Assessing the Retention Capacity of an Experimental Green Roof Prototype
Abstract
:1. Introduction
2. Green Roof
2.1. Green Roof Composition and Classification
2.2. Green Roof Efficiency—Expected Retention
3. Experimental Prototype Construction
3.1. Construction of the Experimental Green Roof Prototype
3.2. Description of the Rain Box
- is the volume that flows into the rain gauge during the time interval between the time (t) and
- are the areas of the largest and smallest reservoirs, respectively.
- , are the areas of piezometric tubes two and three, respectively.
- are the dimensions on piezometric tubes two and three, at the moment ,
- , are the water level dimension in piezometric tubes two and three at the time (t).
3.3. Description of InfiAsper Double Rain Simulator
3.4. Description of Materials Used in the Construction of the Green Roof Module
4. Experimental Testing Method on Green Roof Prototype
4.1. Weather Data during the Collection Period
4.2. Determination of Rainfall Duration Intensities and Rainfall Simulator Calibration
- Ip—Precipitation intensity produced by the simulator (mm/h);
- V—Volume of total water collected (L);
- A—Total collection area (m2);
- t—Rain duration time (h).
Description of the Test Procedure
4.3. Runoff Coefficient Calculation
- —The volume of water that passes through the green roof layers and is directed to the CP (in m3);
- —The instant the rain starts on the module (in seconds);
- —The moment when volume changes in PC become imperceptible (in seconds);
- Q(t)—The function that represents the hydrogram
- —Means that the integral is in relation to the time variable.
- —The flow that flows to the CP at time ;
- —The flow that flows to the CP at the moment .
- —The total volume of the water precipitated during the test (in m3);
- A—The green roof area (in m2);
- —The average rainfall intensity produced by the simulator (in mm/h) considered in a test;
- d—The duration of the rain (in hours).
- —Maximum prototype output flow observed and measured from the output hydrograph analysis ;
- —The maximum flow to the system through the simulator ;
- —Precipitation intensity ;
- —Area ;
- —Duration .
5. Experimental Results and Discussions
- Direct measurements: rain intensity, number of days without rain, accumulated precipitation in 24 h (mm) and in 96 h (mm), and runoff time;
- The hydrograph response to each rain event from the experimental measurements;
- Simulated runoff coefficient according to Equations (4) and (8).
5.1. Direct Measurements
5.2. Hydrograms from Experimental Data and Estimated Hydrogram
5.3. Actual Runoff Coefficient (Measured)
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Miguez, M.G.; Verol, A.P.; Rezende, O.M. Drenagem Urbana: Do Projeto Tradicional à Sustentabilidade, 1st ed.; Elsevier: Rio de Janeiro, Brasil, 2015; ISBN 978-85-352-7746-3. [Google Scholar]
- United Nations, Department of Economic and Social Affairs. Population Division World Urbanization Prospects: The 2014 Revision, (ST/ESA/SER.A/366). 2015. Available online: http://esa.un.org/unpd/wup/Publications/Files/WUP2014-Report.pdf (accessed on 15 December 2017).
