Long-Term Isotope Records of Precipitation in Zagreb, Croatia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Stable Isotopes of Hydrogen and Oxygen
2.2. Tritium
2.3. Sampling Sites and Climate
2.4. Meteorological Data
2.5. Measurement of δ2H and δ18O
2.6. Measurement of Tritium Activity Concentration
2.7. Data Evaluation
3. Results
3.1. Meteorological Data
3.2. Stable Isotopes
3.3. Tritium Activity Concentration in Precipitation at Zagreb
4. Discussion
4.1. Trends in Meteorological Parameters
4.2. Trends in Stable Isotope Data
4.3. Deuterium Excess
4.4. Trends in Tritium Activity Concentration
4.5. Local Meteoric Water Line
4.6. Temperature Dependence of δ18O
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
List of Abbreviations
CMHS | Croatian Meteorological and Hydrological Service |
GMWL | Global meteoric water line |
GNIP | Global Network of Isotopes in Precipitation |
GPC | Gas proportional counting |
IAEA | International Atomic Energy Agency |
IRMS | Isotope ratio mass spectrometry |
LMWL | Local meteoric water line |
LSC-EE | Liquid scintillation counting with electrolytic enrichment |
MA | Major axis least squares regression |
OLSR | Ordinary least squares regression |
PWLSR | Precipitation-weighted OLSR |
PWMA | Precipitation-weighted MA |
PWRMA | Precipitation-weighted RMA |
RBI | Ruđer Bošković Institute |
RMA | Reduced major axis regression |
rmSSEav | Average of the root mean square sum of squared errors |
SMOW | Standard mean ocean water |
TU | Tritium unit |
WMO | World Meteorological Organization |
References
- Mook, W.G. Environmental Isotopes in the Hydrological Cycle, Principles and Applications, Volumes I, IV and V; Technical Documents in Hydrology No. 39; IAEA-UNESCO: Paris, France, 2001. [Google Scholar]
- Dansgaard, W. Stable isotopes in precipitation. Tellus 1964, 16, 436–468. [Google Scholar] [CrossRef]
- Maloszewski, P.; Zuber, A. Principles and practice of calibration and validation mathematical models for the interpretation of environmental tracer data in aquifers. Adv. Water Resour. 1993, 16, 173–190. [Google Scholar] [CrossRef]
- Rozanski, K.; Araguás-Araguás, L.; Gonfiantini, R. Isotopic patterns in modern global precipitation. Geophys. Monogr. 1993, 78, 1–36. [Google Scholar] [CrossRef]
- Rozanski, K.; Araguás-Araguás, L. Spatial and temporal variability of stable isotope composition of precipitation over the South American continent. Bull. Inst. Fr. Études Andin. 1995, 24, 379–390. [Google Scholar]
- Adomako, D.; Gibrilla, A.; Maloszewski, P.; Ganyaglo, S.Y.; Rai, S.P. Tracing stable isotopes (δ2H and δ18O) from meteoric water to groundwater in the Densu River basin of Ghana. Environ. Monit. Assess. 2015, 187, 1–15. [Google Scholar] [CrossRef]
- Vrzel, J.; Kip Solomon, D.; Blažeka, Ž.; Ogrinc, N. The study of the interactions between groundwater and Sava River water in the Ljubljansko polje aquifer system (Slovenia). J. Hydrol. 2018, 556, 384–396. [Google Scholar] [CrossRef]
- Parlov, J.; Kovač, Z.; Nakić, Z.; Barešić, J. Using Water Stable Isotopes for Identifying Groundwater Recharge Sources of the Unconfined Alluvial Zagreb Aquifer (Croatia). Water 2019, 11, 2177. [Google Scholar] [CrossRef] [Green Version]
- Kong, Y.; Wang, K.; Li, J.; Pang, Z. Stable Isotopes of Precipitation in China: A Consideration of Moisture Sources. Water 2019, 11, 1239. [Google Scholar] [CrossRef] [Green Version]
- Rao, S.M. Injected radiotracer techniques in hydrology. Proc. Indian Acad. Sci. 1984, 99, 319–335. [Google Scholar]
- Clark, I.; Fritz, P. Environmental Isotopes in Hydrogeology; Lewis Publ.: Boca Raton, FL, USA, 1997; p. 328. [Google Scholar]
- Kendall, C.; McDonnell, J.J. Isotope Tracers in Catchment Hydrology; Elsevier Science: Amsterdam, The Netherlands, 1998; p. 840. [Google Scholar]
- Mayr, C.; Langhamer, L.; Wissel, H.; Meier, W.; Sauter, T.; Laprida, C.; Massaferro, J.; Försterra, G.; Lücke, A. Atmospheric controls on hydrogen and oxygen isotope composition of meteoric and surface waters in Patagonia. Hydrol. Earth Syst. Sci. 2018. [Google Scholar] [CrossRef]
