Historical Trends in Air Temperature, Precipitation, and Runoff of a Plateau Inland River Watershed in North China
Abstract
:1. Introduction
2. Study Region
3. Materials and Methods
3.1. Data and Methods
3.2. The Summary Statistics of the Observations
3.2.1. Summary Statistics of the Observed Air Temperatures
3.2.2. Summary Statistics of the Observed Precipitation and Runoff
4. Results
4.1. The Sudden Changes and Trends in Air Temperature
4.2. The Sudden Changes and Trends in Precipitation and Runoff
4.3. Correlation Analysis of Daily Climatic Factors
5. Discussion
6. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Huang, X.; Ma, L.; Liu, T.X.; Wang, J.R.; Liu, D.H.; Li, H.Y. Temperature mutation and globe warming stagnate study in typical area of Yellow River basin in recently 60 years. China Environ. Sci. 2016, 36, 3253–3262. [Google Scholar]
- Trenberth, K.E. Changes in precipitation with climate change. Clim. Res. 2011, 47, 123–138. [Google Scholar] [CrossRef] [Green Version]
- Xing, K.; Lei, X.Y.; Gao, F. Variation Characteristics of Meteorological and Hydrological Factors in Gurt River and the Relationship Between Ebinur Lake Downstream Ecology. J. Soil Water Conserv. 2017, 31, 345–350. [Google Scholar]
- Zhang, Q.; Li, J.F.; David Chen, Y.Q.; Chen, X.H. Observed changes of temperature extremes during 1960–2005 in China: Natural or human-induced variations? Theor. Appl. Climatol. 2011, 106, 417–431. [Google Scholar] [CrossRef]
- Kevin, E.T. The impact of climate change and variability on heavy precipitation, floods, and droughts. Encycl. Hydrol. Sci. 2008. Available online: https://doi.org/10.1002/0470848944.hsa211 (accessed on 1 September 2019).
- James, H.; Makiko, S.; Reto, R. Global temperature change. Proc. Natl. Acad. Sci. USA 2006, 103, 14288–14293. [Google Scholar]
- Li, B.; Chen, Y.; Shi, X. Why does the temperature rise faster in the arid region of northwest China? J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.W. Oasis, oasis making and oasis construction. J. Arid Land Resour. Environ. 1995, 3, 1–12. [Google Scholar]
- Ma, Z.G.; Fu, C.B. Interannual characteristics of the surface hydrological variables over the arid and semi-arid areas of northern China. Glob. Planet. Chang. 2003, 37, 189–200. [Google Scholar] [CrossRef]
- Gao, R.Z.; Li, F.L.; Wang, X.X. Spatiotemporal variations in precipitation across the Chinese Mongolian plateau over the past half century. Atmos. Res. 2017, 193, 204–215. [Google Scholar] [CrossRef]
- Lettenmaier, D.P.; Wood, E.F.; Wallis, J.R. Hydro-Climatological Trends in the Continental United States, 1948–1988. J. Clim. 1994, 7, 586–607. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Li, D.L. Features and response to climate-driven factors of the runoff in the upper reaches of the Weihe River in 1975–2011. J. Glaciol. Geocryol. 2014, 36, 413–423. [Google Scholar]
- Zhang, J.Y.; Zhang, S.L.; Wang, J.X.; Li, Y. Study on runoff trends of the six larger basins in China over the past 50 year. Adv. Water Sci. 2007, 2, 230–234. [Google Scholar]
- Mustafa, N.B.; Abdusselam, A. The impacts of climate change on the runoff volume of Melen and Munzur Rivers in Turkey based on the calibration of WASMOD model with multiobjective genetic algorithm. Meteorol. Atmos. Phys. 2019. Available online: https://doi.org/10.1007/s00703-019-00676-7 (accessed on 15 September 2019).
