Climate Change Impacts on Reservoir Inflow in the Prairie Pothole Region: A Watershed Model Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Shellmouth Reservoir Watershed
2.2. Hydrological Model
2.3. SWAT Model Data Requirement
2.4. Experimental Setup
2.5. Model Calibration and Validation
2.6. Model Performance Evaluation Statistics
2.7. Future Climate Change Scenarios
3. Results
3.1. Model Computational Cost
3.2. Calibration and Validation
3.3. Future Climate Projections Relative to Baseline Period
3.4. Impact of Future Climate Change on Streamflow
3.4.1. Overall Flow Regime
3.4.2. Mean Monthly Streamflow
3.4.3. Seasonal Streamflow
4. Discussions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Disclaimer
References
- Carvalho-Santos, C.; Monteiro, A.T.; Azevedo, J.C.; Honrado, J.P.; Nunes, J.P. Climate Change Impacts on Water Resources and Reservoir Management: Uncertainty and Adaptation for a Mountain Catchment in Northeast Portugal. Water Resour. Manag. 2017, 31, 3355–3370. [Google Scholar] [CrossRef] [Green Version]
- Park, J.Y.; Park, M.J.; Ahn, S.R.; Park, G.A.; Yi, J.E.; Kim, G.S.; Srinivasan, R.; Kim, S.J. Assessment of future climate change impacts on water quantity and quality for a mountainous dam watershed using SWAT. Am. Soc. Agric. Biol. Eng. 2011, 54, 1725–1737. [Google Scholar]
- Muhammad, A.; Evenson, G.R.; Stadnyk, T.A.; Boluwade, A.; Jha, S.K.; Coulibaly, P. Assessing the importance of potholes in the Canadian Prairie Region under future climate change scenarios. Water 2018, 10, 1657. [Google Scholar] [CrossRef] [Green Version]
- Dibike, Y.; Prowse, T.; Bonsal, B.; O’Neil, H. Implications of future climate on water availability in the western Canadian river basins. Int. J. Climatol. 2017, 37, 3247–3263. [Google Scholar] [CrossRef]
- Zheng, H.; Chiew, F.H.S.; Charles, S.; Podger, G. Future climate and runoff projections across South Asia from CMIP5 global climate models and hydrological modelling. J. Hydrol. Reg. Stud. 2018, 18, 92–109. [Google Scholar] [CrossRef]
- Wang, K.; Dickinson, R.E.; Liang, S.; Wang, K.; Dickinson, R.E.; Liang, S. Global Atmospheric Evaporative Demand over Land from 1973 to 2008. J. Clim. 2012, 25, 8353–8361. [Google Scholar] [CrossRef]
- Barnett, T.P.; Adam, J.C.; Lettenmaier, D.P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 2005, 438, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Tischbein, B.; Kusche, J.; Laux, P.; Beg, M.K.; Bogardi, J.J. Impact of climate change on water resources of upper Kharun catchment in Chhattisgarh, India. J. Hydrol. Reg. Stud. 2017, 13, 189–207. [Google Scholar] [CrossRef]
- Shrestha, R.R.; Dibike, Y.B.; Prowse, T.D. Modelling of climate-induced hydrologic changes in the Lake Winnipeg watershed. J. Gt. Lakes Res. 2012, 38, 83–94. [Google Scholar] [CrossRef]
- Johnson, W.C.; Poiani, K.A. Climate Change Effects on Prairie Pothole Wetlands: Findings from a Twenty-five Year Numerical Modeling Project. Wetlands 2016, 36, 273–285. [Google Scholar] [CrossRef]
- Qian, B.; De Jong, R.; Huffman, T.; Wang, H.; Yang, J. Projecting yield changes of spring wheat under future climate scenarios on the Canadian Prairies. Theor. Appl. Climatol. 2016, 123, 651–669. [Google Scholar] [CrossRef]
- Betts, A.K.; Desjardins, R.; Worth, D.; Cerkowniak, D. Impact of land use change on the diurnal cycle climate of the Canadian Prairies. J. Geophys. Res. Atmos. 2013, 118, 11-996. [Google Scholar] [CrossRef]
- Herring, S.C.; Hoerling, M.P.; Kossin, J.P.; Peterson, T.C.; Stott, P.A.; Herring, S.C.; Hoerling, M.P.; Kossin, J.P.; Peterson, T.C.; Stott, P.A. Explaining Extreme Events of 2014 from a Climate Perspective. Bull. Am. Meteorol. Soc. 2015, 96. [Google Scholar] [CrossRef]
