Hydrodynamic Characterization of Mugla Karst Aquifer Using Correlation and Spectral Analyses on the Rainfall and Springs Water-Level Time Series
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Method
2.3.1. Recession Coefficient
- α: Recession coefficient (1/day, multiplied by 24 for the conversion from hour to day)
- Qt: Flow rate at the time t (Water-level in cm was used.)
- : The last flow rate before the recession (Water-level in cm was used.)
- t: Recession duration (hours)
2.3.2. Simple/Autocorrelation and Simple Spectral Density Function
- rk: Autocorrelation function
- k: Time lag, from 0 to m which is the cutting point
- C: Correlogram
- n: Length of the time series
- i: Time
- x: Parameter, water level
- : Mean value of the time series
- S(f): Spectral density function
- F: is equal to j/2m
- j: is from 1 to m
2.3.3. Cross-Correlation and Cross-Spectral Density Functions
- rx,y(k): Cross-correlation function
- Cx,y(k): Cross-correlogram
- σx: Standard deviation of the x time series
- σy: Standard deviation of the y time series
- : Mean value of the x time series
- : Mean value of the y time series
2.3.4. Karst Aquifer System Classification
3. Results
3.1. Recession Coefficients
3.2. Simple/Autocorrelation
3.3. Simple Spectral Density Function
3.4. Cross-Correlation Function
3.5. Cross-Spectral Density Function
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Box, G.E.; Jenkins, G.M. Time Series Analysis: Forecasting and Control; Holden-Day Inc.: San Francisco, CA, USA, 1970; p. 553. [Google Scholar]
- Mangin, A. Pour une Meilleure Connaissance des Systèmes Hydrologiques à Partir des Analyses Corrélatoire et Spectrale. J. Hydrol. 1984, 67, 25–43. [Google Scholar] [CrossRef]
- Mangin, A. Karst Hydrogeology. In Groundwater Ecology; Gibert, J., Danielopol, D.L., Stanford, J.A., Eds.; Academic Press Limited: London, UK, 1994; pp. 43–67. [Google Scholar]
- Padilla, A.; Pulido-Bosch, A.; Mangin, A. Relative importance of Baseflow and Quickflow from Hydrographs of Karst Spring. Groundwater 1994, 32, 267–277. [Google Scholar] [CrossRef]
- Eisenlohr, L.; Király, L.; Bouzelboudjen, M.; Rossier, Y. Numerical simulation as a tool for checking the interpretation of karst spring hydrographs. J. Hydrol. 1997, 193, 306–315. [Google Scholar] [CrossRef] [Green Version]
- Larocque, M.; Mangin, A.; Razack, M.; Banton, O. Contribution of correlation and spectral analyses to the regional study of a large karst aquifer (Charente, France). J. Hydrol. 1998, 205, 217–231. [Google Scholar] [CrossRef]
- Bakalowicz, M. Karst groundwater: A challenge for new resources. Hydrogeol. J. 2005, 13, 148–160. [Google Scholar] [CrossRef]
- Panagopoulos, G.; Lambrakis, N. The contribution of time series analysis to the study of the hydrodynamic characteristics of the karst systems: Application on two typical karst aquifers of Greece (Trifilia, Almyros Crete). J. Hydrol. 2006, 329, 368–376. [Google Scholar] [CrossRef]
- Bakalowicz, M.; El Hakim, M.; El-Hajj, A. Karst groundwater resources in the countries of eastern Mediterranean: The example of Lebanon. Environ. Geol. 2008, 54, 597–604. [Google Scholar] [CrossRef]
- Moussu, F.; Oudin, L.; Plagnes, V.; Mangin, A.; Bendjoudi, H. A multi-objective calibration framework for rainfall–discharge models applied to karst systems. J. Hydrol. 2011, 400, 364–376. [Google Scholar] [CrossRef]
- Fiorillo, F.; Doglioni, A. The relation between karst spring discharge and rainfall by cross-correlation analysis (Campania, Southern Italy). Hydrogeol. J. 2010, 18, 1881–1895. [Google Scholar] [CrossRef]
- Hartmann, A.; Barberá, J.A.; Lange, J.; Andreo, B.; Weiler, M. Progress in the hydrologic simulation of time variant recharge areas of karst systems–Exemplified at a karst spring in Southern Spain. Adv. Water Resour. 2013, 54, 149–160. [Google Scholar] [CrossRef]
