Projected Changes in the Water Budget for Eastern Colombia Due to Climate Change
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Meteorological Data
3.2. Soil and Land Cover
3.3. Model
3.4. Data-Grid and Interpolation
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Appendix B.1. Rio Catatumbo
Appendix B.2. Sabana de Bogota
References
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; 151p. [Google Scholar]
- Band, L.; Mackay, D.; Creed, I.; Semkin, R.; Jeffries, D. Ecosystem processes at the watershed scale: Sensitivity to potential climate change. Limnol. Oceanogr. 1996, 5, 928–938. [Google Scholar] [CrossRef] [Green Version]
- Jimenez Cisneros, B.E.; Oki, T.; Arnell, N.W.; Benito, G.; Cogley, J.G.; Döll, P.; Jiang, T.; Mwakalila, S.S. Impacts, Adaptation and Vulnerability. Part A: Global and Sectorial Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 2014; Cambridge University Press: Cambridge, UK, 2014; pp. 229–269. [Google Scholar]
- Healy, R.W.; Winter, T.C.; LaBaugh, J.W.; Franke, O.L. Water Budgets: Foundations for Effective Water-Resources and Environmental Management; U.S. Geological Survey Circular: Reston, VA, USA, 2007; Volume 1308, 90p.
- Burns, D.A.; Klaus, J.; McHale, M.R. Recent climate trends and implications for water resources in the Catskill Mountain region, New York, USA. J. Hydrol. 2007, 336, 155–170. [Google Scholar] [CrossRef]
- Candela, L.; Elorza, F.J.; Jiménez-Martínez, J.; von Igel, W. Global change and agricultural management options for groundwater sustainability. Comput. Electron. Agric. 2012, 86, 120–130. [Google Scholar] [CrossRef]
- Hagg, W.; Braun, L.N.; Kuhn, M.; Nesgaard, T.I. Modelling of hydrological response to climate change in glacierized Central Asian catchments. J. Hydrol. 2007, 332, 40–53. [Google Scholar] [CrossRef] [Green Version]
- Ruth, M.; Coelho, D. Understanding and managing the complexity of urban systems under climate change. Clim. Policy 2007, 7, 317–336. [Google Scholar] [CrossRef]
- Werritty, A. Living with uncertainty: Climate change, river flows and water resource management in Scotland. Sci. Total Environ. 2002, 294, 29–40. [Google Scholar] [CrossRef]
- Bates, B.C.; Kundzewicz, Z.W.; Wu, S.; Palutikof, J.P. (Eds.) Climate Change and Water; Technical Paper; Interguvernmental Panel on Climate Change: Geneva, Switzerland, 2008; 210p. [Google Scholar]
- Fu, G.; Charles, S.P.; Yu, J. A critical overview of pan evaporation trends over the last 50 years. Clim. Chang. 2009, 97, 193–214. [Google Scholar] [CrossRef]
- Miralles, D.G.; Holmes, T.R.H.; de Jeu, R.A.M.; Gash, J.H.; Meesters, A.G.C.A.; Dolman, A.J. Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci. 2011, 15, 453–469. [Google Scholar] [CrossRef] [Green Version]
- IDEAM; PNUD; MADS; CANCILLERÍA; DNP. New Climate Change Scenarios for Colombia 2011–2100. Scientific Tools for National-Regional Level Decision-Making. Available online: http://documentacion.ideam.gov.co/openbiblio/bvirtual/022964/documento_nacional_departamental.pdf (accessed on 11 September 2019).
- Snow, J.W. The Climate of Northern South America. Climates of Central and South America; Schwerdtfeger, W., Ed.; Elsevier: Amsterdam, The Netherlands, 1976; pp. 295–403. [Google Scholar]
- Mejía, J.F.; Mesa, O.J.; Poveda, G.; Vélez, J.I.; Hoyos, C.D.; Mantilla, R.; Barco, J.; Cuartas, A.; Montoya, M.; Botero, B. Spatial distribution, annual and semi-annual cycles of precipitation in Colombia. DYNA 1999, 127, 7–26. (In Spanish) [Google Scholar]
- León, G.E.; Zea, J.A.; Eslava, J.A. General circulation and the intertropical convergence zone in Colombia. Meteor. Colomb. 2000, 1, 31–38. (In Spanish) [Google Scholar]
- WMO. WMO Guidelines on the Calculation of Climate Normals; WMO-No. 1203; Chairperson, Publications Board: Geneva, Switzerland, 2017; Available online: https://library.wmo.int/doc_num.php?explnum_id=4166 (accessed on 21 June 2019).