- Burnik Šturm, M.; Ganbaatar, O.; Voigt, C.C.; Kaczenskya, P. First field-based observations of δ2H and δ18O values of event-based precipitation, rivers and other water bodies in the Dzungarian Gobi, SW Mongolia. Isot. Environ. Health Stud. 2017, 53, 157–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawrence, J.R.; White, J.R.C. The Elusive Climate Signal in the Isotopic Composition of Precipitation Stable Isotope Geochemistry: A Tribute to Samuel Epstein. In Stable Isotope Geochemistry: A Tribute to Samuel Epstein; Taylor, H.P., O’Neil, J.R., Jr., Kaplan, I.R., Eds.; Special Publication No.3; The Geochemical Society: Washington, DC, USA, 1991. [Google Scholar]
- Gat, J.R. Some classical concepts of isotope hydrology. In Isotopes in the Water Cycle: Past, Present and Future of a Developing Science; Aggarwal, P.K., Gat, J.R., Fröhlich, K., Eds.; Springer: Dordrecht, The Netherlands, 2005; pp. 127–137. [Google Scholar]
- Krklec, K.; Domínguez-Villar, D.; Lojen, S. The impact of moisture sources on the oxygen isotope composition of precipitation at a continental site in central Europe. J. Hydrol. 2018, 561, 810–821. [Google Scholar] [CrossRef]
- Horvatinčić, N.; Krajcar Bronić, I.; Barešić, J.; Obelić, B.; Vidič, S. Tritium and stable isotope distribution in the atmosphere at the coastal region of Croatia. In Isotopic Composition of Precipitation in the Mediterranean Basin in Relation to Air Circulation Patterns and Climate, IAEA-TECDOC-1453; Gourcy, L., Ed.; IAEA: Vienna, Austria, 2005; pp. 37–50. [Google Scholar]
- Giustini, F.; Brilli, M.; Patera, A. Mapping oxygen stable isotopes of precipitation in Italy. J. Hydrol. Reg. Stud. 2016, 8, 162–181. [Google Scholar] [CrossRef] [Green Version]
- Longinelli, A.; Anglesio, E.; Flora, O.; Iacumin, P.; Selmo, E. Isotopic composition of precipitation in Northern Italy: Reverse effect of anomalous climatic events. J. Hydrol. 2006, 329, 471–476. [Google Scholar] [CrossRef]
- Rozanski, K.L.; Gonfiantini, R. Isotopes in climatological studies: Environmental isotopes are helping us understand the world’s climate. IAEA Bull. 1990, 4, 9–15. [Google Scholar]
- Marchetti, D.W.; Marchetti, S.B. Stable isotope compositions of precipitation from Gunnison, Colorado 2007–2016: Implications for the climatology of a high-elevation valley. Heliyon 2019, 5, e02120. [Google Scholar] [CrossRef] [Green Version]
- Ehleringer, J.R.; Cerling, T.E.; West, J.B.; Podlesak, D.W.; Chesson, L.A.; Bowen, G.J. Spatial considerations of stable isotope analyses in environmental forensics. In Issues in Environmental Science and Technology; Hester, R.E., Harrison, R.M., Eds.; Royal Society of Chemistry Publishing: Cambridge, UK, 2008; Volume 26, pp. 36–53. [Google Scholar] [CrossRef]
- Bowen, G.J.; Wassenaar, L.I.; Hobson, K.A. Global application of stable hydrogen and oxygen isotopes to wildlife forensics. Oecologia 2005, 143, 337–348. [Google Scholar] [CrossRef]
- West, A.G.; February, E.C.; Bowen, G.J. Spatial analysis of hydrogen and oxygen stable isotopes (“isoscapes”) in ground water and tap water across South Africa. J. Geochem. Explor. 2014, 145, 213–222. [Google Scholar] [CrossRef] [Green Version]
- Terzer, S.; Wassenaar, L.I.; Araguás-Araguás, L.J.; Aggarwal, P.K. Global isoscapes for δ18O and δ2H in precipitation: Improved prediction using regionalized climatic regression models. Hydrol. Earth Syst. Sci. 2013, 17, 4713–4728. [Google Scholar] [CrossRef]
- IAEA/WMO. Global Network of Isotopes in Precipitation. The GNIP Database. Available online: https://nucleus.iaea.org/wiser (accessed on 22 November 2019).
- Lewis, S.L.; Maslin, M.A. Defining the Anthropocene. Nature 2015, 519, 171–180. [Google Scholar] [CrossRef]
- IPCC. The Intergovernmental Panel on Climate Change. Available online: https://www.ipcc.ch/sr15/ (accessed on 26 November 2019).
- Climate Central. Available online: https://www.climatecentral.org/gallery/graphics/the-10-hottest-global-years-on-record (accessed on 22 November 2019).
- NASA. Available online: https://www.nasa.gov/press-release/nasa-noaa-data-show-2016-warmest-year-on-record-globally (accessed on 22 November 2019).
