Characteristics of δD and δ18O of Reclaimed Mine Soil Water Profile and Its Source Water Bodies in a Coal Mining Subsidence Area with High Groundwater Level—A Case Study from the Longdong Coal Mining Subsidence Area in Jiangsu Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. Sampling Methods
2.2.1. Precipitation Sampling
2.2.2. Soil Water Sampling
2.2.3. Sampling of the Surface Waters (Rivers, Lakes, and Water from Subsidence Pits (WSP)) and Groundwater (Well Water)
2.3. Isotopic Experimental Analysis
2.4. Isotopic Data Analysis
3. Results and Discussion
3.1. Characteristics of δD and δ18O of Precipitation
3.2. Characteristics of δD and δ18O of Surface Waters (Rivers, Lakes, and WSP)
3.3. Characteristics of δD and δ18O of Groundwater (Well Water)
3.4. Soil Water Content Profile of RMS
3.5. Water Stable Isotope Characteristics of RMS
- Farmland: δD = 6.18δ (± 0.02) δ18O − 8.8(± 0.16) (R2 = 0.86, N = 180),
- Forest land: δD = 6.79 (± 0.02) δ18O − 2.55(± 0.11) (R2 = 0.94, N = 60),
- Waste land: δD = 5.94 (± 0.02) δ18O − 13.37(± 0.21) (R2 = 0.87, N = 60).
3.6. Soil Water Sources of RMS Traced by Water Stable Isotope Analysis
4. Conclusions
- The values of slope and intercept of LWML for the study area are higher than GMWL owing to the study area belonging to the humid monsoon climate zone, and the D and 18O of precipitation showed high seasonal variation with lower values in summer and higher values in winter. The values of δD and δ18O of the surface water (river and WSP) are higher and their seasonal fluctuations are weaker and about a month lag compared to precipitation. The δD and δ18O of groundwater have very weak seasonal variation and their values are lower than that of precipitation and surface waters owing to groundwater containing former precipitation and soil water which have lower values of δD and δ18O. The values of δD and δ18O of surface water soil waters and groundwater deviated from LMWL to some extent, with changing range from 5% to 30%.
- The values of δD and δ18O of RMS for the whole profile are −71.04‰ and −10‰, respectively, which are lower than that of precipitation. The values of δD and δ18O decrease with depth in general and had obvious seasonal variations. The great fluctuation is seen in the topsoil (0–30/40 cm) owing to strong isotopic fractionation caused by soil evapotranspiration, and decreased at depth (30/40–70 cm) and remained in a steady state in deep soil layers (below 70 cm deep). The reclamation of mine soils with forest and crop enhanced water infiltration capacity and soil water mixing strength from topsoil with precipitation and from the bottom with groundwater. Therefore, establishment of forest and crops should be encouraged in the RMS.
- The main source of topsoil (0–30 cm for crop and 0–40 cm for forest) of RMS is precipitation through infiltration, the main supply for deep soil water (below 70 cm deep) is groundwater, and the soil water for the middle deep soil layers (30/40–70 cm) are from mixing sources of precipitation, groundwater, and river water through plant root water absorbtion and groundwater upshifting.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lechner, A.M.; Baumgartl, T.; Matthew, P.; Glenn, V. The impact of underground longwall mining on prime agricultural land: A review and research agenda. Land Degrad. Dev. 2016, 27, 1650–1663. [Google Scholar] [CrossRef]
- Bar-Matthews, M.; Ayalon, A.; Kaufman, A.; Wasserburg, G.J. The Eastern Mediterranean paleoclimate as a reflection of regional events: Soreq cave, Israel. Earth Planet. Sci. Lett. 1999, 166, 85–95. [Google Scholar] [CrossRef]
- Rozanski, K.; Araguás-Araguás, L.; Gonfiantini, R. Isotopic patterns in modern global precipitation. Clim. Chang. Cont. Isot. Rec. 1993, 78, 1–36. [Google Scholar]