- Jacoby, G.; Pederson, N.; D’Arrigo, R.D. Temperature and precipitation in Mongolia based on dendroclimatic investigations. Chin. Sci. Bull. 2003, 48, 1474–1479. [Google Scholar]
- Endon, N.; Kadota, T.; Matsumoto, J. Climatology and Trends in Summer Precipitation Characteristics in Mongolia for the Period 1960-98. J. Meteorol. Soc. Jpn. 2006, 84, 543–551. [Google Scholar] [CrossRef] [Green Version]
- Morello, L.; Abbott, A.; Butler, D. 2014.365days:2014 in science. Nature 2014, 516, 300–303. [Google Scholar] [CrossRef]
- Trenberth, K.E. Has there been a hiatus? Science 2015, 349, 691–692. [Google Scholar] [CrossRef] [Green Version]
- Qin, X.; Sun, J.; Wang, X. Plant coverage is more sensitive than species diversity in indicating the dynamics of the above-ground biomass along a precipitation gradient on the Tibetan Plateau. Ecol. Indic. 2018, 84, 507–514. [Google Scholar] [CrossRef]
- Gao, R.Z.; Li, F.L.; Wang, X.X. Temporal variations of runoff in a rapidly urbanizing semi-arid Chinese watershed. J. Water Clim. Chang. 2016, 7, 578–597. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.T.; Fang, S.W.; Feng, J. Analysis of regime shift in Taihu Lake based on Mann-Kendall method. China Environ. Sci. 2015, 35, 3707–3713. [Google Scholar]
- Yue, S.; Wang, C.H. The Mann-Kendall Test Modified by Effective Sample Size to Detect Trend in Serially Correlated Hydrological Series. Water Resour. Manag. 2004, 18, 210–218. [Google Scholar] [CrossRef]
- Chattopadhyay, G.; Chakraborthy, P.; Chattopadhyay, S. Mann–Kendall trend analysis of tropospheric ozone and its modeling using ARIMA. Theor. Appl. Climatol. 2012, 110, 321–328. [Google Scholar] [CrossRef]
- Sonali, P.; Kumar, D.N. Review of trend detection methods and their application to detect temperature changes in india. J. Hydrol. 2013, 476, 212–227. [Google Scholar] [CrossRef]
- Christopher, J.M.; Jerome, J.M.; Martin, F.M. Trends in precipitation and temperature in Florida, USA. J. Hydrol. 2012, 452–453, 259–281. [Google Scholar]
- Aziz, O.I.A.; Burn, D.H. Trends and variability in the hydrological regime of the Mackenzie River Basin. J. Hydrol. 2006, 319, 282–294. [Google Scholar] [CrossRef]
- Liang, L.Q.; Li, L.J.; Liu, Q. Spatiotemporal variability of climate and streamflow in the Songhua River Basin, northeast China. J. Hydrol. 2011, 404, 67–76. [Google Scholar] [CrossRef]
- Liu, Q.; Yang, Z.F.; Cui, B.S. Spatil and temporal variability of annual precipitation during 1961-2006 in Yellow Basin, China. J. Hydrol. 2008, 361, 330–338. [Google Scholar] [CrossRef]