- Craig, H. Isotope variations in meteoric waters. Science 1961, 133, 1702–1703. [Google Scholar] [CrossRef] [PubMed]
- Gat, J.R. Oxygen and hydrogen isotopes in the hydrologic cycle. Annu. Rev. Earth Planet Sci. 1996, 24, 225–262. [Google Scholar] [CrossRef] [Green Version]
- Gat, R.J.; Mook, W.G.; Meijer, A.J. Atmospheric water. In Environmental Isotopes in the Hydrological Cycle—rinciples and Applications; Mook, W.G., Ed.; Technical Documents in Hydrology; IAEA: Vienna, Austria, 2001; No. 39; Volume 2, p. 113. [Google Scholar]
- IAEA. Stable Isotope Hydrology: Deuterium and Oxygen-18 in Water Cycle; Gat, J.R., Gonfiantini, R., Eds.; Technical Reports Series 210; IAEA: Vienna, Austria, 1981; p. 339. [Google Scholar]
- Coplen, T.B. New guidelines for the reporting of stable hydrogen, carbon, and oxygen isotope ratio data. Geochim. Cosmochim. Acta 1996, 60, 3359. [Google Scholar] [CrossRef]
- Coplen, T.B.; Bohlke, J.K.; De Bievre, P.; Ding, T.; Holden, N.E.; Hopple, J.A.; Krouse, H.R.; Lamberty, A.; Peiser, P.S.; Revesz, K.; et al. Isotope-abundance variations of selected elements (IUPAC Technical Report). Pure Appl. Chem. 2002, 74, 1987–2017. [Google Scholar] [CrossRef]
- Dunn, P.J.H.; Carter, J.F. (Eds.) Good Practice Guide for Isotope Ratio Mass Spectrometry, 2nd ed.; FIRMS: Bristol, UK, 2018; p. 84. ISBN 978-0-948926-33-4. Available online: http://www.forensic-isotopes.org/gpg.html (accessed on 26 November 2019).
- Craig, H. Standard for Reporting Concentrations of Deuterium and Oxygen-18 in Natural Waters. Science 1961, 133, 1833–1834. [Google Scholar] [CrossRef]
- Epstein, S.; Mayeda, T.K. Variations of 18O content of waters from natural sources. Geochim. Cosmochim. Acta 1953, 4, 213–224. [Google Scholar] [CrossRef]
- Brand, W.A.; Coplen, T.B.; Vogl, J.; Rosner, M.; Prohaska, T. Assessment of International Reference Materials for Isotope-Ratio Analysis (IUPAC Technical Report). Pure Appl. Chem. 2014, 86, 425–467. [Google Scholar] [CrossRef]
- Dansgaard, W. The isotope composition of natural waters. Medd. Grønland 1961, 165, 120. [Google Scholar]
- Gat, J.R.; Carmi, I. Evolution of the Isotopic Composition of Atmospheric Waters in the Mediterranean Sea Area. J. Geophys. Res. 1970, 75, 3039–3048. [Google Scholar] [CrossRef]
- Cruz-San, J.; Araguas-Araguas, L.; Rozanski, K.; Benavente, J.; Cardenal, J.; Hidalgo, M.C.; Garcia-Lopez, S.; Martinez-Garrido, J.C.; Moral, F.; Olias, M. Sources of precipitation over South-Eastern Spain and groundwater recharge—An isotopic study. Tellus B 1992, 44, 226–236. [Google Scholar] [CrossRef] [Green Version]
- IAEA. Isotopic Composition of Precipitation in the Mediterranean Basin in Relation to Air Circulation Patterns and Climate: Final Report of a Coordinated Research Project 2000–2004; IAEA-TECDOC-1453; IAEA: Vienna, Austria, 2005. [Google Scholar]
- Gat, J.R.; Shemesh, A.; Tziperman, E.; Hecht, A.; Georgopoulos, D.; Basturk, O. The stable isotope composition of waters of the eastern Mediterranean Sea. J. Geophys. Res. 1996, 101, 6441–6451. [Google Scholar] [CrossRef]
- Vreča, P.; Krajcar Bronić, I.; Horvatinčić, N.; Barešić, J. Isotopic characteristics of precipitation in Slovenia and Croatia: Comparisom of continental and maritime stations. J. Hydrol. 2006, 330, 457–469. [Google Scholar] [CrossRef]
- Crawford, J.; Hughes, C.E.; Lykoudis, S. Alternative least squares methods for determining the meteoric water line, demonstrated using GNIP data. J. Hydrol. 2014, 519, 2331–2340. [Google Scholar] [CrossRef]
- Hughes, C.E.; Crawford, J. A new precipitation weighted method for determining the meteoric water line for hydrological applications demonstrated using Australian and global GNIP data. J. Hydrol. 2012, 464, 344–351. [Google Scholar] [CrossRef]
- Araguás-Araguás, L.; Fröhlich, K.; Rozanski, K. Deuterium and oxygen-18 isotope composition of precipitation and atmospheric moisture. Hydrol. Process. 2000, 14, 1341–1355. [Google Scholar] [CrossRef]
- Peng, H.; Mayer, B.; Harris, S.; Krouse, H.R. A 10-yr record of stable isotope ratios of hydrogen and oxygen in precipitation at Calgary, Alberta, Canada. Tellus B 2004, 56, 147–159. [Google Scholar] [CrossRef]
- Lucas, L.; Unterweger, M.P. Comprehensive review and critical evaluation of the half-life of tritium. J. Res. Natl. Inst. Stand. Technol. 2000, 105, 541–549. [Google Scholar] [CrossRef]
- Nikolov, J.; Krajcar Bronić, I.; Todorović, N.; Stojković, I.; Barešić, J.; Petrović-Pantić, T. Tritium in water—Hydrology and health implications. In Tritium—Advances in Research and Applications; Janković, M.M., Ed.; NOVA Science Publishers: New York, NY, USA, 2018; pp. 157–213. [Google Scholar]