- Kovács, A.; Sauter, M. Modelling karst hydrodynamics. In Methods in Karst Hydrogeology; Goldscheider, N., Drew, D., Eds.; CRC Press: London, UK, 2014; pp. 215–236. [Google Scholar]
- Pulido-Bosch, A.; Padilla, A.; Dimitrov, D.; Machkova, M. The discharge variability of some karst springs in Bulgaria studied by time series analysis. Hydrol. Sci. J. 1995, 40, 517–532. [Google Scholar] [CrossRef]
- Jeannin, P.Y.; Sauter, M. Analysis of karst hydrodynamic behaviour using global approaches: A review. Bull. Hydrogéol 1998, 16, 31–48. [Google Scholar]
- Mathevet, T.; Lepiller, M.; Mangin, A. Application of time-series analyses to the hydrological functioning of an Alpine karstic system: The case of Bange-L’Eau-Morte. Hydrol. Earth Syst. Sci. Discuss. 2004, 8, 1051–1064. [Google Scholar] [CrossRef]
- El Hakim, M. Les Aquifères Karstiques de l’Anti-Liban et du nord de la Plaine de La Bekaa: Caractéristiques, Fonctionnement, Evolution et Modélisation, d’Après l’Exemple du Système Karstique Anjar-Chamsine (Liban). Ph.D. Thesis, University of Montpellier II, University of Saint Joseph, Montpellier, France, Beirut, Lebanon, 2005. [Google Scholar]
- Massei, N.; Dupont, J.P.; Mahler, B.J.; Laignel, B.; Fournier, M.; Valdes, D.; Ogier, S. Investigating transport properties and turbidity dynamics of a karst aquifer using correlation, spectral, and wavelet analyses. J. Hydrol. 2006, 329, 244–257. [Google Scholar] [CrossRef]
- Salerno, F.; Tartari, G. A coupled approach of surface hydrological modelling and Wavelet Analysis for understanding the baseflow components of river discharge in karst environments. J. Hydrol. 2009, 376, 295–306. [Google Scholar] [CrossRef]
- Bailly-Comte, V.; Martin, J.B.; Screaton, E.J. Time variant cross correlation to assess residence time of water and implication for hydraulics of a sink-rise karst system. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef] [Green Version]
- Hemila, M.L.; Guefaifia, O.; Gouaidia, L.; Djoulah, B. Characterizing Functioning of the Dyr Karst (Tebessa, Algeria) by Correlative and Spectral Analysis of Hydro-Pluviometric Chronicles. In Proceedings of the EuroKarst 2016, Neuchatel, Switzerland, 5–7 September 2017; pp. 193–202. [Google Scholar]
- Pavlić, K.; Parlov, J. Cross-Correlation and Cross-Spectral Analysis of the Hydrographs in the Northern Part of the Dinaric Karst of Croatia. Geosciences 2019, 9, 86. [Google Scholar] [CrossRef] [Green Version]
- Atalay, İ. Potential and problems of karstic fields. In Proceedings of the 15th Scientific and Technical General Assembly of Geomorphology of Turkey, Ankara, Turkey, 20–24 April 1998; pp. 3–4. [Google Scholar]
- Ekmekci, M. Review of Turkish karst with emphasis on tectonic and paleogeographic controls. Acta Carsol. 2003, 32, 205–218. [Google Scholar]
- Bayari, C.S.; Ozyurt, N.N.; Oztan, M.; Bastanlar, Y.; Varinlioglu, G.; Koyuncu, H.; Ulkenli, H.; Hamarat, S. Submarine and coastal karstic groundwater discharges along the southwestern Mediterranean coast of Turkey. Hydrogeol. J. 2011, 19, 399–414. [Google Scholar] [CrossRef] [Green Version]
- Dogdu, M.S.; Sagnak, C. Climate change, drought and over pumping impacts on groundwaters: Two examples from Turkey. In Proceedings of the Third International BALWOIS Conference on the Balkan Water Observation and Information System, Ohrid, North Macedoina, 27–31 May 2008. [Google Scholar]
- Horoi, V. L’influence de la Géologie sur la Karstification. Ph.D. Thesis, University of Toulouse III, Toulouse, France, 2001. [Google Scholar]