- Krishnakumar, K.N.; Prasada Rao, G.S.L.H.V.; Gopakumar, C.S. Rainfall trends in twentieth century over Kerala, India. Atmos. Environ. 2009, 43, 1940–1944. [Google Scholar] [CrossRef]
- Minaei, M.; Irannezhad, M. Spatio-temporal trend analysis of precipitation, temperature, and river discharge in the northeast of Iran in recent decades. Theor. Appl. Climatol. 2018, 131, 1–13. [Google Scholar] [CrossRef]
- Mao, W.Y.; Sun, B.G.; Wang, T. Change Trends of Temperature, Precipitation and Runoff Volume in the Kaxgar River Basin since Recent 50 years. Arid Zone Res. 2006, 23, 531–538. [Google Scholar]
- Karl, T.R.; Riebsame, W.E. The impact of decadal fluctuations in mean precipitation and temperature on runoff: A sensitivity study over the United States. Clim. Chang. 1989, 15, 423–447. [Google Scholar] [CrossRef]
- Wang, X.X.; Li, F.L.; Gao, R.Z. Predicted NPP spatiotemporal variations in a semiarid steppe watershed for historical and trending climates. J. Arid Environ. 2014, 104, 67–79. [Google Scholar] [CrossRef]
- Gao, R.Z.; Bai, Y.; Liu, T.X. Evolution characteristics of runoff in the typical grassland inland river basin of Inner Mongolia Plateau. South-to-North Water Transf. Water Sci. Technol. 2018, 16, 10–17. [Google Scholar]
- Wang, S.J.; Yan, Y.X.; Yan, M.; Zhao, X.K. Contributions of Precipitation and Human Activities to the Runoff Change of the Huangfuchuan Drainage Basin: Application of Comparative Method of the Slope Changing Ratio of Cumulative Quantity. Acta Geogr. Sin. 2012, 67, 388–397. [Google Scholar]
- Xu, J.X. Variation in annual runoff of the Wudinghe River as influenced by climate change and human activity. Quat. Int. 2011, 244, 230–237. [Google Scholar] [CrossRef]
- Wang, J.R.; Ma, L.; Liu, T.X. Variation of temperature and precipitation in Horqin Sandy Land from 1951 to 2012. Arid Zone Res. 2016, 33, 49–58. [Google Scholar]
- Liang, L.T.; Ma, L.; Liu, T.X. Spatiotemporal variation of the temperature mutation and warming hiatus over northern China during 1951–2014. China Environ. Sci. 2018, 38, 1601–1615. [Google Scholar]
- Wang, X.X.; Yang, X.X. Trend and extreme occurrence of precipitation in a midlatitude Eurasian steppe watershed at various time scales. Hydrol. Process. 2015, 28, 5547–5560. [Google Scholar] [CrossRef]
- Zhang, A.L.; Gao, R.Z.; Liu, T.X. Study on precipitation and runoff at different time scales in semi-arid grassland basin over the past 50 years. Res. Soil Water Conserv. 2019, 26, 80–86. [Google Scholar]