- Tadros, C.V.; Hughes, C.E.; Crawford, J.; Hollins, S.E.; Chisari, R. Tritium in Australian precipitation: A 50 year record. J. Hydrol. 2014, 513, 262–273. [Google Scholar] [CrossRef]
- Rozanski, K.; Gonfiantini, R.; Araguas-Araguas, L. Tritium in the global atmosphere: Distribution patterns and recent trends. J. Phys. G Nucl. Part. Phys. 1991, 17, 523–536. [Google Scholar] [CrossRef]
- Galeriu, D.; Melintescu, A.; Beresford, N.A.; Crout, N.M.J.; Takeda, H. 14C and tritium dynamics in wild mammals: A metabolic model. Radioprotection 2005, 40, S351–S357. [Google Scholar] [CrossRef] [Green Version]
- Hebert, D. Technogenic Tritium in Central European Precipitations. Isot. Environ. Health Stud. 1990, 26, 592–595. [Google Scholar] [CrossRef]
- UN; ILO; WHO. Selected Radionuclides—Environmental Health Criteria 25; WHO: Geneva, Switzerland, 1983; ISBN 92-4-154085-0. [Google Scholar]
- Nimac, I.; Perčec Tadić, M. New 1981–2010 climatological normals for Croatia and comparison to previous 1961–1990 and 1971–2000 normals. In Proceedings of the GeoMLA Conference, Belgrade, Serbia, 21–24 June 2016; University of Belgrade—Faculty of Civil Engineering: Belgrade, Serbia, 2016; pp. 79–85. [Google Scholar]
- Köppen, W. Das geographische System der Klimate. In Handbuch der Klimatologie; Köppen, W., Geiger, G., Eds.; Gebrüder Borntraeger: Berlin, Germany, 1936; pp. 1–44. [Google Scholar]
- Peel, M.C.; Finlyanson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Krajcar Bronić, I.; Horvatinčić, N.; Obelić, B. Two decades of environmental isotope records in Croatia: Reconstruction of the past and prediction of future levels. Radiocarbon 1998, 40, 399–416. [Google Scholar] [CrossRef] [Green Version]
- Krajcar Bronić, I.; Vreča, P.; Horvatinčić, N.; Barešić, J.; Obelić, B. Distribution of hydrogen, oxygen and carbon isotopes in the atmosphere of Croatia and Slovenia. Arch. Ind. Hyg. Toxicol. 2006, 57, 23–29. [Google Scholar]
- Krajcar Bronić, I.; Horvatinčić, N.; Barešić, J.; Obelić, B.; Vreča, P. Widening the Radiation Protection World, Tritium distribution in precipitation over Croatia and Slovenia. In Proceedings of the 11th International Congress of the International Radiation Protection Association, Madrid, Spain, 23–28 May 2004; IRPA: Madrid, Spain, 2014. ISBN 84-87078-05-2. [Google Scholar]
- Horvatinčić, N.; Kapelj, S.; Sironić, A.; Krajcar Bronić, I.; Kapelj, J.; Marković, T. Investigation of water resources and water protection in the karst area of Croatia using isotopic and geochemical analyses. In Proceedings of the Advances in Isotope Hydrology and its Role in Sustainable Water Resources Management (IHS-2007), Vienna, Austria, 21–25 May 2007; IAEA: Vienna, Austria, 2007; Volume 2, pp. 295–304, ISBN 978-92-0-110207-2. [Google Scholar]
- Horvatinčić, N.; Barešić, J.; Krajcar Bronić, I.; Karman, K.; Forisz, I.; Obelić, B. Study of the bank filtered groundwater system of the Sava River at Zagreb (Croatia) using isotope analyses. Cent. Eur. Geol. 2011, 54, 121–127. [Google Scholar] [CrossRef] [Green Version]
- Babinka, S.; Obelić, B.; Krajcar Bronić, I.; Horvatinčić, N.; Barešić, J.; Kapelj, S.; Suckow, A. MRT of water from springs of the Plitvice Lakes and Una River area. In Book of Abstracts IAEA-CN-151, Proceedings of the IAEA IHS International Symposium on Advances in Isotope Hydrology and its Role in Sustainable Water Resources Management, Vienna, Austria, 21–25 May 2007; IAEA: Vienna, Austria, 2007; p. 45. [Google Scholar]
- Mandić, M.; Bojić, D.; Roller-Lutz, Z.; Lutz, H.O.; Krajcar Bronić, I. Note on the spring region of Gacka River (Croatia). Isot. Environ. Health Stud. 2008, 44, 201–208. [Google Scholar] [CrossRef]
- Pezdič, J. Izotopi in Geokemijski Procesi; Naravoslovnotehniška Fakulteta, Oddelek za Geologijo: Ljubljana, Slovenia, 1999; p. 269. [Google Scholar]
- Vreča, P.; Krajcar Bronić, I.; Leis, A.; Brenčič, M. Isotopic composition of precipitation in Ljubljana (Slovenia). Geologija 2008, 51, 169–180. [Google Scholar] [CrossRef]
- Vreča, P.; Krajcar Bronić, I.; Leis, A.; Demšar, M. Isotopic composition of precipitation at the station Ljubljana (Reaktor), Slovenia—Period 2007–2010. Geologija 2014, 57, 217–230. [Google Scholar] [CrossRef]
- Vreča, P.; Krajcar Bronić, I.; Leis, A. Isotopic composition of precipitation in Portorož (Slovenia). Geologija 2011, 54, 129–138. [Google Scholar] [CrossRef]
- Vreča, P.; Malenšek, N. Slovenian Network of Isotopes in precipitation (SLONIP)—A review of activities in the period 1981–2015. Geologija 2016, 59, 67–84. [Google Scholar] [CrossRef]