- Zhenqi, H. Principle and method of soil profile reconstruction for coal mine land reclamation. J. China Coal Soc. 1997, 22, 617–622. [Google Scholar]
- Mai, M.; Zhao, Y.; Gong, B.; Gan, X.; Guo, Q.; Xu, H. Soil moisture variation in high groundwater level coal mining subsidence in Dongtan Coal Mine. China Coal 2011, 37, 49–52. [Google Scholar]
- Song, X.-Z.; Zhao, C.-X.; Wang, X.-L.; Li, J. Study of nitrate leaching and nitrogen fate under intensive vegetable production pattern in northern China. Comptes Rendus Biol. 2009, 332, 385–392. [Google Scholar] [CrossRef]
- Xinju, L.; Zhenqi, H.; Jing, L.; Ning, L.; Wenwen, Z. Research progress of reclaimed soil quality in mining subsidence area. Trans. Chin. Soc. Agric. Eng. 2007, 2007. [Google Scholar] [CrossRef]
- Palumbo, A.V.; Mccarthy, J.F.; Amonette, J.E.; Fisher, L.S.; Wullschleger, S.D.; Daniels, W.L. Prospects for enhancing carbon sequestration and reclamation of degraded lands with fossil-fuel combustion by-products. Adv. Environ. Res. 2004, 8, 425–438. [Google Scholar] [CrossRef]
- Sencindiver, J.C.; Ammons, J.T. 23. Minesoil genesis and classification. In Reclamation of Drastically Disturbed Lands; American Society of Agronomy: Madison, WI, USA, 2000; pp. 595–613. [Google Scholar]
- Indorante, S.J.; Jansen, I.J.; Boast, C.W. Surface mining and reclamation: Initial changes in soil character. J. Soil Water Conserv. 1981, 36, 347–351. [Google Scholar]
- Thurman, N.C.; Sencindiver, J.C. Properties, classification, and interpretations of minesoils at two sites in West Virginia. Soil Sci. Soc. Am. J. 1986, 50, 181–185. [Google Scholar] [CrossRef]
- Dunker, R.E.; Barnhisel, R.I. 13. Cropland reclamation. In Reclamation of Drastically Disturbed Lands; American Society of Agronomy: Madison, WI, USA, 2000; pp. 323–369. [Google Scholar]
- Shukla, M.K.; Lal, R.; Ebinger, M. Soil quality indicators for reclaimed minesoils in southeastern Ohio. Soil Sci. 2004, 169, 133–142. [Google Scholar] [CrossRef]
- Yi, Y.; Brock, B.E.; Falcone, M.D.; Wolfe, B.B.; Edwards, T.W. A coupled isotope tracer method to characterize input water to lakes. J. Hydrol. 2008, 350, 1–13. [Google Scholar] [CrossRef]
- Gammons, C.H.; Poulson, S.R.; Pellicori, D.A.; Reed, P.J.; Roesler, A.J.; Petrescu, E.M. The hydrogen and oxygen isotopic composition of precipitation, evaporated mine water, and river water in Montana, USA. J. Hydrol. 2006, 328, 319–330. [Google Scholar] [CrossRef]
- Dutton, A.; Wilkinson, B.H.; Welker, J.M.; Bowen, G.J.; Lohmann, K.C. Spatial distribution and seasonal variation in 18O/16O of modern precipitation and river water across the conterminous USA. Hydrol. Process. Int. J. 2005, 19, 4121–4146. [Google Scholar] [CrossRef] [Green Version]
- Gat, J.R.; Gonfiantini, R. Stable Isotope Hydrology. Deuterium and Oxygen-18 in the Water Cycle; International Atomic Energy Agency: Vienna, Austria, 1981. [Google Scholar]
- Fekete, B.M.; Gibson, J.J.; Aggarwal, P.; Vörösmarty, C.J. Application of isotope tracers in continental scale hydrological modeling. J. Hydrol. 2006, 330, 444–456. [Google Scholar] [CrossRef]
- Xu, Y.; Yan, B.; Luan, Z.; Zhu, H.; Wang, L. Application of stable isotope tracing technologies in identification of transformation among waters in Sanjiang Plain, Northeast China. Chin. Geogr. Sci. 2013, 23, 435–444. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Song, X.; Tang, C.; Liu, C.; Yu, J.; Zhang, W. Tracing infiltration and recharge using stable isotope in Taihang Mt., North China. Environ. Geol. 2007, 53, 687–696. [Google Scholar] [CrossRef]