- Yu, C.; Wang, W.N.; Gao, R.Z.; Liu, T.X. Variation characteristics of runoff and quantitative analysis of Its affected factors under changing environment in typical steppe basin of semiarid region. J. China Hydrol. 2019, 39, 78–84. [Google Scholar]
- Ren, G.Y. History, current state and uncertainty of studies of climate change attribution. Adv. Earth Sci. 2008, 23, 1084–1091. [Google Scholar]
- Song, B.L.; Ma, L.; Feng, Q. Response of the warming hiatus to changing influences over the Inner Mongolia autonomous region. Resour. Sci. 2019, 39, 2131–2142. [Google Scholar]
- Bai, Y.; Gao, R.Z.; Wang, X.X. Driving Factors Causing the Change of Runoff Volume of the Balager River in Inner Mongolia. Arid Zone Res. 2018, 35, 296–305. [Google Scholar]
- Wang, W.N.; Gao, R.Z.; Wang, X.X. Quantitative Analysis of Runoff Variations as Affected by Climate Variability and Human Activity in the Xilin River Basin. Res. Soil Water Conserv. 2018, 25, 347–353. [Google Scholar]
Time Scale | Average (°C) | Minimum (°C) | Maximum (°C) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Min | Max | Avg. | Std. | Min | Max | Avg. | Std. | Min | Max | Avg. | Std. | |
January | −34.7 | 2.6 | −19.0 | 2.3 | −40.7 | −7 | −24.3 | 2.2 | −29.4 | 5 | −12.9 | 2.7 |
February | −31.1 | 3.8 | −15.5 | 3.1 | −38.6 | −1.4 | −21.6 | 2.9 | −24.5 | 10.7 | −8.4 | 3.4 |
March | −26.7 | 14.1 | −6.8 | 2.6 | −35.5 | 7.6 | −13.2 | 2.7 | −22.1 | 22.2 | 0.3 | 2.8 |
April | −12.9 | 21.4 | 4.0 | 1.9 | −22.1 | 15.6 | −3.1 | 1.7 | −8 | 30.6 | 11.3 | 2.3 |
May | −3.1 | 28.9 | 11.9 | 1.4 | −11.5 | 22.2 | 4.0 | 1.4 | 1.3 | 35.5 | 19.2 | 1.5 |
June | 3.7 | 30.8 | 17.2 | 1.4 | −3.4 | 23.3 | 10.0 | 1.3 | 7.4 | 37.3 | 23.9 | 1.7 |
July | 10.7 | 31.9 | 20.1 | 1.4 | 3.6 | 24.3 | 14.0 | 1.1 | 15.9 | 39.0 | 26.2 | 1.7 |
August | 6.8 | 30.1 | 18.3 | 1.2 | 0.2 | 25.2 | 11.9 | 1.0 | 10.5 | 40.0 | 25.0 | 1.7 |
September | 0.2 | 25.1 | 11.4 | 1.2 | −10.3 | 19.1 | 4.6 | 1.3 | 2.6 | 34.2 | 19.0 | 1.5 |
October | −17.2 | 20.5 | 2.9 | 1.5 | −24.1 | 14 | −3.6 | 1.5 | −13 | 26.4 | 10.5 | 2.0 |
November | −28.2 | 12.8 | −7.9 | 2.3 | −35.6 | 9.8 | −13.5 | 2.3 | −20.3 | 18.4 | −1.4 | 2.7 |
December | −31.1 | 2.6 | −16.0 | 2.1 | −36.7 | −2.1 | −21.1 | 2.1 | −26.8 | 9.4 | −10.2 | 2.5 |
Spring | −26.7 | 28.9 | 3.0 | 1.3 | −35.5 | 22.2 | −4.1 | 1.4 | −22.1 | 35.5 | 10.3 | 1.4 |
Summer | 3.7 | 31.9 | 18.5 | 1.0 | −3.4 | 25.2 | 12.0 | 0.8 | 7.4 | 40.0 | 25.0 | 1.3 |
Fall | −28.2 | 25.1 | 2.1 | 1.2 | −35.6 | 19.1 | −4.2 | 1.2 | −20.3 | 34.2 | 9.4 | 1.4 |
Winter | −34.7 | 3.8 | −16.7 | 2.3 | −40.7 | −1.4 | −22.1 | 2.7 | −29.4 | 10.7 | −10.4 | 2.3 |
Time | Precipitation (mm) | Runoff Depth (mm) | ||||||