- Horvatinčić, N.; Krajcar Bronić, I.; Obelić, B.; Bistrović, R. Long-time atmospheric tritium record in Croatia. Acta Geol. Hung. 1996, 39, 81–84. [Google Scholar]
- Horvatinčić, N.; Krajcar Bronić, I. 14C and 3H as indicators of the environmental contamination. RMZ Mater. Geoenviron. 1998, 45, 56–60. [Google Scholar]
- Barešić, J.; Horvatinčić, N.; Krajcar Bronić, I.; Obelić, B.; Vreča, P. Stable isotope composition of daily and monthly precipitation in Zagreb. Isot. Environ. Health Stud. 2006, 42, 239–249. [Google Scholar] [CrossRef] [PubMed]
- Zaninović, K.; Gajić-Čapka, M.; Perčec Tadić, M.; Vučetić, M.; Milković, J.; Bajić, A.; Cindrić, K.; Cvitan, L.; Katušin, Z.; Kaučić, D.; et al. Klimatski Atlas Hrvatske/Climate Atlas of Croatia 1961–1990, 1971–2000; Državni Hidrometeorološki Zavod: Zagreb, Croatia, 2008. [Google Scholar]
- Gehre, M.; Hoefling, R.; Kowski, P.; Strauch, G. Sample preparation device for quantitative hydrogen isotope analysis using chromium metal. Anal. Chem. 1996, 68, 4414–4417. [Google Scholar] [CrossRef]
- Surić, M.; Roller-Lutz, Z.; Mandić, M.; Krajcar Bronić, I.; Juračić, M. Modern C, O, and H isotope composition of speleothem and dripwater from Modrič Cave, eastern Adriatic coast (Croatia). Int. J. Speleol. 2010, 39, 91–97. [Google Scholar] [CrossRef]
- Coplen, T.B.; Wassenaar, L.I. LIMS for Lasers for achieving long-term accuracy and precision of δ2H, δ17O, and δ18O of waters using laser absorption spectrometry. Rapid Commun. Mass Spectrom. 2015, 29, 2122–2130. [Google Scholar] [CrossRef]
- Horvatinčić, N. Radiocarbon and tritium measurements in water samples and application of isotopic analyses in hydrology. Fizika 1980, 12, 201–218. [Google Scholar]
- Krajcar Bronić, I.; Obelić, B.; Srdoč, D. The simultaneous measurement of tritium activity and background count rate in a proportional counter by the Povinec method: Three years experience at the Rudjer Bošković Institute. Nucl. Instrum. Methods Phys. Res. B 1986, 17, 498–500. [Google Scholar] [CrossRef]
- Barešić, J.; Horvatinčić, N.; Krajcar Bronić, I.; Obelić, B. Comparison of two techniques for low-level tritium measurement—Gas proportional and liquid scintillation counting. In Proceedings of the Third European IRPA Congress, Helsinki, Finland, 14–18 June 2010; IRPA: Helsinki, Finland, 2010; pp. 1988–1992. [Google Scholar]
- Barešić, J.; Krajcar Bronić, I.; Horvatinčić, N.; Obelić, B.; Sironić, A.; Kožar-Logar, J. Tritium activity measurement of water samples using liquid scintillation counter and electrolytical enrichment. In Proceedings of the 8th Symposium of the Croatian Radiation Protection Association, Krk, Croatia, 13–15 April 2011; Krajcar Bronić, I., Kopjar, N., Milić, M., Branica, G., Eds.; HDZZ: Zagreb, Croatia, 2011; pp. 461–467. [Google Scholar]
- Krajcar Bronić, I.; Barešić, J.; Sironić, A.; Horvatinčić, N. Stability analysis of systems for preparation and measurement of 3H and 14C (Analiza stabilnosti sustava za pripremu i mjerenje 3H i 14C, in Croatian with English Abstract). In Proceedings of the 9th Symposium of the Croatian Radiation Protection Association, Krk, Croatia, 10–12 April 2013; Knežević, Ž., Majer, M., Krajcar Bronić, I., Eds.; CRPA: Zagreb, Croatia, 2013; pp. 495–501. [Google Scholar]
- Stojković, I.; Todorović, N.; Nikolov, J.; Krajcar Bronić, I.; Barešić, J.; Kozmidic Luburić, U. Methodology of tritium determination in aqueous samples by Liquid Scintillation Counting techniques. In Tritium—Advances in Research and Applications; Janković, M.M., Ed.; NOVA Science Publishers: New York, NY, USA, 2018; pp. 99–156. [Google Scholar]
- Rozanski, K.; Gröning, M. Tritium assay in water samples using electrolytic enrichment and liquid scintillation spectrometry. In Quantifying Uncertainty in Nuclear Analytical Measurements IAEA-TECDOC-1401; IAEA: Vienna, Austria, 2004; pp. 195–217. [Google Scholar]
- Gröning, M.; Auer, R.; Brummer, D.; Jaklitsch, M.; Sambandam, C.; Tanwee, A.; Tatzber, H. Increasing the performance of tritium analysis by electrolytic enrichment. Isot. Environ. Health Stud. 2009, 45, 118–125. [Google Scholar] [CrossRef]
- IAEA. Statistical Treatment of Environmental Isotopes in Precipitation; Technical Report Series 331; IAEA: Vienna, Austria, 1992; p. 781. [Google Scholar]
- Australian Nuclear Science and Technology Organisation (ANSTO). Local Meteoric Water Line Freeware. 2012. Available online: https://openscience.ansto.gov.au/collection/879 (accessed on 28 November 2019).