- Molina, O.D.; Bernhofer, C. Projected climate changes in four different regions in Colombia. Environ. Syst. Res. 2019, 8, 33. [Google Scholar] [CrossRef]
- Federer, C.A. BROOK 90: A Simulation Model for Evaporation, Soil Water, and Streamflow. 2002. Available online: http://www.ecoshift.net/brook/brook90.htm (accessed on 21 June 2019).
- Combalicer, E.A.; Lee, S.H.; Ahn, S.; Kim, D.Y.; Im, S. Modeling water balance for the small-forested watershed in Korea. KSCE J. Civ. Eng. 2008, 12, 339–348. [Google Scholar] [CrossRef]
- Shuttleworth, W.J.; Wallace, J.S. Evaporation from sparse crops—An energy combination theory. Q. J. R. Meteorol. Soc. 1985, 111, 839–855. [Google Scholar] [CrossRef]
- Brooks, R.H.; Corey, A.T. Hydraulic properties of porous media. Hydrol. Pap. 1964, 3, 1–27. [Google Scholar]
- Saxton, K.E.; Rawls, W.J.; Romberger, J.S.; Papendick, R.I. Estimating generalized soil water characteristics from texture. Trans. Am. Soc. Agric. Eng. 1986, 50, 1031–1035. [Google Scholar] [CrossRef]
- Wahren, A.; Schwärzel, K.; Feger, K.H.; Münch, A.; Dittrich, I. Identification and model based assessment of the potential water retention caused by land-use changes. Adv. Geosci. Eur. Geosci. Union 2007, 11, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Bastidas Osejo, B.; Betancur Vargas, T.; Alejandro Martinez, J. Spatial distribution of precipitation and evapotranspiration estimates from Worldclim and Chelsa datasets: Improving long-term water balance at the watershed-scale in the Urabá region of Colombia. Int. J. Sustain. Dev. Plan. 2019, 14, 105–117. [Google Scholar] [CrossRef]
- Leta, O.T.; El-Kadi, A.I.; Dulai, H.; Ghazal, K.A. Assessment of climate change impacts on water balance components of Heeia watershed in Hawaii. J. Hydrol. Reg. Stud. 2016, 8, 182–197. [Google Scholar] [CrossRef] [Green Version]
- Louzada, F.L.R.; de, O.; Xavier, A.C.; Pezzopane, J.E.M. Climatological water balance with data estimated by tropical rainfall measuring mission for the Doce river basin. Eng. Agric. 2018, 38, 376–386. [Google Scholar] [CrossRef]
- Silva, A.L.; Roveratti, R.; Reichardt, K.; Bacchi, O.O.; Timm, L.C.; Bruno, I.P.; Oliveira, J.C.; Dourado Neto, D. Variability of water balance components in a coffee crop in Brazil. Sci. Agric. 2006, 63, 105–114. [Google Scholar] [CrossRef]
- Almeida, A.Q.; Ribeiro, A.; Leite, F.P.; Souza, R.; Gonzaga, M.S.; Santos, W.A. Water Balance in a Tropical Eucalyptus plantations in the Doce River Basin, Eastern Brazil. JAS J. Agric. Sci. 2019, 11, 209–217. [Google Scholar] [CrossRef]
- Schwerdtfeger, J.; Weiler, M.; Johnson, M.S.; Couto, E.G. Estimating water balance components of tropical wetland lakes in the Pantanal dry season, Brazil. Hydrol. Sci. J. 2014, 59, 2158–2172. [Google Scholar] [CrossRef] [Green Version]
- Escurra, J.J.; Vazquez, V.; Cestti, R.; De Nys, E.; Srinivasan, R. Climate change impact on countrywide water balance in Bolivia. Reg. Environ. Chang. 2014, 14, 727–742. [Google Scholar] [CrossRef]
- McSweeney, C.F.; Jones, R.G.; Lee, R.W.; Rowell, D.P. Selecting CMIP5 GCMs for downscaling over multiple regions. Clim. Dyn. 2015, 44, 3237. [Google Scholar] [CrossRef] [Green Version]
- Bonilla-Ovallos, C.A.; Mesa, O.J. Validación de la precipitación estimada por modelos climáticos acoplados del proyecto de intercomparación CMIP5 en Colombia. Rev. De La Acad. Colomb. De Cienc. Exactas Físicas Y Nat. 2017, 41, 107. [Google Scholar] [CrossRef] [Green Version]
- Yin, L.; Fu, R.; Shevliakova, E.; Dickinson, R.; Dickinson, R.E. How well can CMIP5 simulate precipitation and its controlling processes over tropical South America? Clim. Dyn. 2012, 41, 3127–3143. [Google Scholar] [CrossRef] [Green Version]
- Feng, X.; Porporato, A.; Rodriguez-Iturbe, I. Changes in rainfall seasonality in the tropics. Nat. Clim. Chang. 2013, 3, 811–815. [Google Scholar] [CrossRef]
- Feng, X.; Vico, G.; Porporato, A. On the effects of seasonality on soil water balance and plant growth. Water Resour. Res. 2012, 48, W05543. [Google Scholar] [CrossRef]
- Hartmann, D.L.; Tank, A.M.; Rusticucci, M.; Alexander, L.V.; Brönnimann, S.; Charabi, Y.A.; Dentener, F.J.; Dlugokencky, E.J.; Easterling, D.R.; Kaplan, A.; et al. Observations: Atmosphere and surface. In Climate Change 2013: The Physical Science Bases. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Ed.; Cambridge University Press: Cambridge, UK, 2013; pp. 159–254. Available online: http://www.climatechange2013.org/report/full-report/ (accessed on 7 August 2019).