- Brath, B.; Friesen, T.; Guérard, Y.; Jacques-Brissette, C.; Lindman, C.; Lockridge, K.; Mulgund, S.; Walke, B.-J. Climate Change and Resource Sustainability: An Overview for Actuaries; Canadian Institute of Actuaries: Ottawa, ON, Canada, 2015; pp. 1–57. [Google Scholar]
- Olmstead, S.M. Climate change adaptation and water resource management: A review of the literature. Energy Econ. 2014, 46, 500–509. [Google Scholar] [CrossRef]
- Bush, E.; Lemmen, D.S. Canada’s Changing Climate Report; Environment and Climate Change Canada, Government of Canada: Ottawa, ON, Canada, 2019; ISBN 978-0-660-30222-5. [Google Scholar]
- Shrestha, R.R.; Dibike, Y.B.; Prowse, T.D. Modeling Climate Change Impacts on Hydrology and Nutrient Loading in the Upper Assiniboine Catchmen. J. Am. Water Resour. Assoc. 2012, 48, 74–89. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, G.H.; Wang, D.; Zhang, X. Uncertainty assessment of climate change impacts on the hydrology of small prairie wetlands. J. Hydrol. 2011, 396, 94–103. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Huang, G.H. Development of climate change projections for small watersheds using multi-model ensemble simulation and stochastic weather generation. Clim. Dyn. 2013, 40, 805–821. [Google Scholar] [CrossRef]
- Dumanski, S.; Pomeroy, J.W.; Westbrook, C.J. Hydrological regime changes in a Canadian Prairie basin. Hydrol. Process. 2015, 29, 3893–3904. [Google Scholar] [CrossRef]
- Clark, R.; Andreichuk, I.; Sauchyn, D.; McMartin, D.W. Incorporating climate change scenarios and water-balance approach to cumulative assessment models of solution potash Mining in the Canadian Prairies. Clim. Chang. 2017, 145, 321–334. [Google Scholar] [CrossRef]
- Joyce, C.B.; Simpson, M.; Casanova, M. Future wet grasslands: Ecological implications of climate change. Ecosyst. Health Sustain. 2016, 2, e01240. [Google Scholar] [CrossRef] [Green Version]
- Gaur, A.; Gaur, A.; Simonovic, S.P. Future Changes in Flood Hazards across Canada under a Changing Climate. Water 2018, 10, 1441. [Google Scholar] [CrossRef] [Green Version]
- O’Neil, H.C.L.; Prowse, T.D.; Bonsal, B.R.; Dibike, Y.B. Spatial and temporal characteristics in streamflow-related hydroclimatic variables over western Canada. Part 1: 1950–2010. Hydrol. Res. 2017, 48, 915–931. [Google Scholar] [CrossRef]
- St-Jacques, J.-M.; Andreichuk, Y.; Sauchyn, D.J.; Barrow, E. Projecting Canadian Prairie Runoff for 2041–2070 with North American Regional Climate Change Assessment Program (NARCCAP) Data. JAWRA J. Am. Water Resour. Assoc. 2018, 54, 660–675. [Google Scholar] [CrossRef]
- Spence, C.; Woo, M. Hydrology of subarctic Canadian shield: Soil-filled valleys. J. Hydrol. 2003, 279, 151–166. [Google Scholar] [CrossRef]
- Shook, K.; Pomeroy, J.W.; Spence, C.; Boychuk, L. Storage dynamics simulations in prairie wetland hydrology models: Evaluation and parameterization. Hydrol. Process. 2013, 27, 1875–1889. [Google Scholar] [CrossRef]
- Evenson, G.R.; Golden, H.E.; Lane, C.R.; Amico, E.D.; D’Amico, E. Geographically isolated wetlands and watershed hydrology: A modified model analysis. J. Hydrol. 2015, 529, 240–256. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Stadnyk, T.A.; Burn, D.H. Identification of a preferred statistical distribution for at-site flood frequency analysis in Canada. Can. Water Resour. J. Rev. Can. Ressour. Hydr. 2019. [Google Scholar] [CrossRef]
- Shook, K. Complexity of Prairie Hydrology Distinctiveness of Prairie Hydrology. Available online: https://www.google.com.sg/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjN3uz53onnAhXaad4KHVTGBpAQFjAAegQIBhAB&url=https%3A%2F%2Fwiki.usask.ca%2Fdownload%2Fattachments%2F516948256%2F01_ComplexityOfPrairieHydrology_KShook.pdf&usg=AOvVaw1gWgzZDRY-iJiVc6aiSERo (accessed on 16 January 2020).