- Görür, N.; Sengör, A.M.C.; Sakinü, M.; Akkök, R.; Yiğitbaş, E.; Oktay, F.Y.; Barka, A.; Sarica, N.; Ecevitoğlu, B.; Demirbağ, E.; et al. Rift formation in the Gökova region, southwest Anatolia: Implications for the opening of the Aegean Sea. Geol. Mag. 1995, 132, 637–650. [Google Scholar] [CrossRef]
- Kurt, H.; Demirbağ, E.; Kuşçu, İ. Investigation of the submarine active tectonism in the Gulf of Gökova, southwest Anatolia–southeast Aegean Sea, by multi-channel seismic reflection data. Tectonophys 1999, 305, 477–496. [Google Scholar] [CrossRef]
- Gürer, Ö.F.; Yilmaz, Y. Geology of the Ören and surrounding areas, SW Anatolia. Turk. J. Earth Sci. 2002, 11, 1–13. [Google Scholar]
- Gürer, Ö.F.; Sanğu, E.; Özburan, M.; Gürbüz, A.; Sarica-Filoreau, N. Complex basin evolution in the Gökova Gulf region: Implications on the Late Cenozoic tectonics of southwest Turkey. Int. J. Earth Sci. 2013, 102, 2199–2221. [Google Scholar] [CrossRef]
- Uluğ, A.; Duman, M.; Ersoy, Ş.; Özel, E.; Avcı, M. Late Quaternary sea-level change, sedimentation and neotectonics of the Gulf of Gökova: Southeastern Aegean Sea. Mar. Geol. 2005, 221, 381–395. [Google Scholar] [CrossRef]
- Kurttaş, T. Environmental Isotope Analysis of Gökova (Muğla) Karst Springs. Ph.D. Thesis, Hacettepe University, Ankara, Turkey, 1997. [Google Scholar]
- Kurttaş, T.; Bayarı, C.S.; Tezcan, L. Discharge to Sea in Gökova Karstic Springs: Hydrological Budget, Remote Sensing and Mixing Cell Model. In Proceedings of the Congress of Earth Sciences and Mining 75th Anniversary of the Republic, Ankara, Turkey, 2–6 November 1998; Volume 2, pp. 531–556. [Google Scholar]
- Bayarı, S.; Kurttaş, T. Coastal and submarine karstic discharges in the Gokova Bay, SW Turkey. Q. J. Eng. Geol. Hydrogeol. 2002, 35, 381–390. [Google Scholar] [CrossRef]
- Bayarı, S.; Özyurt, N.; Hamarat, S.; Baştanlar, Y.; Varinlioğlu, G. The Recovery of Coastal Freshwater Discharges of Turkey: Patara-Tekirova Pilot Project; No. ÇAYDAG-103Y025; TUBITAK Project: Ankara, Turkey, 2006. [Google Scholar]
- Ekmekçi, M.; Tezcan, L.; Kurttaş, T.; Yüzereroğlu, S.; Açıkel, Ş. Investigation of seawater mixture from Gökova (Muğla) coastal karst springs by hydrochemical and stable environmental isotope methods. In Proceedings of the III. Isotope Techniques in Hydrology Symposium, İstanbul, Turkey, 13–17 October 2008; p. 295. [Google Scholar]
- Acikel, S.; Ekmekci, M.; Tezcan, L.; Kurttas, T.; Ozbek, D. Conceptualization of a Brackish Coastal Karst System: Implications for Resilience of a Groundwater Dependent Wetland. In Proceedings of the European Geosciences Union General Assembly, Vienna, Austria, 3–8 April 2011. [Google Scholar]
- Açıkel, S. Conceptual Modeling of Flow and Salt Water Mixture Dynamics in Karst Springs of Gökova-Azmak (Muğla). Ph.D. Thesis, Hacettepe University, Ankara, Turkey, 2012. [Google Scholar]
- Acikel, S.; Ekmekci, M. Assessment of groundwater quality using multivariate statistical techniques in the Azmak Spring Zone, Mugla, Turkey. Environ. Earth Sci. 2018, 77, 753. [Google Scholar] [CrossRef]
- Yıldıztekin, M.; Tuna, A.L. Investigation of irrigation water quality of Muğla Karabağlar region well water. Ege Üniv. Ziraat Fak. Derg. 2011, 48, 1–10. [Google Scholar]
- Sağir, Ç.; Kurtuluş, B. Hydraulic head and groundwater 111 Cd content interpolations using empirical Bayesian kriging (EBK) and geo-adaptive neuro-fuzzy inference system (geo-ANFIS). Water SA 2017, 43, 509–519. [Google Scholar] [CrossRef] [Green Version]
- Kurtuluş, B.; Sağır, Ç.; Avşar, Ö. Assessment of Groundwater Metal-Metalloid Content Using Geostatistical Methods in Karabağlar Polje (Muğla, Turkey). Bull. Min. Res. Explor. 2017, 154, 193–206. [Google Scholar] [CrossRef]
- GeoScience MapViewer and Drawing Editor. Available online: http://yerbilimleri.mta.gov.tr/ (accessed on 4 June 2019).