- Nakayama, T.; Taniguchi, M.; Shimada, J. Characteristics of stable isotope ratios in precipitation and groundwater in Lake Biwa basin, Japan. Jpn. J. Limnol. (Jpn.) 2000, 61, 119–128. [Google Scholar] [CrossRef] [Green Version]
- Cui, B.-L.; Li, X.-Y. Stable isotopes reveal sources of precipitation in the Qinghai Lake Basin of the northeastern Tibetan Plateau. Sci. Total Environ. 2015, 527, 26–37. [Google Scholar] [CrossRef]
- Araguás-Araguás, L.; Froehlich, K.; Rozanski, K. Stable isotope composition of precipitation over southeast Asia. J. Geophys. Res. Atmos. 1998, 103, 28721–28742. [Google Scholar] [CrossRef]
- Lu, B.; Sun, T.; Wang, C.; Dai, S.; Kuang, J.; Wang, J. Temporal and spatial variations of δ18O along the main stem of Yangtze River, China. In Monitoring Isotopes in Rivers: Creation of the Global Network of Isotopes in Rivers (GNIR); International Atomic Energy Agency: Vienna, Austria, 2012; pp. 211–220. [Google Scholar]
- Ding, T.; Wan, D.; Wang, C.; Zhang, F. Silicon isotope compositions of dissolved silicon and suspended matter in the Yangtze River, China. Geochim. Cosmochim. Acta 2004, 68, 205–216. [Google Scholar] [CrossRef]
- Deng, W.; Wei, G.; Li, X.; Yu, K.; Zhao, J.; Sun, W.; Liu, Y. Paleoprecipitation record from coral Sr/Ca and δ18O during the mid Holocene in the northern South China Sea. Holocene 2009, 19, 811–821. [Google Scholar] [CrossRef]
- Gat, J.R.; Bowser, C.J.; Kendall, C. The contribution of evaporation from the Great Lakes to the continental atmosphere: Estimate based on stable isotope data. Geophys. Res. Lett. 1994, 21, 557–560. [Google Scholar] [CrossRef]
- Froehlich, K.; Kralik, M.; Papesch, W.; Rank, D.; Scheifinger, H.; Stichler, W. Deuterium excess in precipitation of Alpine regions–moisture recycling. Isot. Environ. Health Stud. 2008, 44, 61–70. [Google Scholar] [CrossRef]
- Buttle, J.M. Isotope hydrograph separations and rapid delivery of pre-event water from drainage basins. Prog. Phys. Geogr. 1994, 18, 16–41. [Google Scholar] [CrossRef]
- Cartwright, I.; Weaver, T.R.; Fulton, S.; Nichol, C.; Reid, M.; Cheng, X. Hydrogeochemical and isotopic constraints on the origins of dryland salinity, Murray Basin, Victoria, Australia. Appl. Geochem. 2004, 19, 1233–1254. [Google Scholar] [CrossRef]
- Farber, E.; Vengosh, A.; Gavrieli, I.; Marie, A.; Bullen, T.D.; Mayer, B.; Holtzman, R.; Segal, M.; Shavit, U. The origin and mechanisms of salinization of the Lower Jordan River. Geochim. Cosmochim. Acta 2004, 68, 1989–2006. [Google Scholar] [CrossRef]
- Yuan, F.; Miyamoto, S. Characteristics of oxygen-18 and deuterium composition in waters from the Pecos River in American Southwest. Chem. Geol. 2008, 255, 220–230. [Google Scholar] [CrossRef] [Green Version]
- Harris, D.M.; McDonnell, J.J.; Rodhe, A. Hydrograph separation using continuous open system isotope mixing. Water Resour. Res. 1995, 31, 157–171. [Google Scholar] [CrossRef]
- Hooper, R.P.; Shoemaker, C.A. A comparison of chemical and isotopic hydrograph separation. Water Resour. Res. 1986, 22, 1444–1454. [Google Scholar] [CrossRef]
- Karim, A.; Veizer, J. Water balance of the Indus River Basin and moisture source in the Karakoram and western Himalayas: Implications from hydrogen and oxygen isotopes in river water. J. Geophys. Res. Atmos. 2002, 107, ACH 9-1–ACH 9-12. [Google Scholar] [CrossRef]
- Machavaram, M.V.; Whittemore, D.O.; Conrad, M.E.; Miller, N.L. Precipitation induced stream flow: An event based chemical and isotopic study of a small stream in the Great Plains region of the USA. J. Hydrol. 2006, 330, 470–480. [Google Scholar] [CrossRef]
- McKenna, S.A.; Ingraham, N.L.; Jacobson, R.L.; Cochran, G.F. A stable isotope study of bank storage mechanisms in the Truckee river basin. J. Hydrol. 1992, 134, 203–219. [Google Scholar] [CrossRef]