- Gwenzi, W.; Nyamadzawo, G. Hydrological Impacts of Urbanization and Urban Roof Water Harvesting in Water-limited Catchments: A Review. Environ. Process. 2014, 1, 573–593. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Zhang, G. Water infiltration in urban soils and its effects on the quantity and quality of runoff. J. Soils Sediments 2011, 11, 751–761. [Google Scholar] [CrossRef]
- Sörensen, J.; Persson, A.; Sternudd, C.; Aspegren, H.; Nilsson, J.; Nordström, J.; Jönsson, K.; Mottaghi, M.; Becker, P.; Pilesjö, P.; et al. Re-Thinking Urban Flood Management—Time for a Regime Shift. Water 2016, 8, 332–347. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Q. A Review of Sustainable Urban Drainage Systems Considering the Climate Change and Urbanization Impacts. Water 2015, 6, 976–992. [Google Scholar] [CrossRef]
- Burszta-Adamiak, E.; Stańczyk, J.; Łomotowski, J. Hydrological performance of green roofs in the context of the meteorological factors during the 5-year monitoring period. Water Environ. J. 2019, 33, 144–154. [Google Scholar] [CrossRef] [Green Version]
- Quinn, R.; Dussaillant, A. Predicting infiltration pollutant retention in bioretention sustainable drainage systems: Model development and validation. Hydrol. Res. 2014, 45, 855–867. [Google Scholar] [CrossRef] [Green Version]
- Young, R.; Zanders, J.; Lieberknecht, K.; Fassman-Beck, E. A comprehensive typology for mainstreaming urban green infrastructure. J. Hydrol. 2014, 519, 2571–2583. [Google Scholar] [CrossRef]
- Liu, L.; Jensen, M.B. Green infrastructure for sustainable urban water management: Practices of five forerunner cities. Cities 2018, 74, 126–133. [Google Scholar] [CrossRef]
- Ahiablame, L.M.; Engel, B.A.; Chaubey, I. Effectiveness of Low Impact Development Practices: Literature Review and Suggestions for Future Research. Water 2012, 42, 53–73. [Google Scholar] [CrossRef]
- Graceson, A.; Hare, M.; Monaghan, J.; Hal, N. The water retention capabilities of growing media for green roofs. Ecol. Eng. 2013, 761 Pt A, 328–334. [Google Scholar] [CrossRef]
- Versini, P.A.; Ramier, D.; Berthier, E.; De Gouvello, B. Assessment of the hydrological impacts of green roof: From building scale to basin scale. J. Hydrol. 2015, 524, 562–575. [Google Scholar] [CrossRef] [Green Version]
- Lundholm, J.; Williams, N. Effects of Vegetation on Green Roof Ecosystem Services. In Green Roof Ecosystems; Sutton, R., Ed.; Ecological Studies (Analysis and Synthesis); Springer: Berlin, Germany, 2015; Volume 223. [Google Scholar] [CrossRef]
- Schroll, E.; Lambrinos, J.; Righetti, T.; Sandrock, D. The role of vegetation in regulating stormwater runoff from green roofs in a winter rainfall climate. Ecol. Eng. 2011, 37, 595–600. [Google Scholar] [CrossRef]
- Sutton, R. (Ed.) Introduction to Green Roof Ecosystems. In Green Roof Ecosystems; Ecological Studies (Analysis and Synthesis); Springer: Cham, Switzerland, 2015; Volume 223, pp. 1–25. [Google Scholar] [CrossRef]
- Kok, K.H.; Sidek, L.M.; Zainalabidin, M.R. Evaluation of Green Roof as Green Technology for Urban Stormwater Quantity and Quality Controls. In Proceedings of the 13th International Congress on Urban Drainage, Kuching, Malaysian, 7–12 September 2014. [Google Scholar]
- Longobardi, A.; D’Ambrosio, R.; Mobilia, M. Predicting Stormwater Retention Capacity of Green Roofs: An Experimental Study of the Roles of Climate, Substrate Soil Moisture, and Drainage Layer Properties. Sustainability 2019, 11, 6956. [Google Scholar] [CrossRef] [Green Version]
