | Salinity Modeled Concentration in 2010 | |||||
---|---|---|---|---|---|---|
S1 | S2 | M1 | M2 | N1 | N2 | |
200 | 0.18 | 0.49 | 0.59 | 1 | 11 | 12.68 |
400 | 0.28 | 0.54 | 0.05 | 1.5 | 15.3 | 23.9 |
600 | 0.3 | 0.6 | 1.116 | 1.8 | 22.9 | 27.15 |
700 | 0.35 | 0.7 | 2.9 | 2 | 25.4 | 29 |
800 | 0.5 | 0.8 | 7 | 2.7 | 27 | 31.8 |
1000 | 0.6 | 0.89 | 8 | 5.5 | 32 | 35 |
1700 | 0.7 | 0.93 | 9 | 7 | 34 | 36 |
2600 | 0.8 | 0.96 | 10 | 10 | 38 | 38.5 |
Observed salinity concentration | 0.43 | 0.83 | 6 | 3.2 | 28 | 33 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mabrouk, M.; Jonoski, A.; Oude Essink, G.H.P.; Uhlenbrook, S. Assessing the Fresh–Saline Groundwater Distribution in the Nile Delta Aquifer Using a 3D Variable-Density Groundwater Flow Model. Water 2019, 11, 1946. https://doi.org/10.3390/w11091946
Mabrouk M, Jonoski A, Oude Essink GHP, Uhlenbrook S. Assessing the Fresh–Saline Groundwater Distribution in the Nile Delta Aquifer Using a 3D Variable-Density Groundwater Flow Model. Water. 2019; 11(9):1946. https://doi.org/10.3390/w11091946
Chicago/Turabian StyleMabrouk, Marmar, Andreja Jonoski, Gualbert H. P. Oude Essink, and Stefan Uhlenbrook. 2019. "Assessing the Fresh–Saline Groundwater Distribution in the Nile Delta Aquifer Using a 3D Variable-Density Groundwater Flow Model" Water 11, no. 9: 1946. https://doi.org/10.3390/w11091946
APA StyleMabrouk, M., Jonoski, A., Oude Essink, G. H. P., & Uhlenbrook, S. (2019). Assessing the Fresh–Saline Groundwater Distribution in the Nile Delta Aquifer Using a 3D Variable-Density Groundwater Flow Model. Water, 11(9), 1946. https://doi.org/10.3390/w11091946