- Merlivat, L.; Jouzel, J. Global climatic interpretation of the deuterium-oxygen 18 relationship for precipitation. J. Geophys. Res. Ocean. 1979, 84, 5029–5033. [Google Scholar] [CrossRef]
- O’driscoll, M.A.; DeWalle, D.R.; McGuire, K.J.; Gburek, W.J. Seasonal 18O variations and groundwater recharge for three landscape types in central Pennsylvania, USA. J. Hydrol. 2005, 303, 108–124. [Google Scholar] [CrossRef]
- Sklash, M.G.; Farvolden, R.N. The role of groundwater in storm runoff. J. Hydrol. 1979, 43, 45–65. [Google Scholar] [CrossRef]
- Winston, W.; Criss, R. Oxygen isotope and geochemical variations in the Missouri River. Environ. Geol. 2003, 43, 546–556. [Google Scholar] [CrossRef]
- Turner, J.V.; Macpherson, D.K.; Stokes, R.A. The mechanisms of catchment flow processes using natural variations in deuterium and oxygen-18. J. Hydrol. 1987, 94, 143–162. [Google Scholar] [CrossRef]
- International Atomic Energy Agency (IAEA). 2014 IAEA/GNIP Precipitation Sampling Guide; IAEA: Vienna, Austria, 2014. [Google Scholar]
- Orlowski, N.; Frede, H.-G.; Brüggemann, N.; Breuer, L. Validation and application of a cryogenic vacuum extraction system for soil and plant water extraction for isotope analysis. J. Sens. Sens. Syst. 2013, 2, 179–193. [Google Scholar] [CrossRef] [Green Version]
- Boschetti, T.; Cifuentes, J.; Iacumin, P.; Selmo, E. Local meteoric water line of Northern Chile (18S–30S): An application of error-in-variables regression to the oxygen and hydrogen stable isotope ratio of precipitation. Water 2019, 11, 791. [Google Scholar] [CrossRef] [Green Version]
- Craig, H. Isotopic variations in meteoric waters. Science 1961, 133, 1702–1703. [Google Scholar] [CrossRef] [PubMed]
- Gourcy, L.L.; Groening, M.; Aggarwal, P.K. Stable oxygen and hydrogen isotopes in precipitation. In Isotopes in the Water Cycle: Past, Present and Future of Developing Science; Aggarwal, P.K., Gat, J.R., Froehlich, K.F.O., Eds.; Springer: Dordrecht, The Netherlands, 2005; pp. 39–51. [Google Scholar] [CrossRef]
- Dansgaard, W. Stable isotopes in precipitation. Tellus 1964, 16, 436–468. [Google Scholar] [CrossRef]
- Gat, J.R.; Klein, B.; Kushnir, Y.; Roether, W.; Wernli, H.; Yam, R.; Shemesh, A. Isotope composition of air moisture over the Mediterranean Sea: An index of the air-sea interaction pattern. Tellus B Chem. Phys. Meteorol. 2011, 55, 953–965. [Google Scholar]
- Vodila, G.; Palcsu, L.; Futó, I.; Szántó, Z. A 9-year record of stable isotope ratios of precipitation in Eastern Hungary: Implications on isotope hydrology and regional palaeoclimatology. J. Hydrol. 2011, 400, 144–153. [Google Scholar] [CrossRef]
- Stumpp, C.; Klaus, J.; Stichler, W. Analysis of long-term stable isotopic composition in German precipitation. J. Hydrol. 2014, 517, 351–361. [Google Scholar]
- Noone, D.; Simmonds, I. Associations between δ18O of water and climate parameters in a simulation of atmospheric circulation for 1979–95. J. Clim. 2002, 15, 3150–3169. [Google Scholar] [CrossRef]
- Sjostrom, D.J.; Welker, J.M. The influence of air mass source on the seasonal isotopic composition of precipitation, eastern USA. J. Geochem. Explor. 2009, 102, 103–112. [Google Scholar] [CrossRef]
- Vachon, R.W.; Welker, J.M.; White, J.W.C.; Vaughn, B.H. Moisture source temperatures and precipitation δ18O-temperature relationships across the United States. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef]
- Barras, V.J.; Simmonds, I. Synoptic controls upon δ18O in southern Tasmanian precipitation. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Scholl, M.A.; Shanley, J.B.; Zegarra, J.P.; Coplen, T.B. The stable isotope amount effect: New insights from NEXRAD echo tops, Luquillo Mountains, Puerto Rico. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef] [Green Version]