---|---|---|---|---|---|---|---|---|
Min | Max | Avg. | Std. | Min | Max | Avg. | Std. | |
January | 0.0 | 12.7 | 2.3 | 2.1 | 0.00 | 0.00 | 0.00 | 0.00 |
February | 0.0 | 10.6 | 2.8 | 2.1 | 0.00 | 0.00 | 0.00 | 0.00 |
March | 0.2 | 17.4 | 5.7 | 4.2 | 0.00 | 2.24 | 0.25 | 0.39 |
April | 0.0 | 48.6 | 10.0 | 8.6 | 0.55 | 9.54 | 2.70 | 1.75 |
May | 3.7 | 109.2 | 30.0 | 20.1 | 0.21 | 4.40 | 1.14 | 0.78 |
June | 6.2 | 160.8 | 58.5 | 35.2 | 0.00 | 4.34 | 1.02 | 0.81 |
July | 12.3 | 284.6 | 95.2 | 54.1 | 0.00 | 10.30 | 1.47 | 1.77 |
August | 4.3 | 170.1 | 68.2 | 37.9 | 0.00 | 13.86 | 1.41 | 2.43 |
September | 3.5 | 80.2 | 32.2 | 20.1 | 0.00 | 8.56 | 0.76 | 1.29 |
October | 0.2 | 57.7 | 15.8 | 14.0 | 0.00 | 3.66 | 0.58 | 0.59 |
November | 0.2 | 31.7 | 6.7 | 6.2 | 0.00 | 0.58 | 0.15 | 0.14 |
December | 0.0 | 10.0 | 3.3 | 2.1 | 0.00 | 0.01 | 0.00 | 0.00 |
Spring | 11.4 | 131.3 | 45.8 | 21.7 | 0.92 | 13.33 | 4.09 | 2.29 |
Summer | 80.2 | 447.5 | 222.0 | 80.6 | 0.04 | 27.32 | 3.90 | 4.34 |
Fall | 17.6 | 116.4 | 54.6 | 24.9 | 0.00 | 12.67 | 1.48 | 1.95 |
Winter | 2.7 | 23.9 | 8.3 | 4.4 | 0.00 | 0.01 | 0.00 | 0.00 |
Water Year | 138.4 | 581.3 | 330.3 | 95.9 | 0.96 | 48.23 | 9.41 | 7.49 |
Wet Season | 95.9 | 469.4 | 254.2 | 86.0 | 0.04 | 35.88 | 4.66 | 5.40 |
Dry Season | 9.8 | 160.3 | 76.1 | 29.8 | 0.10 | 14.37 | 4.75 | 2.82 |
Time | Non-Zero Precipitation Days | Non-Zero Runoff Days | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Min | Max | Avg. | Std. | Occurrence | Min | Max | Avg. | Std. | Occurrence | |
January | 0.0 | 12.0 | 3.9 | 3.6 | 12.6% | 0.0 | 0.0 | 0.0 | 0.0 | 0.0% |
February | 0.0 | 10.0 | 3.7 | 3.5 | 13.3% | 0.0 | 0.0 | 0.0 | 0.0 | 0.0% |
March | 0.0 | 12.0 | 4.2 | 3.9 | 13.5% | 0.0 | 27.0 | 7.5 | 6.0 | 24.1% |
April | 0.0 | 11.0 | 4.2 | 2.9 | 14.0% | 22.0 | 30.0 | 29.5 | 1.6 | 95.3% |
May | 1.0 | 17.0 | 7.3 | 3.5 | 23.6% | 31.0 | 31.0 | 31.0 | 0.0 | 100.0% |
June | 2.0 | 19.0 | 12.6 | 3.6 | 40.5% | 0.0 | 30.0 | 29.1 | 4.4 | 93.9% |
July | 6.0 | 21.0 | 14.1 | 3.4 | 46.9% | 0.0 | 31.0 | 29.1 | 6.8 | 93.9% |
August | 4.0 | 22.0 | 11.7 | 4.1 | 37.8% | 0.0 | 31.0 | 27.4 | 8.6 | 88.5% |
September | 2.0 | 16.0 | 8.3 | 3.0 | 27.7% | 0.0 | 30.0 | 24.7 | 11.1 | 79.5% |
October | 0.0 | 14.0 | 4.5 | 3.0 | 14.6% | 0.0 | 31.0 | 27.5 | 8.9 | 88.7% |
November | 0.0 | 13.0 | 4.2 | 4.0 | 13.8% | 0.0 | 30.0 | 19.0 | 8.9 | 61.2% |
December | 0.0 | 14.0 | 4.9 | 4.3 | 15.9% | 0.0 | 12.0 | 0.6 | 2.1 | 1.8% |
Spring | 1.0 | 37.0 | 15.7 | 7.2 | 17.0% | 53.0 | 88.0 | 68.0 | 6.8 | 73.9% |