- MacDougall, A.H.; Eby, M.; Weaver, A.J. If anthropogenic CO2 emissions cease, will atmospheric CO2 concentration continue to increase? J. Clim. 2013, 26, 9563–9576. [Google Scholar] [CrossRef]
- Zhao, T.; Chen, L.; Ma, Z. Simulation of historical and projected climate change in arid and semiarid areas by CMIP5 models. Chin. Sci. Bull. 2014, 59, 412–429. [Google Scholar] [CrossRef]
- Ji, M.; Huang, J.; Xie, Y.; Liu, J. Comparison of dryland climate change in observations and CMIP5 simulations. Adv. Atmos. Sci. 2015, 32, 1565–1574. [Google Scholar] [CrossRef]
- Muerth, M.J.; St-Denis, G.; Ricard, B.; Velázquez, S.; Schmid, J.A.; Minville, M.; Caya, D.; Chaumont, D.; Ludwig, R.; Turcotte, R. On the need for bias correction in regional climate scenarios to assess climate change impacts on river runoff. Hydrol. Earth Syst. Sci. 2013, 17, 1189–1204. [Google Scholar] [CrossRef] [Green Version]
- Prudhomme, C.; Davies, H. Assessing uncertainties in climate change impact analyses on the river flow regimes in the UK. Part 2: Future climate. Clim. Chang. 2009, 93, 197–222. [Google Scholar] [CrossRef]
- Hagemann, S.; Chen, C.; Haerter, J.O.; Heinke, J.; Gerten, D.; Piani, C. Impact of a statistical bias correction on the projected hydrological changes obtained from three GCMs and two hydrology models. J. Hydrometeorol. 2011, 12, 556–578. [Google Scholar] [CrossRef]
- Dobler, C.; Hagemann, S.; Wilby, R.L.; Stötter, J. Quantifying different sources of uncertainty in hydrological projections in an Alpine watershed, Hydrol. Earth Syst. Sci. 2012, 16, 4343–4360. [Google Scholar] [CrossRef] [Green Version]
- Thompson, J.R.; Green, A.J.; Kingston, D.G.; Gosling, S.N. Assessment of uncertainty in river flow projections for the Mekong River using multiple GCMs and hydrological models. J. Hydrol. 2013, 486, 1–30. [Google Scholar] [CrossRef]
- Velázquez, J.A.; Schmid, J.; Ricard, S.; Muerth, M.J.; Gauvin St- Denis, B.; Minville, M.; Chaumont, D.; Caya, D.; Ludwig, R.; Turcotte, R. An ensemble approach to assess hydrological models’ contribution to uncertainties in the analysis of climate change impact on water resources. Hydrol. Earth Syst. Sci. 2013, 17, 565–578. [Google Scholar] [CrossRef] [Green Version]
- Jobst, A.M.; Kingston, D.G.; Cullen, N.J.; Schmid, J. Intercomparison of different uncertainty sources in hydrological climate change projections for an alpine catchment (upper Clutha River, New Zealand). Hydrol. Earth Syst. Sci. 2018, 22, 3125–3142. [Google Scholar] [CrossRef] [Green Version]
- Clark, M.P.; Wilby, R.L.; Gutmann, E.D.; Vano, J.A.; Gangopadhyay, S.; Wood, A.W.; Fowler, H.J.; Prudhomme, C.; Arnold, J.R.; Brekke, L.D. Characterizing uncertainty of the hydrologic impacts of climate change. Clim. Chang. Rep. 2016, 2, 55–64. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Widén, E.; Halldin, S. Modelling hydrological consequences of climate change—Progress and challenges. Adv. Atmos. Sci. 2005, 22, 789–797. [Google Scholar] [CrossRef]