- Baldini, L.M.; McDermott, F.; Baldini, J.U.; Fischer, M.J.; Möllhoff, M. An investigation of the controls on Irish precipitation δ18O values on monthly and event timescales. Clim. Dyn. 2010, 35, 977–993. [Google Scholar] [CrossRef]
- Lykoudis, S.P.; Kostopoulou, E.; Argiriou, A.A. Stable isotopic signature of precipitation under various synoptic classifications. Phys. Chem. Earth Parts A/B/C 2010, 35, 530–535. [Google Scholar] [CrossRef]
- Ulrich, E.; Lelong, N.; Lanier, M.; Schneider, A. Regional differences in the relation between monthly precipitation and bulk concentration in France (Renecofor). Water Air Soil Pollut. 1998, 102, 239–257. [Google Scholar] [CrossRef]
- Balestrini, R.; Galli, L.; Tartari, G. Wet and dry atmospheric deposition at prealpine and alpine sites in northern Italy. Atmos. Environ. 2000, 34, 1455–1470. [Google Scholar] [CrossRef]
- Celle-Jeanton, H.; Travi, Y.; Loÿe-Pilot, M.-D.; Huneau, F.; Bertrand, G. Rainwater chemistry at a Mediterranean inland station (Avignon, France): Local contribution versus long-range supply. Atmos. Res. 2009, 91, 118–126. [Google Scholar] [CrossRef]
- Prathibha, P.; Kothai, P.; Saradhi, I.V.; Pandit, G.G.; Puranik, V.D. Chemical characterization of precipitation at a coastal site in Trombay, Mumbai, India. Environ. Monit. Assess. 2010, 168, 45–53. [Google Scholar] [CrossRef]
- Minggang, C.; Yipu, H.; Min, C.; Guangshan, L.; Deqiu, J.; Xihuang, Z. A study on hydrogen and oxygen isotopes composition of precipitation in Xiamen. J. Oceanogr. Taiwan Strait 2000, 19, 446–453. [Google Scholar]
- Zheng, S.H.; Hou, F.G.; Ni, B.L. The studies of hydrogen and oxygen stable isotopes in atmospheric precipitation in China. Chin. Sci. Bull. 1983, 13, 801–806. [Google Scholar]
- Chen, T.T.; Chen, H.; Han, L.; Xing, X.; Fu, Y.Y. Stable isotopes characters of soil water movement in Shijiazhuang City. Huan Jing Ke Xue 2015, 36, 3641–3648. [Google Scholar]
- Wang, T.; Zhang, J.R.; Liu, X.; Yao, L. Variations of stable isotopes in precipitation and water vapor sources in Nanjing area. J. China Hydrol. 2013, 33, 25–31. [Google Scholar]
- Chen, Y.T.; Du, W.; Chen, J.; Xu, L. Composition of hydrogen and oxygen isotopes of precipiation and source apportionment of water vapor in Xiamen area. Acta Sci. Circumstantiae 2016, 36, 667–674. [Google Scholar]
- Müller, M.H.; Alaoui, A.; Kuells, C.; Leistert, H.; Meusburger, K.; Stumpp, C.; Weiler, M.; Alewell, C. Tracking water pathways in steep hillslopes by δ18O depth profiles of soil water. J. Hydrol. 2014, 519, 340–352. [Google Scholar] [CrossRef]
- Hughes, C.E.; Crawford, J. A new precipitation weighted method for determining the meteoric water line for hydrological applications demonstrated using Australian and global GNIP data. J. Hydrol. 2012, 464, 344–351. [Google Scholar] [CrossRef]
- Celle-Jeanton, H.; Gonfiantini, R.; Travi, Y.; Sol, B. Oxygen-18 variations of rainwater during precipitation: Application of the Rayleigh model to selected rainfalls in Southern France. J. Hydrol. 2004, 289, 165–177. [Google Scholar] [CrossRef]
- Matheney, R.K.; Gerla, P.J. Environmental isotopic evidence for the origins of ground and surface water in a prairie discharge wetland. Wetlands 1996, 16, 109–120. [Google Scholar] [CrossRef]
- Gat, J.R. Oxygen and hydrogen isotopes in the hydrologic cycle. Annu. Rev. Earth Planet. Sci. 1996, 24, 225–262. [Google Scholar] [CrossRef] [Green Version]
- Diefendorf, A.F.; Patterson, W.P. Survey of stable isotope values in Irish surface waters. J. Paleolimnol. 2005, 34, 257–269. [Google Scholar] [CrossRef] [Green Version]