- Barešić, J.; Štrok, M.; Svetek, B.; Vreča, P.; Krajcar Bronić, I. Activity concentration of tritium (3H) in precipitation—Long-term investigations performed in Croatia and Slovenia. In Proceedings of the Sixth International Conference on Radiation and Applications in Various Fields of Research, Ohrid, North Macedonia, 18–22 June 2018; Ristić, G., Ed.; RAD Association: Niš, Serbia, 2018; p. 186. [Google Scholar]
- Krajcar Bronić, I. Environmental 14C and 3H levels in Croatia. In Book of Abstracts, ENVIRA2017, Proceedings of the 4th International Conference on Environmental Radioactivity: Radionuclides as Tracers of Environmental Processes, Vilnius, Litva, 29 May–2 June 2017; Lujaniene, L., Povinec, P., Eds.; ENVIRA: Vilnius, Litva, 2017; p. 152. [Google Scholar]
- Palcsu, L.; Morgenstern, U.; Sültenfuss, J.; Koltai, G.; László, E.; Temovski, M.; Major, Z.; Nagy, J.T.; Papp, L.; Varlam, C.; et al. Modulation of Cosmogenic Tritium in Meteoric Precipitation by the 11-year Cycle of Solar Magnetic Field Activity. Sci. Rep. 2018, 8, 12813. [Google Scholar] [CrossRef]
Year | T (°C) Mean | T (°C) Range | P (mm) | δ18O (‰) w.m. | n, %P | δ2H (‰) w.m. | n, %P | d (‰) w.m. | n, %P | A (TU) Mean |
---|---|---|---|---|---|---|---|---|---|---|
1976 | 10.6 | 1.3–21.4 | 908 | – | – | – | – | – | – | 100.5 |
1977 | 11.4 | 0.2–20.1 | 1014 | – | – | – | – | – | – | 79.4 |
1978 | 9.8 | 0.8–18.9 | 758 | – | – | – | – | – | – | 73.8 |
1979 | 11.0 | −1.1–20.9 | 792 | – | – | – | – | – | – | 36.8 |
1980 | 9.6 | −1.5–20.0 | 931 | −8.92 | 12 | −62.65 | 12 | 8.86 | 12 | 39.5 |
1981 | 11.6 | −0.8–21.2 | 871 | −9.44 | 12 | −67.32 | 12 | 8.20 | 12 | 38.3 |
1982 | 11.7 | −0.9–22.2 | 805 | −8.31 | 10, 97 | −59.21 | 10, 97 | 7.27 | 10, 97 | 25.1 |
1983 | 12.1 | 0.7–23.8 | 755 | −9.07 | 12 | −65.22 | 12 | 7.35 | 12 | 25.8 |
1984 | 10.9 | 1.3–19.9 | 897 | −9.25 | 12 | −64.24 | 12 | 9.75 | 12 | 20.6 |
1985 | 11.0 | −3.4–22.0 | 800 | −9.12 | 12 | −66.85 | 12 | 8.84 | 12 | 18.4 |
1986 | 11.1 | −2.1–21.8 | 786 | −8.96 | 12 | −64.45 | 12 | 7.20 | 12 | 19.3 |
1987 | 11.4 | −1.8–23.2 | 816 | −9.21 | 12 | −64.64 | 12 | 9.04 | 12 | 23.2 |
1988 | 11.9 | 2.6–23.3 | 749 | −7.29 | 10, 81 | −55.17 | 11, 86 | 6.90 | 10, 81 | 17.8 |
1989 | 12.0 | 0.1–21.8 | 957 | −6.54 | 11, 95 | −43.23 | 11, 89 | 8.46 | 10, 84 | 23.2 |
1990 | 12.5 | 1.1–22.2 | 694 | −7.81 | 12 | −56.12 | 12 | 6.44 | 12 | 16.1 |
1991 | 11.4 | 0.2–23.0 | 787 | −8.37 | 12 | −61.94 | 12 | 5.06 | 12 | 14.5 |
1992 | 13.0 | 2.3–25.8 | 808 | −8.96 | 11, 99 | −63.54 | 11, 99 | 8.11 | 11, 99 | 11.1 |
1993 | 12.1 | 2.3–22.3 | 928 | −8.48 | 10, 97 | −58.22 | 10, 97 | 9.65 | 10, 97 | 17.3 |
1994 | 13.2 | 3.3–23.9 | 962 | −7.20 | 12 | −48.02 | 12 | 9.59 | 12 | – |
1995 | 12.0 | 1.8–23.8 | 962 | −9.15 | 11, 99 | −62.49 | 11, 99 | 10.74 | 11, 99 | 11.9 |