- Ulker, M.; Sevincer, B. Structural Characteristics and Geomorphic Processes Controlling the Hydrology at Akyaka Area (Muğla). Bachelor’s Thesis, Mugla Sitki Kocman University, Mugla, Turkey, 2018. [Google Scholar]
- Maillet, E. Essais d’Hydraulique Souterraine et Fluviale; Hermann: Paris, France, 1905; p. 218. [Google Scholar]
- Box, G.E.; Jenkins, G.M.; Reinsel, G.C.; Ljung, G.M. Time Series Analysis: Forecasting and Control; John Wiley & Sons: Hoboken, NJ, USA, 2015; p. 712. [Google Scholar]
- Moussu, F. Prise en Compte du Fonctionnement Hydrodynamique Dans la Modélisation Pluie-Débit des Systèmes Karstique. Ph.D. Thesis, Pierre and Marie Curie University, Paris, France, 2011. [Google Scholar]
- Lorette, G.; Lastennet, R.; Peyraube, N.; Denis, A. Groundwater-flow characterization in a multilayered karst aquifer on the edge of a sedimentary basin in western France. J. Hydrol. 2018, 566, 137–149. [Google Scholar] [CrossRef]
- Russo, S.L.; Amanzio, G.; Ghione, R.; De Maio, M. Recession hydrographs and time series analysis of springs monitoring data: Application on porous and shallow aquifers in mountain areas (Aosta Valley). Environ. Earth Sci. 2015, 73, 7415–7434. [Google Scholar] [CrossRef]
- Fu, T.; Chen, H.; Wang, K. Structure and water storage capacity of a small karst aquifer based on stream discharge in southwest China. J. Hydrol. 2016, 534, 50–62. [Google Scholar] [CrossRef]
- Mangin, A. Contribution à l’étude Hydrodynamique des Aquifères Karstiques. Ph.D. Thesis, University of Dijon, Dijon, France, 1975. [Google Scholar]
(cm) | L2_WL | L8_WL | (cm) | L2_WL | L8_WL |
---|---|---|---|---|---|
Mean | 26.91 | 24.86 | Kurtosis | 0.13 | −0.26 |
Standard Error | 0.05 | 0.08 | Skewness | 0.08 | 0.20 |
Median | 26.55 | 24.76 | Range | 28.87 | 28.28 |
Mode | 26.40 | 22.97 | Minimum | 11.11 | 11.67 |
Standard Deviation | 4.71 | 5.81 | Maximum | 39.98 | 39.95 |
Sample Variance | 22.18 | 33.75 | Count | 10110 | 5509 |
Karst Types | Memory Effect (r = 0.1–0.2) | Spectral Range (Truncation Frequency) | Regulation Time | Shape of Unit Hydrograph |
---|---|---|---|---|
Aliou (Well Drained) | Poor (5 d) | Very Wide (0.30) | 10–15 d | |
Baget | Small (10–15 d) | Wide (0.20) | 20–30 d | |
Fontestorbes | Large (50–60 d) | Narrow (0.10) | 50 d | |
Torcal (Poorly Drained) | Extensive (70 d) | Very Narrow (0.05) | 70 d |
Hydrograph Analysis | Autocorrelation | Cross-Correlation | Simple Spectral | Cross-Spectral | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
WL 1 | P 2 | WL | WL-WL | P-WL | WL | P-WL | |||||||
Method | Output | Method | Output | Method | Output | Method | Output | Method | Output | Method | Output | Method | Output |
Recession Coeff. | Differentiate karst zones, KL 3 | Memory Effect | Dependence of data | Memory effect | KL | Symmetry check | Common input | Symmetry check | Detection of input-output relation | Spectral range | KL | Amplitude function, Cut-off frequency | KL |
Degree of the correlation | KL | Regulation Time | KL | Coherence function | Linearity of the system, KL | ||||||||
Delay | KL | Cut-off frequency | KL | Gain function | Storage capacity, Late infiltration |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sağır, Ç.; Kurtuluş, B.; Razack, M. Hydrodynamic Characterization of Mugla Karst Aquifer Using Correlation and Spectral Analyses on the Rainfall and Springs Water-Level Time Series. Water 2020, 12, 85. https://doi.org/10.3390/w12010085
Sağır Ç, Kurtuluş B, Razack M. Hydrodynamic Characterization of Mugla Karst Aquifer Using Correlation and Spectral Analyses on the Rainfall and Springs Water-Level Time Series. Water. 2020; 12(1):85. https://doi.org/10.3390/w12010085
Chicago/Turabian StyleSağır, Çağdaş, Bedri Kurtuluş, and Moumtaz Razack. 2020. "Hydrodynamic Characterization of Mugla Karst Aquifer Using Correlation and Spectral Analyses on the Rainfall and Springs Water-Level Time Series" Water 12, no. 1: 85. https://doi.org/10.3390/w12010085
APA StyleSağır, Ç., Kurtuluş, B., & Razack, M. (2020). Hydrodynamic Characterization of Mugla Karst Aquifer Using Correlation and Spectral Analyses on the Rainfall and Springs Water-Level Time Series. Water, 12(1), 85. https://doi.org/10.3390/w12010085