- Rosseti, K.A.; Durante, L.C.; Callejas, I.J.; Nogueira, M.; Nogueira, J.S. Abordagens sistêmicas dos efeitos da implantação de telhados vegetados. Braz. Geoghaphical J. Geosci. Humanit. Res. Medium 2013, 4, 55–77. [Google Scholar]
- Gerardi, U.; Ghaffarianhoseini, A.; Ghaffarianhoseini, A. State-of-Art analysis of the environmental benefits of Green roofs. Appl. Energy 2014, 115, 411–428. [Google Scholar] [CrossRef]
- Metselaar, K. Water retention and evapotranspiration of green roofs and possible natural vegetation types. Resour. Conserv. Recycl. 2012, 64, 49–55. [Google Scholar] [CrossRef]
- Wong, G.K.L.; Jim, C.Y. Quantitative hydrologic performance of extensive green roof under humid-tropical rainfall regime. Ecol. Eng. 2014, 70, 366–378. [Google Scholar] [CrossRef]
- Stovin, V. The potential of Green roofs to manage Urban Stormwater. Water Environ. J. 2010, 24, 192–199. [Google Scholar] [CrossRef]
- Stovin, V.; Poe, S.; Berreta, C. A modeling study of long term green roof retention performance. J. Environ. Manag. 2013, 131, 206–215. [Google Scholar] [CrossRef] [Green Version]
- Ohnuma, A.A., Jr.; Alemida Neto, P.; Mediondo, E.M. Análise da retenção hídrica em telhados verdes a partir da eficiência do Coeficiente de Escoamento. Rev. Bras. Recur. Hídricos 2014, 19, 41–52. [Google Scholar]
- Lee, J.Y.; Lee, M.J.; Han, M. A pilot study to evaluate runoff quantify from green roofs. J. Environ. Manag. 2015, 152, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Carson, T.B.; Marasco, D.E.; Culligan, P.J.; McGills, W.R. Hydrologycal performance of extensive green roofs in New York City: Observations and multi-year modeling of three full-scale systems. Environ. Res. Lett. 2013, 8, 1–13. [Google Scholar] [CrossRef]
- Palla, A.; Gnecco, I.; Lanza, L.G. Hydrologic Restoration in the Urban Environment Using Green Roofs. Genova, Italia. Water J. 2010, 2, 140–154. [Google Scholar] [CrossRef]
- Palla, A.; Lanza, L.G.; La Barbera, P. A green roof experimental site in the Mediterranean climate. In Proceedings of the 11th International Conference on Urban Drainage, Edinburgh, UK, 31 August–5 September 2008. [Google Scholar]
- Oberndorfer, E.; Lundholm, J.; Bass, B.; Coffman, R.R.; Doshi, H.; Stuart, G.; Kohler, M.; Liu, K.; Rowe, B. Green Roof as Urban Ecosystems: Ecological Structures, Functions and Services. BioScience 2007, 57, 823–833. [Google Scholar] [CrossRef]
- Rowe, D.B. Green roofs as means of pollution abatement. Environ. Pollut. 2011, 159, 2100–2110. [Google Scholar] [CrossRef] [Green Version]
- Gregoire, B.; Clausen, J.C. Effect of a modular extensive green roof on stormwater runoff and water quality. Ecol. Eng. 2011, 37, 963–969. [Google Scholar] [CrossRef]
- Mentens, J.; Raes, D.; Hermy, M. Green roofs as a tool for solving the rainwater runoof problem in the urbanized 21st century? Landsc. Urban Plan. 2006, 77, 217–226. [Google Scholar] [CrossRef]
- Hathaway, A.M.; Hunt, W.F.; Jennings, G.W. A Field Study of Green Roof Hydrologic and Water Quality Performance. Trans. ASABE 2008, 51, 37–44. [Google Scholar] [CrossRef]
- Galarza-Molina, S.; Torres, A.; Rengifo, P.; Puentes, A.; Cárcamo-Hernánfez, E. The Hydrological Behaviour of an Eco-Productive Green Roof in Bogota, Colombia. In Proceedings of the 13th International Congress on Urban Drainage, Kuching, Malaysian, 7–12 September 2014. [Google Scholar]
- Kasmin, H.; Stovin, V.; De-Ville, M.R. Evaluation of Green roof hydrological Performance in a Malaysian Context. In Proceedings of the 13th International Congress on Urban Drainage, Kuching, Malaysian, 7–12 September 2014. [Google Scholar]