- Rietti-Shati, M.; Yam, R.; Karlen, W.; Shemesh, A. Stable isotope composition of tropical high-altitude fresh-waters on Mt. Kenya, Equatorial East Africa. Chem. Geol. 2000, 166, 341–350. [Google Scholar] [CrossRef]
- Tian, L.D.; Yao, T.D.; Shen, Y.P.; Yang, M.X.; Ye, B.S.; Numaguti, A.; Tsujimura, M. Study on stable isotope in river water and precipitation in Naqu River basin, Tibetan Plateau. Adv. Water Sci. 2002, 13, 210–213. [Google Scholar]
- Gu, W.Z. Experimental research on catchment runoff responses traced by environmental isotopes. Adv. Water Sci. 1992, 4, 246–254. [Google Scholar]
- Lachniet, M.S.; Patterson, W.P. Stable isotope values of Costa Rican surface waters. J. Hydrol. 2002, 260, 135–150. [Google Scholar] [CrossRef]
- Gonfiantini, R. Environmental isotopes in lake studies. Handb. Environ. Isot. Geochem. Terr. Environ. 1986, 2, 113–168. [Google Scholar]
- Li, X. Stable Isotopes in Different Types of Water and Their Significance during the Wet Season in the Urumqi River Basin, Eastern Tianshan Mountains, China. Master’s Thesis, Northwest Normal University, Lanzhou, China, 2013. [Google Scholar]
- Zhang, L.; Qin, X.; Liu, J.; Mu, Y.; An, S.; Lu, C. Characters of hydrogen and oxygen stable isotope of different water bodies in Huainan coal mining area. J. Jilin Univ. (Earth Sci. Ed.) 2015, 45, 1502–1514. [Google Scholar]
- Zhao, W.; Ma, J.; Gu, C.; Qi, S.; Zhu, G.; He, J. Distribution of isotopes and chemicals in precipitation in Shule River Basin, northwestern China: An implication for water cycle and groundwater recharge. J. Arid Land 2016, 8, 973–985. [Google Scholar] [CrossRef] [Green Version]
- Wassenaar, L.I.; Athanasopoulos, P.; Hendry, M.J. Isotope hydrology of precipitation, surface and ground waters in the Okanagan Valley, British Columbia, Canada. J. Hydrol. 2011, 411, 37–48. [Google Scholar] [CrossRef]
- Kendall, C.; Coplen, T.B. Distribution of oxygen-18 and deuterium in river waters across the United States. Hydrol. Process. 2001, 15, 1363–1393. [Google Scholar] [CrossRef]
- Halder, J.; Decrouy, L.; Vennemann, T.W. Mixing of Rhône River water in Lake Geneva (Switzerland–France) inferred from stable hydrogen and oxygen isotope profiles. J. Hydrol. 2013, 477, 152–164. [Google Scholar] [CrossRef]
- Fan, Y.; Chen, Y.; Li, X.; Li, W.; Li, Q. Characteristics of water isotopes and ice-snowmelt quantification in the Tizinafu River, north Kunlun Mountains, Central Asia. Quat. Int. 2015, 380, 116–122. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, X.; Li, X. The variations of δ18O and δD in different water bodies of Changsha region, middle-and-low reach of the Xiangjiang River. Sci. Geogr. Sin. 2014, 34, 488–495. [Google Scholar]
- Koster, R.D.; Guo, Z.; Yang, R.; Dirmeyer, P.A.; Mitchell, K.; Puma, M.J. On the nature of soil moisture in land surface models. J. Clim. 2009, 22, 4322–4335. [Google Scholar] [CrossRef] [Green Version]
- Schmocker-Fackel, P. A Method to Delineate Runoff Processes in a Catchment and Its Implications for Runoff Simulations. Ph.D. Thesis, ETH Zurich, Zurich, Switzerland, 2004. [Google Scholar]
- Zhu, L.; Zhang, H.; Gao, X.; Qi, Y.; Xu, X. Seasonal patterns in water uptake for Medicago sativa grown along an elevation gradient with shallow groundwater table in Yanchi county of Ningxia, Northwest China. J. Arid Land 2016, 8, 921–934. [Google Scholar] [CrossRef]
- Ma, Y.; Song, X. Using stable isotopes to determine seasonal variations in water uptake of summer maize under different fertilization treatments. Sci. Total Environ. 2016, 550, 471–483. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, J.C.; Chadwick, O.A.; Kelly, E.F.; Savin, S.M. Oxygen isotopic composition of soil water: Quantifying evaporation and transpiration. Geoderma 1998, 82, 269–293. [Google Scholar] [CrossRef]