- Mekonnen, B.A.; Mazurek, K.A.; Putz, G. Incorporating landscape depression heterogeneity into the Soil and Water Assessment Tool (SWAT) using a probability distribution. Hydrol. Process. 2016, 30, 2373–2389. [Google Scholar] [CrossRef]
- Evenson, G.R.; Golden, H.E.; Lane, C.R.; D’Amico, E. An improved representation of geographically isolated wetlands in a watershed-scale hydrologic model. Hydrol. Process. 2016, 30, 4168–4184. [Google Scholar] [CrossRef]
- Wang, X.; Yang, W.; Melesse, A.M. Using hydrologic equivalent wetland concept within SWAT to estimate streamflow in watersheds with numerous wetlands. Trans. ASABE 2008, 51, 55–72. [Google Scholar] [CrossRef]
- Muhammad, A.; Evenson, G.R.; Stadnyk, T.A.; Boluwade, A.; Jha, S.K.; Coulibaly, P. Impact of model structure on the accuracy of hydrological modeling of a Canadian Prairie watershed. J. Hydrol. Reg. Stud. 2019, 21, 40–56. [Google Scholar] [CrossRef]
- Olthof, I.; Latifovic, R.; Pouliot, D. Development of a circa 2000 land cover map of northern Canada at 30 m resolution from Landsat. Can. J. Remote Sens. 2009, 35, 152–165. [Google Scholar] [CrossRef]
- Saskatchewan Water Security Agency. Upper Assiniboine River Basin Study; Saskatchewan Water Security Agency: Moose Jaw, SK, Canada, 2000. [Google Scholar]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation Version 2009; Texas Water Resources Institute: Forney, TX, USA, 2011; Available online: http://hdl.handle.net/1969.1/128050 (accessed on 16 January 2020).
- Gassman, P.W.; Reyes, M.R.; Green, C.H.; Arnold, J.G.; Gassman, P.W. The soil and water assessment tool: Historical development, applications, and future research directions. Trans. ASABE 2007, 50, 1211–1250. [Google Scholar] [CrossRef] [Green Version]
- Muhammad, A.; Stadnyk, T.A.; Unduche, F.; Coulibaly, P. Multi-Model Approaches for Improving Seasonal Ensemble Streamflow Prediction Scheme with Various Statistical Post-Processing Techniques in the Canadian Prairie Region. Water 2018, 10, 1604. [Google Scholar] [CrossRef] [Green Version]
- Soil Landscapes of Canada Working Group Soil Landscapes of Canada Version 3.2. Available online: http://sis.agr.gc.ca/cansis/nsdb/slc/v3.2/index.html (accessed on 5 December 2018).
- NRC. Level 1 Canadian Digital Elevation Data Product Specifications; NRC: Ottawa, ON, Canada, 2007. [Google Scholar]
- Mesinger, F.; DiMego, G.; Kalnay, E.; Mitchell, K.; Shafran, P.C.; Ebisuzaki, W.; Jović, D.; Woollen, J.; Rogers, E.; Berbery, E.H.; et al. North American Regional Reanalysis. Bull. Am. Meteorol. Soc. 2006, 87, 343–360. [Google Scholar] [CrossRef] [Green Version]
- Mearns, L.O.; McGinnis, S.; Korytina, D.; Arritt, R.; Biner, S.; Bukovsky, M. The NA-CORDEX Dataset, Version 1.0; NCAR Climate Data Gateway: Boulder, CO, USA, 2017. [Google Scholar]
- Abbaspour, K.C.; Yang, J.; Maximov, I.; Siber, R.; Bogner, K.; Mieleitner, J.; Zobrist, J.; Srinivasan, R. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J. Hydrol. 2007, 333, 413–430. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Johnson, C.A.; van Genuchten, M.T. Estimating Uncertain Flow and Transport Parameters Using a Sequential Uncertainty Fitting Procedure. Vadose Zone J. 2004, 3, 1340–1352. [Google Scholar] [CrossRef]
- Zhang, X.; Srinivasan, R.; Van Liew, M.; Van Liew, M.; Member, A. Multi-Site Calibration of the Swat Model for Hydrologic Modeling. Trans ASABE 2008, 51, 2039–2049. [Google Scholar] [CrossRef] [Green Version]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef] [Green Version]