- Poe, S.; Stovin, V.; Dunziger, Z. The Impact of Green Roof Configuration on Hydrological Performance. In Proceedings of the 12th International Congress on Urban Drainage, Porto Alegre, Brasil, 11–16 September 2011. [Google Scholar]
- Whittinghill, L.J.; Rowe, D.B.; Andresen, J.A.; Cregg, B.M. Comparison of stormwater runoff from sedum, native prairie, and vegetable producing green roofs. Urban Ecosyst. 2015, 18, 13–29. [Google Scholar] [CrossRef]
- Nascimento, C.M.N. Avaliação das Relações Chuva-Vazão em Telhados Verdes Modulares Sob Chuva Simulada Induzida, Dissertação de Mestrado, Programa de Pós-Graduação em Engenharia Ambiental; UERJ: Rio de Janeiro, Brasil, 2015. [Google Scholar]
- Nagase, A.; Dunnett, N. Amount of water runoff from different vegetation types on extensive green roofs: Effects of plants species, diversity and plants structure. Landsc. Urban Plan. 2012, 104, 356–363. [Google Scholar] [CrossRef]
- Collischonn, W.; Dornelles, F. Hidrologia Para Engenheiros e Ciências Ambientais, 1st ed.; Coleção ABRH: Porto Alegre, Brasil, 2013; ISBN 978-85-8868-634-2. [Google Scholar]
- Cogliatti-Carvalho, L.; Pessôa, T.C.R.; Freitas, A.F.N.; Rocha, C.F.D. Water volume stored in bromeliad tanks in Brazilian restinga habitats. Acta Bot. Bras. 2010, 24, 84–95. [Google Scholar] [CrossRef]
- Kohler, M.; Schmidt, M.; Grimme, W. Urban Water Retention by Greened Roofs in Temperate and Tropical Climate. In Proceedings of the 38th Internacional Federation of Landscape Architects (IFLA) World Congress, Singapore, 26–29 June 2001. [Google Scholar]
- Kohler, M.; Schmidt, M.; Grimme, F.W.; Laar, M.; Assunção Paiva, V.L.; Tavares, S. Green roofs in temperate climates and in the hot-umid tropics-far beyond the aesthetics. Environ. Manag. Health 2002, 13, 382–391. [Google Scholar] [CrossRef]
- Kohler, M.; Poli, P.H. Long-term performance of selected old Berlim green roofs in comparison to younger extensive green roofs in Berlim. Ecol. Eng. 2010, 36, 722–729. [Google Scholar] [CrossRef]
- Loiola, C.; Mary, W.; da Silva, L.P. Hydrological performance of modulartray green roof systems for increasing the resilience of mega-cities to climate change. J. Hydrol. 2019, 573, 1057–1066. [Google Scholar] [CrossRef]
- Lee, J.Y.; Moon, H.J.; Kim, T.I.; Kim, H.W.; Han, M.Y. Quantitative analysis on the urban flood mitigation effect by the extensive green roof system. Environ. Pollut. 2013, 181, 257–261. [Google Scholar] [CrossRef] [PubMed]
- Berndtsson, J.C. Green roof performance towards management of runoff water quantity and quality: A review. Ecol. Eng. 2010, 36, 351–360. [Google Scholar] [CrossRef]
- Chenot, J.; Gaget, E.; Moinardeau, C.; Jaunatre, R.; Buisson, E.; Dutoit, T. Substrate Composition and Depth Affect Soil Moisture Behaviour and Plant-Soil Relationship on Mediterranean Extensive Green Roofs. Water 2017, 9, 817. [Google Scholar] [CrossRef] [Green Version]
- Ferrans, P.; Rey, C.V.; Pérez, G.; Rodriguez, J.P.; Diaz-Granados, M. Effect of Green Roof Configuration and Hydrological Variables on Runoff Water Quantity and Quality. Water 2018, 10, 960. [Google Scholar] [CrossRef] [Green Version]
- Baryla, A.; Karczmarczyk, A.; Bus, A. Role of Substrates Used for Green Roofs in Limiting Rainwater Runoff. J. Ecol. Eng. 2018, 19, 86–92. [Google Scholar] [CrossRef]