Summer | 19.0 | 54.0 | 38.4 | 7.4 | 41.7% | 19.0 | 92.0 | 85.6 | 16.0 | 93.1% |
Fall | 5.0 | 33.0 | 17.0 | 6.9 | 18.7% | 0.0 | 91.0 | 71.1 | 25.9 | 78.2% |
Winter | 0.0 | 29.0 | 12.6 | 10.1 | 14.0% | 0.0 | 12.0 | 0.6 | 2.1 | 0.6% |
Water Year | 44.0 | 127.0 | 83.5 | 22.4 | 22.9% | 86.0 | 266.0 | 224.0 | 44.2 | 61.4% |
Wet Season | 23.0 | 70.0 | 46.7 | 8.7 | 38.3% | 19.0 | 122.0 | 110.3 | 25.3 | 90.4% |
Dry Season | 1.0 | 73.0 | 36.8 | 21.0 | 15.2% | 41.0 | 146.0 | 113.7 | 22.2 | 46.8% |
Variable | Time Scale | Linear Regression | R | °C/10a | Average (°C) | Difference (°C) | |
---|---|---|---|---|---|---|---|
Before the Sudden Change | After the Sudden Change | ||||||
Average Temperature | Spring | y = 0.0371x − 70.713 | 0.48 | 0.371 | 2.51 | 3.93 | 1.41 |
Summer | y = 0.0365x − 54.043 | 0.62 | 0.365 | 17.99 | 19.24 | 1.25 | |
Fall | y = 0.0206x − 36.283 | 0.51 | 0.206 | 1.74 | 2.64 | 0.90 | |
Winter | y = 0.0281x − 72.615 | 0.26 | 0.281 | −17.63 | −16.16 | 1.47 | |
Average | y = 0.0297x − 56.669 | 0.63 | 0.297 | 1.22 | 2.30 | 1.08 | |
Minimum Temperature | Spring | y = 0.0409x − 85.518 | 0.5 | 0.409 | −4.92 | −3.35 | 1.57 |
Summer | y = 0.0283x − 44.333 | 0.62 | 0.283 | 11.34 | 12.30 | 0.97 | |
Fall | y = 0.0265x − 56.795 | 0.37 | 0.265 | −5.30 | −3.92 | 1.38 | |
Winter | y = 0.0312x − 84.276 | 0.28 | 0.312 | −23.01 | −21.81 | 1.20 | |
Average | y = 0.0296x−63.563 | 0.56 | 0.296 | −5.38 | −4.24 | 1.14 | |
Maximum Temperature | Spring | y = 0.0286x − 46.483 | 0.34 | 0.286 | 9.97 | 11.05 | 1.07 |
Summer | y = 0.037x − 48.562 | 0.51 | 0.37 | 24.52 | 26.15 | 1.63 | |
Fall | y = 0.0227x − 35.781 | 0.29 | 0.227 | 9.00 | 9.89 | 0.89 | |
Winter | y = 0.0199x − 50.146 | 0.16 | 0.199 | −11.20 | −9.94 | 1.27 | |
Average | y = 0.0278x − 46.668 | 0.5 | 0.278 | 8.14 | 9.23 | 1.09 |
Item | Water Year | Calendar Season | Hydrological Season | |||
---|---|---|---|---|---|---|
Spring | Summer | Fall | Wet | Dry | ||
Precipitation (mm) | 19,487.4 | 2703.1 | 13,095.9 | 3223.6 | 14,995.5 | 4491.9 |
Percent | 100 | 13.9 | 67.2 | 16.5 | 76.9 | 23.1 |
Runoff (mm) | 555.1 | 241.3 | 230.3 | 87.6 | 275 | 280.1 |
Percent | 100 | 43.50% | 41.5 | 15.8 | 49.5 | 50.5 |
Runoff Coefficient | 0.028 | 0.089 | 0.018 | 0.027 | 0.018 | 0.062 |
Variable Time Scale | Linear Regression | R | mm/10a | Average (mm) | Difference (mm) | ||
---|---|---|---|---|---|---|---|
Before Sudden Change | After Sudden Change | ||||||
Precipitation (mm) | Spring | y = 0.1803x − 312.54 | 0.14 | 1.80 | 44.70 | 47.56 | 2.86 |
Summer | y = −1.269x + 2744.6 | 0.27 | −12.69 | 234.77 | 181.42 | −53.35 | |