- Pechlivanidis, I.G.; Arheimer, B. Large-scale hydrological modelling by using modified PUB recommendations: The India-HYPE case. Hydrol. Earth Syst. Sci. 2015, 19, 4559–4579. [Google Scholar] [CrossRef] [Green Version]
- Abbaspour, K.C.; Rouholahnejad, E.; Vaghefi, S.; Srinivasan, R.; Yang, H.; Kløve, B. A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. J. Hydrol. 2015, 524, 733–752. [Google Scholar] [CrossRef] [Green Version]
- Riahi, K.; Rao, S.; Krey, V.; Cho, C.; Chirkov, V.; Fischer, G.; Kindermann, G.; Nakicenovic, N.; Rafaj, P. RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Clim. Chang. 2011, 109, 33–57. [Google Scholar] [CrossRef] [Green Version]
- Collins, M.; Knutti, R.; Arblaster, J.; Dufresne, J.-L.; Fichefet, T.; Friedlingstein, P.; Gao, X.; Gutowski, W.J.; Johns, T.; Krinner, G.; et al. Chapter 12—Long-term climate change: Projections, commitments and irreversibility. In Climate Change 2013: The Physical Science Basis; IPCC Working Group I Contribution to AR5; IPCC, Ed.; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Vieira, M.J.F. 738 Years of Global Climate Model Simulated Streamflow in the Nelson-Churchill River Basin. Master’s Thesis, University of Manitoba, Winnipeg, MB, Canada, 2016. [Google Scholar]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Binger, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Singh, J.; Knapp, H.V.; Arnold, J.G.; Demissie, M. Hydrological modeling of the Iroquois River watershed using HSPF and SWAT. J. Am. Water Resour. Assoc. 2005, 41, 343–360. [Google Scholar] [CrossRef]
- Abbaspour, K.; Vejdani, M.; Haghighat, S. SWAT-CUP calibration and uncertainty programs for SWAT. In Proceedings of the MODSIM 2007 International Congress on Modelling and Simulation, Modelling and Simulation Society of Australia and New Zealand, Melbourne, Australia, 1–6 December 2007; pp. 1596–1602. [Google Scholar]
- Du, X.; Shrestha, N.K.; Wang, J. Assessing climate change impacts on stream temperature in the Athabasca River Basin using SWAT equilibrium temperature model and its potential impacts on stream ecosystem. Sci. Total Environ. 2019, 650, 1872–1881. [Google Scholar] [CrossRef] [PubMed]
- Dosio, A. Projections of climate change indices of temperature and precipitation from an ensemble of bias-adjusted high-resolution EURO-CORDEX regional climate models. J. Geophys. Res. Atmos. 2016, 121, 5488–5511. [Google Scholar] [CrossRef]
- Muhammad, A. Uncertainty in Streamflow Simulation of the Upper Assiniboine River Basin. PhD Thesis, University of Manitoba, Winnipeg, MB, Canada, 2019. [Google Scholar]
- Muhammad, A.; Jha, S.; Rasmussen, P. Challenges and Model Limitations in Predicting Streamflow in the Canadian Prairie Region; Flash FloodNet. 2016. Available online: https://uploads-ssl.webflow.com/5dc2ef924a9b7e7f028da6f7/5de676baec6ca43a0e1cff53_FlashFloodNet_Vol2.pdf (accessed on 16 January 2020).
- Spence, C.; Wolfe, J.D.; Whitfield, C.J.; Baulch, H.M.; Basu, N.B.; Bedard-Haughn, A.K.; Belcher, K.W.; Clark, R.G.; Ferguson, G.A.; Hayashi, M.; et al. Prairie water: A global water futures project to enhance the resilience of prairie communities through sustainable water management. Can. Water Resour. J. Rev. Can. Ressour. Hydr. 2019, 44, 115–126. [Google Scholar] [CrossRef]
- USGCRP. Climate Science Special Report. Available online: https://science2017.globalchange.gov/chapter/4/ (accessed on 30 December 2019).