1996 | 11.0 | −0.3–21.1 | 959 | −8.30 | 12 | −52.46 | 10, 90 | 6.79 | 10, 90 | 10.5 |
1997 | 12.2 | −0.3–21.7 | 723 | −8.02 | 11, 92 | −56.33 | 11, 92 | 7.85 | 11, 92 | 9.7 |
1998 | 12.4 | −1.5–22.5 | 1000 | −6.87 | 10, 93 | −47.38 | 10, 81 | 7.21 | 10, 81 | 9.1 |
1999 | 12.5 | 1.7–22.4 | 997 | −8.55 | 12 | −64.53 | 12 | 3.89 | 12 | 8.8 |
2000 | 13.8 | −0.2–24.4 | 725 | −5.54 | 10, 85 | −39.68 | 9, 81 | 2.28 | 9, 81 | 9.2 |
2001 | 12.7 | −0.7–23.6 | 813 | −7.97 | 12 | −56.68 | 12 | 7.10 | 12 | 9.5 |
2002 | 13.2 | 2.2–22.5 | 1064 | −8.21 | 12 | −56.03 | 12 | 9.65 | 12 | 8.6 |
2003 | 12.9 | −0.1–25.8 | 623 | −7.74 | 10, 95 | −55.29 | 12 | 9.56 | 10, 95 | 7.3 |
2004 | 12.0 | 0.8–21.7 | 993 | −8.12 | 12 | −60.99 | 12 | 8.41 | 12 | 5.4 |
2005 | 11.7 | −0.1–22.1 | 988 | −9.22 | 12 | −64.38 | 12 | 9.40 | 12 | 9.7 |
2006 | 12.7 | −0.1–24.6 | 754 | −8.23 | 12 | −58.10 | 12 | 7.76 | 12 | 8.5 |
2007 | 13.6 | 1.4–23.8 | 896 | – | – | – | – | – | – | 9.5 |
2008 | 13.4 | 3.8–22.8 | 769 | – | – | – | – | – | – | 9.1 |
2009 | 13.4 | 0.0–23.6 | 795 | – | – | – | – | – | – | 9.5 |
2010 | 12.2 | 0.3–24.1 | 1155 | −9.67 | 12 | −68.6 | 12 | 8.76 | 12 | 7.9 |
2011 | 13.2 | 2.9–24.3 | 521 | – | – | – | – | – | – | 9.4 |
2012 | 13.7 | −0.2–25.4 | 813 | −6.33 | 9, 77 | −45.22 | 9, 77 | 5.41 | 9, 77 | 6.7 |
2013 | 12.9 | 2.4–24.5 | 1092 | −8.77 | 9, 94 | −61.82 | 9, 94 | 8.37 | 9, 94 | 8.5 |
2014 | 13.8 | 5.4–22.4 | 1234 | −7.69 | 12 | −53.64 | 12 | 7.90 | 12 | 7.4 |
2015 | 13.7 | 3.6–25.4 | 824 | −7.81 | 10, 92 | −55.35 | 10, 92 | 7.16 | 10, 92 | 7.9 |
2016 | 13.1 | 1.0–24.2 | 854 | −8.54 | 11, 99 | −61.00 | 11, 99 | 7.30 | 11, 99 | 7.3 |
2017 | 13.6 | −2.3–25.0 | 889 | −7.44 | 11, 95 | −50.40 | 11, 95 | 9.14 | 11, 95 | 6.8 |
2018 | 14.1 | 0.9–25.0 | 827 | −9.27 | 12 | −63.85 | 12 | 10.33 | 12 | 8.7 |
Period | T (°C) | P (mm) | δ18Ow.m. (‰) | δ2Hw.m. (‰) | dw.m. (‰) |
---|---|---|---|---|---|
1980–1985 | 11.2 ± 0.9 | 843 ± 67 | −9.0 ± 0.4 | −64.2 ± 3.0 | 8.4 ± 0.9 |
1986–1995 | 12.1 ± 0.7 | 845 ± 98 | −8.2 ± 0.9 | −57.8 ± 7.3 | 8.1 ± 1.7 |
1996–2006 | 12.5 ± 0.8 | 876 ± 150 | −7.9 ± 1.0 | −55.6 ± 7.2 | 7.3 ± 2.3 |
2012–2018 | 13.5 ± 0.4 | 933 ± 164 | −8.0 ± 1.0 | −55.9 ± 6.8 | 7.9 ± 1.6 |
Period | Method | a | b | n | r or r2 | Ref. |
---|---|---|---|---|---|---|
1980–1996 | OLSR | 7.9 ± 0.1 | 7.9 ± 0.1 | 194 | r = 0.985 | [62] |
1980–1995 Zagreb | OLSR | 7.91 ± 0.09 | 7.33 ± 0.83 | 182 | r2 = 0.98 | [27] |
RMA | 8.00 ± 0.09 | 8.13 ± 0.83 | 182 | r2 = 0.98 | ||
PWLSR | 7.88 ± 0.09 | 7.52 ± 0.82 | 182 | r2 = 0.95 | ||
1996–2003 Zagreb–Grič | OLSR | 7.32 ± 0.17 | 0.68 ± 1.57 | 89 | r2 = 0.95 | [27] |
RMA | 7.50 ± 0.17 | 2.16 ± 1.55 | 89 | r2 = 0.95 | ||
PWLSR | 7.22 ± 0.16 | 0.50 ± 1.39 | 89 | r2 = 0.96 | ||