Full | y = 0.0316x − 8.1979 | 0.02 | 0.32 | 55.66 | 53.96 | −1.70 | |
Wet Season | y = −1.3625x + 2962.8 | 0.27 | −13.63 | 272.74 | 206.93 | −65.81 | |
Dry Season | y = 0.263x − 446.73 | 0.15 | 2.63 | 75.76 | 78.64 | 2.89 | |
Water Year | y = −1.0995x + 2516 | 0.20 | −10.10 | 348.50 | 285.57 | −62.92 | |
Runoff (mm) | Spring | y = −0.0312x + 66.151 | 0.23 | −0.31 | 4.74 | 3.16 | −1.59 |
Summer | y = −0.0698x + 142.57 | 0.28 | −0.69 | 4.72 | 2.12 | −2.60 | |
Full | y = −0.0469x + 94.687 | 0.41 | −0.47 | 1.96 | 0.40 | −1.56 | |
Wet Season | y = −0.0971x + 197.72 | 0.31 | −0.97 | 5.64 | 2.27 | −3.37 | |
Dry Season | y = −0.0577x + 119.41 | 0.35 | −0.58 | 5.36 | 3.28 | −2.08 | |
Water Year | y = −0.1548x + 317.13 | 0.35 | −1.55 | 10.99 | 6.28 | −4.72 |
Correlation | Average Relative Humidity | Average Air Pressure | Sunshine Duration | Precipitation | Runoff |
---|---|---|---|---|---|
Daily Minimum Temperature | −0.191 ** | −0.625 ** | 0.246 ** | 0.308 ** | 0.643 ** |
Daily Average Temperature | −0.285 ** | −0.617 ** | 0.353 ** | 0.219 ** | 0.636 ** |
Daily Maximum Temperature | −0.334 ** | −0.588 ** | 0.404 ** | 0.169 ** | 0.623 ** |
Average Wind Speed | −0.185 ** | −0.197 ** | −0.125 ** | −0.007 | −0.040 ** |
Average Relative Humidity | 1 | 0.158 ** | −0.487 ** | 0.401 ** | −0.224 ** |
Average Air Pressure | 0.158 ** | 1 | −0.066 ** | −0.272 ** | −0.416 ** |
Sunshine Duration | −0.487 ** | −0.066 ** | 1 | −0.356 ** | 0.259 ** |
Precipitation | 0.401 ** | −0.272 ** | −0.356 ** | 1 | 0.172 ** |
Runoff | −0.224 ** | −0.416 ** | 0.259 ** | 0.172 ** | 1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, A.; Gao, R.; Wang, X.; Liu, T.; Fang, L. Historical Trends in Air Temperature, Precipitation, and Runoff of a Plateau Inland River Watershed in North China. Water 2020, 12, 74. https://doi.org/10.3390/w12010074
Zhang A, Gao R, Wang X, Liu T, Fang L. Historical Trends in Air Temperature, Precipitation, and Runoff of a Plateau Inland River Watershed in North China. Water. 2020; 12(1):74. https://doi.org/10.3390/w12010074
Chicago/Turabian StyleZhang, Along, Ruizhong Gao, Xixi Wang, Tingxi Liu, and Lijing Fang. 2020. "Historical Trends in Air Temperature, Precipitation, and Runoff of a Plateau Inland River Watershed in North China" Water 12, no. 1: 74. https://doi.org/10.3390/w12010074
APA StyleZhang, A., Gao, R., Wang, X., Liu, T., & Fang, L. (2020). Historical Trends in Air Temperature, Precipitation, and Runoff of a Plateau Inland River Watershed in North China. Water, 12(1), 74. https://doi.org/10.3390/w12010074