- Kumar, D.; Kodra, E.; Ganguly, A.R. Regional and seasonal intercomparison of CMIP3 and CMIP5 climate model ensembles for temperature and precipitation. Clim. Dyn. 2014, 43, 2491–2518. [Google Scholar] [CrossRef]
- Knutti, R.; Sedláček, J. Robustness and uncertainties in the new CMIP5 climate model projections. Nat. Clim. Chang. 2013, 3, 369–373. [Google Scholar] [CrossRef]
Data Type | Application | Source | Reference |
---|---|---|---|
Land use | Land use properties | http://geogratis.gc.ca/ | [35] |
Soil type | Soil properties | http://www.agr.gc.ca/ | [40] |
Digital Elevation Model | Catchment delineation, channel slopes, and length | http://geogratis.gc.ca/ | [41] |
Reservoir feature | Fully supply level, storage capacity, surface area, etc. | https://www.gov.mb.ca/ | HFC-MI 1 |
Weather | Precipitation and temperature | https://weather.gc.ca/ | ECCC 2 |
NARR data | Wind speed, relative humidity, and solar radiation | ftp://nomads.ncdc.noaa.gov/NARR/ | [42] |
Climate change | Future climate change projections | https://na-cordex.org | [43] |
Streamflow | Model calibration and validation | https://wateroffice.ec.gc.ca/ | WSC 3 |
S. No | Station ID | Operator | Station Name | Latitude | Longitude |
---|---|---|---|---|---|
Hydrometric Stations | |||||
1 | 05MC001 | WSC 1 | Assiniboine River at Sturgis | 51.94 | −102.54 |
2 | 05MB003 | WSC | Whitesand River near Canora | 51.63 | −102.36 |
3 | 05MD004 | WSC | Assiniboine River at Kamsack | 51.56 | −101.91 |
4 | 05MB001 | WSC | Yorkton creek near Ebenezer | 51.36 | −102.49 |
5 | 05MD005 | WSC | Shell River near Inglis | 50.96 | −101.31 |
6 | 05MD999 | HFC–MI 2 | Shellmouth reservoir inflow | 50.97 | −101.42 |
Meteorological Stations | |||||
1 | 5040FJ3 | CCN 3 | Cowan | 52.03 | −100.65 |
2 | 4013660 | CCN | Kelliher | 51.26 | −103.75 |
3 | 4014145 | CCN | Langenburg | 50.90 | −101.72 |
4 | 4085052 | CCN | Mckague 2 | 52.58 | −103.83 |
5 | 4086000 | ECCC 4 | Pelly | 52.08 | −101.87 |
6 | 4086001 | ECCC | Pelly 2 | 51.73 | −101.90 |
7 | 5012469 | ECCC | Roblin | 51.18 | −101.37 |
8 | 501B4G2 | CCN | Roblin Friesen 3 Northwest | 51.27 | −101.40 |
9 | 4019082 | ECCC | Tonkin | 51.20 | −102.23 |
10 | 4019073 | ECCC | Yorkton | 51.26 | −102.46 |
11 | 501KE01 | CCN | Rossburn 4 North | 50.75 | −100.82 |
Parameter | Parameter Range | Descriptions (Units, If Applicable) | ||
---|---|---|---|---|
Min | Max | Fitted Value | ||
ALPHA_BF | 0.01 | 0.80 | 0.36 | Base flow alpha factor (days) |
GW_DELAY | 0.00 | 500.00 | 479.92 | Groundwater delays (days) |
GW_REVAP | 0.02 | 0.20 | 0.11 | Groundwater revap coefficient |
GWQMN | 0.00 | 5000.00 | 4978.00 | Threshold depth of water in the shallow aquifer required for return flow (mm) |
RCHRG_DP | 0.00 | 1.00 | 0.15 | Deep aquifer percolation faction |
REVAPMN | 0.00 | 500.00 | 296.93 | Threshold depth of water in the shallow aquifer required for revap to occur (mm) |
CH_K1 | 0.00 | 150.00 | 21.26 | Effective hydraulic conductivity in tributary channel alluvium (mm h−1) |
CH_K2 | 0.00 | 150.00 | 108.35 | Effective hydraulic conductivity in main channel alluvium (mm h−1) |
CH_N1 | 0.01 | 0.30 | 0.17 | Manning’s N value for the tributary channel |