- Brenot, A.; Benoît, M.; Carignan, J.; France-Lanord, C. Insights into stable isotope characterization to monitor the signification of soil water sampling for environmental studies dealing with soil water dynamics through the unsaturated zone. Comptes Rendus Geosci. 2015, 347, 317–327. [Google Scholar] [CrossRef]
- Deng, W.P.; Yu, X.X.; Jia, G.D.; Li, Y.J.; Liu, Y.J. An analysis of characteristics of hydrogen and oxygen stable isotopes in Jiufeng Mountain areas of Beijing. Adv. Water Sci. 2013, 24, 642–650. [Google Scholar]
- Macaigne, P. Stable isotopes, their use in soil hydrology. In Encyclopedia of Agrophysics; Springer: Dordrecht, The Netherlands, 2011; pp. 849–854. [Google Scholar]
- Małoszewski, P.; Rauert, W.; Stichler, W.; Herrmann, A. Application of flow models in an alpine catchment area using tritium and deuterium data. J. Hydrol. 1983, 66, 319–330. [Google Scholar] [CrossRef]
- Małoszewski, P.; Zuber, A. Determining the turnover time of groundwater systems with the aid of environmental tracers: Models and their applicability. J. Hydrol. 1982, 57, 207–231. [Google Scholar] [CrossRef]
- Saxena, R.K. Seasonal variations of oxygen-18 in soil moisture and estimation of recharge in Esker and Moraine formations: Paper presented at the Nordic Hydrological Conference (Nyborg, Denmark, August-1984). Hydrol. Res. 1984, 15, 235–242. [Google Scholar] [CrossRef]
- Darling, W.G.; Bath, A.H. A stable isotope study of recharge processes in the English Chalk. J. Hydrol. 1988, 101, 31–46. [Google Scholar] [CrossRef]
- Stewart, M.K.; McDonnell, J.J. Modeling base flow soil water residence times from deuterium concentrations. Water Resour. Res. 1991, 27, 2681–2693. [Google Scholar] [CrossRef]
- Maloszewski, P.; Moser, H.; Stichler, W.; Trimborn, P. Isotope hydrology investigations in large refuse lysimeters. J. Hydrol. 1995, 167, 149–166. [Google Scholar] [CrossRef]
- DeWalle, D.R.; Edwards, P.J.; Swistock, B.R.; Aravena, R.; Drimmie, R.J. Seasonal isotope hydrology of three Appalachian forest catchments. Hydrol. Process. 1997, 11, 1895–1906. [Google Scholar] [CrossRef]
- McConville, C.; Kalin, R.M.; Johnston, H.; McNeill, G.W. Evaluation of recharge in a small temperate catchment using natural and applied δ18O profiles in the unsaturated zone. Groundwater 2001, 39, 616–623. [Google Scholar] [CrossRef] [PubMed]
- Asano, Y.; Uchida, T.; Ohte, N. Residence times and flow paths of water in steep unchannelled catchments, Tanakami, Japan. J. Hydrol. 2002, 261, 173–192. [Google Scholar] [CrossRef]
- McGuire, K.J.; DeWalle, D.R.; Gburek, W.J. Evaluation of mean residence time in subsurface waters using oxygen-18 fluctuations during drought conditions in the mid-Appalachians. J. Hydrol. 2002, 261, 132–149. [Google Scholar] [CrossRef]
- Rodgers, P.; Soulsby, C.; Waldron, S. Stable isotope tracers as diagnostic tools in upscaling flow path understanding and residence time estimates in a mountainous mesoscale catchment. Hydrol. Process. Int. J. 2005, 19, 2291–2307. [Google Scholar] [CrossRef]
- Kabeya, N.; Katsuyama, M.; Kawasaki, M.; Ohte, N.; Sugimoto, A. Estimation of mean residence times of subsurface waters using seasonal variation in deuterium excess in a small headwater catchment in Japan. Hydrol. Process. Int. J. 2007, 21, 308–322. [Google Scholar] [CrossRef]
- Landon, M.K.; Delin, G.N.; Komor, S.C.; Regan, C.P. Relation of pathways and transit times of recharge water to nitrate concentrations using stable isotopes. Groundwater 2000, 38, 381–395. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.P.; Yao, T.D.; Tian, L.D.; Liu, J.M. Stable oxygen isotope in water mediums in Urumqi River basin. Adv. Water Sci. 2003, 14, 56–60. [Google Scholar]