1980–2003 | OLSR | 7.8 ± 0.1 | 5.7 ± 0.8 | 271 | r = 0.98 | [47] |
2001–2003 | OLSR | 7.3 ± 0.2 | 2.8 + 1.8 | 37 | r = 0.99 | [47] |
rmSSEav | ||||||
1980–2018 | OLSR | 7.65 ± 0.06 | 4.79 ± 0.55 | 389 | 1.0047 | This work |
RMA | 7.74 ± 0.06 | 5.57 ± 0.55 | 389 | 1.0019 | ||
MA | 7.83 ± 0.06 | 6.36 ± 0.56 | 389 | 1.0047 | ||
PWLSR | 7.64 ± 0.06 | 5.24 ± 0.54 | 389 | 1.0060 | ||
PWRMA | 7.73 ± 0.06 | 6.00 ± 0.54 | 389 | 1.0019 | ||
PWMA | 7.82 ± 0.06 | 6.76 ± 0.55 | 389 | 1.0035 | ||
1980–1985 | OLSR | 7.92 ± 0.14 | 7.45 ± 1.35 | 70 | 1.0044 | This work |
RMA | 8.00 ± 0.14 | 8.23 ± 1.33 | 70 | 1.0018 | ||
MA | 8.09 ± 0.14 | 9.00 ± 1.36 | 70 | 1.0044 | ||
PWLSR | 7.87 ± 0.14 | 7.26 ± 1.36 | 70 | 1.0075 | ||
PWRMA | 7.96 ± 0.14 | 8.07 ± 1.36 | 70 | 1.0018 | ||
PWMA | 8.05 ± 0.15 | 8.86 ± 1.38 | 70 | 1.0018 | ||
1986–1995 | OLSR | 7.94 ± 0.11 | 7.46 ± 1.03 | 112 | 1.0045 | This work |
RMA | 8.03 ± 0.11 | 8.22 ± 1.02 | 112 | 1.0018 | ||
MA | 8.11 ± 0.11 | 8.96 ± 1.04 | 112 | 1.0044 | ||
PWLSR | 7.90 ± 0.12 | 7.73 ± 1.03 | 112 | 1.0093 | ||
PWRMA | 7.99 ± 0.12 | 8.51 ± 1.03 | 112 | 1.0024 | ||
PWMA | 8.08 ± 0.12 | 9.28 ± 1.04 | 112 | 1.0016 | ||
1996–2006 | OLSR | 7.43 ± 0.11 | 2.59 ± 0.97 | 121 | 1.0048 | This work |
RMA | 7.52 ± 0.10 | 3.35 ± 0.96 | 121 | 1.0019 | ||
MA | 7.60 ± 0.11 | 4.08 ± 0.98 | 121 | 1.0047 | ||
PWLSR | 7.38 ± 0.11 | 2.68 ± 0.95 | 121 | 1.0095 | ||
PWRMA | 7.47 ± 0.11 | 3.44 ± 0.95 | 121 | 1.0024 | ||
PWMA | 7.56 ± 0.11 | 4.19 ± 0.96 | 121 | 1.0018 | ||
2012–2018 | OLSR | 7.52 ± 0.13 | 3.56 ± 1.17 | 74 | 1.0043 | This work |
RMA | 7.60 ± 0.13 | 4.24 ± 1.16 | 74 | 1.0017 | ||
MA | 7.68 ± 0.13 | 4.90 ± 1.19 | 74 | 1.0043 | ||
PWLSR | 7.61 ± 0.12 | 5.16 ± 1.09 | 74 | 1.0008 | ||
PWRMA | 7.68 ± 0.12 | 5.74 ± 1.09 | 74 | 1.0029 | ||
PWMA | 7.75 ± 0.12 | 6.32 ± 1.10 | 74 | 1.0084 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krajcar Bronić, I.; Barešić, J.; Borković, D.; Sironić, A.; Mikelić, I.L.; Vreča, P. Long-Term Isotope Records of Precipitation in Zagreb, Croatia. Water 2020, 12, 226. https://doi.org/10.3390/w12010226
Krajcar Bronić I, Barešić J, Borković D, Sironić A, Mikelić IL, Vreča P. Long-Term Isotope Records of Precipitation in Zagreb, Croatia. Water. 2020; 12(1):226. https://doi.org/10.3390/w12010226
Chicago/Turabian StyleKrajcar Bronić, Ines, Jadranka Barešić, Damir Borković, Andreja Sironić, Ivanka Lovrenčić Mikelić, and Polona Vreča. 2020. "Long-Term Isotope Records of Precipitation in Zagreb, Croatia" Water 12, no. 1: 226. https://doi.org/10.3390/w12010226
APA StyleKrajcar Bronić, I., Barešić, J., Borković, D., Sironić, A., Mikelić, I. L., & Vreča, P. (2020). Long-Term Isotope Records of Precipitation in Zagreb, Croatia. Water, 12(1), 226. https://doi.org/10.3390/w12010226