CH_N2 | 0.01 | 0.30 | 0.10 | Manning’s N value for the main channel |
CN2 a | −0.25 | 0.25 | −0.03 | SCS runoff curve number |
SOL_AWC a | −0.25 | 0.25 | −0.18 | Available water capacity (mm H2O mm−1) |
EPCO | 0.00 | 1.00 | 0.58 | Plant uptake compensation factor |
ESCO | 0.00 | 1.00 | 0.41 | Soil evaporation compensation factor |
TIMP | 0.01 | 1.00 | 0.18 | Snowpack temperature lag factor |
SFTMP | −3.00 | 3.00 | 0.06 | Snowfall temperature |
SMTMP | −3.00 | 3.00 | 0.41 | Snowmelt base temperature |
SMFMN | 0.00 | 10.00 | 1.71 | Melt factor for snow on winter solstice (mm c−1 day−1) |
SNOCOVMX | 5.00 | 500.00 | 174.86 | Minimum snow water content that corresponds to 100% snow cover (mm) |
SNO50COV | 0.05 | 0.80 | 0.21 | Snow water equivalent that corresponds to 50% snow cover (%) |
SMFMX | 0.00 | 10.00 | 8.18 | Maximum melt rate for snow on summer solstice (mm c−1 day−1) |
OV_N a | −0.20 | 0.20 | 0.56 | Manning’s N value for overland flow |
CH_L1 a | −1.00 | 1.00 | 0.44 | Longest tributary channel length in sub basin |
CH_W1 a | −1.00 | 1.00 | 0.16 | Average width of tributary channels (m) |
CH_L2 a | −1.00 | 1.00 | −0.31 | Length of main channel (m) |
CH_W2 a | −1.00 | 1.00 | 0.21 | Average width of main channel (m) |
WET_K | 0.00 | 3.60 | 0.33 | Hydraulic conductivity of bottom of wetland (mm h−1) |
Model Performance at Daily Time Step: Calibration (Validation) | ||||||
---|---|---|---|---|---|---|
Station Code | Station Name | p-Factor | r-Factor | KGE | R2 | PBIAS |
05MC001 | Assiniboine River at Sturgis | 0.7 (0.7) | 0.6 (0.5) | 0.7 (0.6) | 0.6 (0.4) | 8.5 (1.3) |
05MD004 | Assiniboine River at Kamsack | 0.9 (0.8) | 0.5 (0.5) | 0.6 (0.7) | 0.6 (0.7) | −1.5 (−16.2) |
05MB999 | Shellmouth Reservoir inflow | 0.9 (0.8) | 0.6 (0.6) | 0.7 (0.7) | 0.8 (0.6) | 13.5 (−21.9) |
Scenario | 2030s (2011–2040) | 2050s (2041–2070) | ||
---|---|---|---|---|
Precipitation (mm) | Temperature (°C) | Precipitation (mm) | Temperature (°C) | |
Baseline | 513.00 | 1.68 | 513.00 | 1.68 |
RCA4–RCP4.5 | 530.97 | 3.43 | 569.07 | 4.93 |
RCA4–RCP8.5 | 568.75 | 4.01 | 614.97 | 5.88 |
RCM5–RCP4.5 | 505.73 | 3.29 | 504.89 | 4.87 |
RCM5–RCP8.5 | 481.52 | 4.00 | 518.99 | 5.80 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muhammad, A.; Evenson, G.R.; Unduche, F.; Stadnyk, T.A. Climate Change Impacts on Reservoir Inflow in the Prairie Pothole Region: A Watershed Model Analysis. Water 2020, 12, 271. https://doi.org/10.3390/w12010271
Muhammad A, Evenson GR, Unduche F, Stadnyk TA. Climate Change Impacts on Reservoir Inflow in the Prairie Pothole Region: A Watershed Model Analysis. Water. 2020; 12(1):271. https://doi.org/10.3390/w12010271
Chicago/Turabian StyleMuhammad, Ameer, Grey R. Evenson, Fisaha Unduche, and Tricia A. Stadnyk. 2020. "Climate Change Impacts on Reservoir Inflow in the Prairie Pothole Region: A Watershed Model Analysis" Water 12, no. 1: 271. https://doi.org/10.3390/w12010271
APA StyleMuhammad, A., Evenson, G. R., Unduche, F., & Stadnyk, T. A. (2020). Climate Change Impacts on Reservoir Inflow in the Prairie Pothole Region: A Watershed Model Analysis. Water, 12(1), 271. https://doi.org/10.3390/w12010271