Region/Water District | Climate | Area (km2) | N° of Stations (Precipitation) | Min. Elevation (m.a.s.l.) | Max. Elevation (m.a.s.l.) | |
---|---|---|---|---|---|---|
1 | Alta Guajira | arid, desertic | 12,348 | 25 | 1 | 390 |
2 | Bajo meta | semihumid | 42,655 | 42 | 45 | 3520 |
3 | Rio Catatumbo | humid | 17,960 | 47 | 83 | 1740 |
4 | Sabana de Bogota | semihumid, semiarid | 2245 | 39 | 2540 | 3800 |
Precipitation (mm) | Streamflow (mm) | Evapotranspiration (mm) | Storage (mm) | |||||
---|---|---|---|---|---|---|---|---|
2021–2050 | 2071–2100 | 2021–2050 | 2071–2100 | 2021–2050 | 2071–2100 | 2021–2050 | 2071–2100 | |
Alta Guajira | ||||||||
CanESM2 (RCP 2.6) | 9.12 | 3.68 | 17.73 | 35.07 | 13.73 | −10.36 | −22.34 | −21.03 |
CanESM2 (RCP 8.5) | −0.88 | −24.15 | 66 | −22.75 | −22.24 | −26.74 | −44.64 | 25.34 |
IPSL-CM5A-MR (RCP 2.6) | −35.22 | −26.59 | −1.97 | −15.73 | −4.37 | −25.27 | −28.88 | 14.41 |
IPSL-CM5A-MR (RCP 8.5) | −35.13 | −22.07 | −22.8 | −52.77 | −18.3 | 0.4 | 5.97 | 30.3 |
Bajo Meta | ||||||||
CanESM2 (RCP 2.6) | −11.41 | −11.58 | −12.48 | −12.81 | −6.67 | −5.29 | 7.74 | 6.52 |
CanESM2 (RCP 8.5) | −19.33 | −20.73 | −20.45 | −22.52 | −15.18 | −13.06 | 16.3 | 14.85 |
IPSL-CM5A-MR (RCP 2.6) | −1.5 | −6.91 | −10.58 | −15.85 | 18.12 | 27.03 | −9.04 | −18.09 |
IPSL-CM5A-MR (RCP 8.5) | −9.81 | −17.67 | −10.47 | −19.93 | 7.67 | 8.43 | −7.01 | −6.17 |
Rio Catatubo | ||||||||
CanESM2 (RCP 2.6) | −3.64 | −2.44 | −24.92 | −23.93 | 17.15 | 18.45 | 4.13 | 3.04 |
CanESM2 (RCP 8.5) | −8.9 | −10.57 | −30.73 | −39.7 | 12.41 | 17.78 | 9.42 | 11.35 |
IPSL-CM5A-MR (RCP 2.6) | −6.25 | −5.92 | −30.64 | −30.53 | 17.57 | 18.02 | 6.82 | 6.59 |
IPSL-CM5A-MR (RCP 8.5) | −14.17 | −13.68 | −35.08 | −40.32 | 6.24 | 12.24 | 14.67 | 14.4 |
Sabana de Bogota | ||||||||
CanESM2 (RCP 2.6) | 10.33 | 10.53 | −16.18 | −18.17 | 30.11 | 32.33 | −3.6 | −3.63 |
CanESM2 (RCP 8.5) | 17.84 | 16.78 | −24.59 | −22.39 | 50.25 | 46.41 | −7.82 | −7.24 |
IPSL-CM5A-MR (RCP 2.6) | −2.57 | −1.77 | −15.27 | −16.16 | 7.07 | 8.99 | 5.63 | 5.4 |
IPSL-CM5A-MR (RCP 8.5) | 12.54 | 20.72 | −20.8 | −11.09 | 38.1 | 44.67 | −4.76 | −12.86 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molina, O.; Luong, T.T.; Bernhofer, C. Projected Changes in the Water Budget for Eastern Colombia Due to Climate Change. Water 2020, 12, 65. https://doi.org/10.3390/w12010065
Molina O, Luong TT, Bernhofer C. Projected Changes in the Water Budget for Eastern Colombia Due to Climate Change. Water. 2020; 12(1):65. https://doi.org/10.3390/w12010065
Chicago/Turabian StyleMolina, Oscar, Thi Thanh Luong, and Christian Bernhofer. 2020. "Projected Changes in the Water Budget for Eastern Colombia Due to Climate Change" Water 12, no. 1: 65. https://doi.org/10.3390/w12010065
APA StyleMolina, O., Luong, T. T., & Bernhofer, C. (2020). Projected Changes in the Water Budget for Eastern Colombia Due to Climate Change. Water, 12(1), 65. https://doi.org/10.3390/w12010065