- Xu, Q.; Liu, S.; Wan, X.; Jiang, C.; Song, X.; Wang, J. Effects of rainfall on soil moisture and water movement in a subalpine dark coniferous forest in southwestern China. Hydrol. Process. 2012, 26, 3800–3809. [Google Scholar] [CrossRef]
- Qu, J.F.; Hou, Y.L.; Ge, M.Y.; Wang, K.; Liu, S.; Zhang, S.L.; Li, G.; Chen, F. Carbon dynamics of reclaimed coal mine soil under agricultural use: A chronosequence study in the dongtan mining area, Shandong Province, China. Sustainability 2017, 9, 629. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, R.K.; Lal, R. Land use impacts on physical properties of 28 years old reclaimed mine soils in Ohio. Plant Soil 2008, 306, 249–260. [Google Scholar] [CrossRef]
Date | δD (‰) | δ18O (‰) | d-Excess (‰) | Date | δD (‰) | δ18O (‰) | d-Excess (‰) |
---|---|---|---|---|---|---|---|
7 November 2016 | −56.46 | −9.44 | 19.08 | 2017.7.15 | −66.19 | −10.22 | 15.61 |
9 November 2016 | −4.58 | −3.17 | 20.79 | 2017.7.26 | −52.65 | −7.18 | 4.83 |
22 November 2016 | −73.96 | −11.54 | 18.38 | 2017.8.2 | −92.53 | −13.05 | 11.87 |
1 December 2016 | −42.94 | −7.05 | 13.43 | 2017.8.7 | −30.32 | −5.49 | 13.57 |
21 December 2016 | −70.37 | −9.22 | 3.4 | 2017.8.12 | −45.73 | −6.83 | 8.9 |
25 December 2016 | −31.79 | −7.25 | 26.22 | 2017.8.18 | −60.05 | −8.36 | 6.83 |
6 January 2017 | −49.59 | −8.77 | 20.59 | 2017.8.19 | −60.07 | −8.41 | 7.17 |
7 January 2017 | −52.18 | −8.77 | 17.98 | 2017.8.29 | −31.36 | −6.26 | 18.7 |
29 January 2017 | −13.33 | −5.1 | 27.45 | 2017.8.3 | −46.53 | −7.69 | 15 |
31 January 2017 | −51.79 | −8.07 | 12.74 | 2017.9.3 | −76.22 | −11.28 | 13.99 |
8 February 2017 | −47.1 | −8.39 | 20.03 | 2017.9.4 | −41.95 | −7.09 | 14.73 |
9 April 2017 | −19.11 | −2.11 | −2.25 | 2017.9.6 | −86.12 | −12.19 | 11.41 |
3 May 2017 | −3.5 | −2.45 | 16.13 | 2017.9.25 | −68.17 | −9.85 | 10.66 |
5 June 2017 | −13.95 | −5.4 | 29.28 | 2017.9.26 | −63.37 | −8.8 | 7.06 |
1 June 2017 | −26.59 | −5.21 | 15.13 | 2017.9.3 | −76.62 | −11.16 | 12.63 |
23 June 2017 | −55.9 | −7.35 | 2.92 | 2017.10.4 | −37.46 | −5.41 | 5.82 |
6 July 2017 | −68.34 | −10.54 | 15.96 | 2017.10.5 | −34.57 | −6.07 | 13.96 |
7 July 2017 | −56.52 | −7.93 | 6.94 | 2017.10.1 | −53.46 | −9.38 | 21.54 |
13 July 2017 | −73.1 | −10.42 | 10.26 | 2017.10.11 | −67.16 | −9.51 | 8.94 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, M.; Chen, B. Characteristics of δD and δ18O of Reclaimed Mine Soil Water Profile and Its Source Water Bodies in a Coal Mining Subsidence Area with High Groundwater Level—A Case Study from the Longdong Coal Mining Subsidence Area in Jiangsu Province, China. Water 2020, 12, 274. https://doi.org/10.3390/w12010274
Ge M, Chen B. Characteristics of δD and δ18O of Reclaimed Mine Soil Water Profile and Its Source Water Bodies in a Coal Mining Subsidence Area with High Groundwater Level—A Case Study from the Longdong Coal Mining Subsidence Area in Jiangsu Province, China. Water. 2020; 12(1):274. https://doi.org/10.3390/w12010274
Chicago/Turabian StyleGe, Mengyu, and Baozhang Chen. 2020. "Characteristics of δD and δ18O of Reclaimed Mine Soil Water Profile and Its Source Water Bodies in a Coal Mining Subsidence Area with High Groundwater Level—A Case Study from the Longdong Coal Mining Subsidence Area in Jiangsu Province, China" Water 12, no. 1: 274. https://doi.org/10.3390/w12010274
APA StyleGe, M., & Chen, B. (2020). Characteristics of δD and δ18O of Reclaimed Mine Soil Water Profile and Its Source Water Bodies in a Coal Mining Subsidence Area with High Groundwater Level—A Case Study from the Longdong Coal Mining Subsidence Area in Jiangsu Province, China. Water, 12(1), 274. https://doi.org/10.3390/w12010274