- Carter, T.L.; Rasmussen, T.C. Use of Green Roofs for Ultra-Urban Stream Restoration in the Georgia Piedmont (USA). In Proceedings of the 2005 Georgia Water Resources Conference, Athens, GA, USA, 25–27 April 2005. [Google Scholar]
- Gwendolyn, K.L.W.; Jim, C.Y. Identifying keystone meteorological factors of green-roof stormwater retention to inform design and planning. Landsc. Urban Plan. 2015, 143, 173–182. [Google Scholar]
- Cascone, S.; Coma, J.; Gagliano, A.; Pérez, G. The evapotranspiration process in green roofs: A review. Build. Environ. 2019, 147, 337–355. [Google Scholar] [CrossRef]
- Simmons, M.T.; Gardiner, B.; Windhager, S.; Tinsley, J. Green roofs are not created equal: The hydrologic and thermal performance of six different extensive green roofs and reflective and non-reflective roofs in a sub-tropical climate. Urban Ecosyst. 2008, 11, 339–348. [Google Scholar] [CrossRef]
- Wang, X.; Tian, Y.; Zhao, X.; Peng, C. Hydrological performance of dual-substrate-layer green roofs using porous inert substrates with high sorption capacities. Water Sci. Technol. 2017, 75, 2829–2840. [Google Scholar] [CrossRef] [PubMed]
- Akter, M.; He, J.; Chu, A.; Huang, J.; van Duin, B. A Review of Green Roof Applications for Managing Urban Stormwater in Different Climatic Zones. Sustainability 2018, 10, 2864. [Google Scholar] [CrossRef] [Green Version]
- Schultz, I.; Sailor, D.; Starry, O. Effects of substrate depth and precipitation characteristics on stormwater retention by two green roofs in Portland OR. J. Hydrol. 2018, 18, 110–118. [Google Scholar] [CrossRef]
- Ouldboukhitine, S.; Jaffal, I.; Trabelsi, A. Assessment of green roof thermal behavior: A coupled heat and mass transfer model. Build. Environ. J. 2011, 46, 24–31. [Google Scholar] [CrossRef]
- IGRA. New Online Database for Green Roof Policies. 2015. Available online: http://www.igra-world.com/index.php (accessed on 12 November 2015).
- Getter, L.K.; Rowe, D.B.; Andressen, J.A. Quantifying the effect of slope on extensive green roof stormwater retention. Ecol. Eng. 2007, 31, 225–231. [Google Scholar] [CrossRef]
- Azhar, S.; Carlton, W.A.; Olsen, D.; Ahmad, I. Building information modeling for sustainable design and LEED rating analysis. Autom. Constr. 2011, 20, 217–224. [Google Scholar] [CrossRef]
- Ibiapina, M.B.; Gomes, V.; Silva, D.A.; Sangoi, M.I. Pesquisa experimental para avaliar a qualidade da água e a capacidade de retenção de água pluvial em coberturas verdes em Campinas—Brasil. PARC Pesquisa Arquitetura Construção 2011, 6, 18–34. [Google Scholar] [CrossRef]
- Yio, M.H.; Stovin, V.; Werdin, J.; Vesuviano, G. Experimental analysis of green roof substrate detention characteristics. Water Sci. Technol. 2013, 68, 1477–1486. [Google Scholar] [CrossRef]
- Sadat, S.; Hashemi, G.; Bin, H.; Aqeel, M. Performance of green roofs with respect to water quality and reduction of energy consumption in tropics: A review. Renew. Sustain. Energy Rev. 2015, 52, 669–679. [Google Scholar]
- Daraia, P.S.; Reda, A.L. Telhados verdes: Estudo quantitativo de eficácia técnica e econômica. In XVII Safety; Health and Environment World Congress: Vila Real, Portugal, 2017; pp. 35–39. [Google Scholar]
- Garrido Neto, P.S. Telhados Verdes Como Técnica Compensatória Em Drenagem Urbana Na Cidade do Rio de Janeiro: Estudo Experimental e Avaliação de sua adoção na Bacia do Rio Joana a Partir do uso de Modelagem Matemática. Master’s Thesis, COPPE/UFRJ, Rio de Janeiro, Brasil, 2016. [Google Scholar]
- Liberato, D.B. Avaliação da Caixa Pluviômetra: Um novo Equipamento Desenvolvido Para Medir a Precipitação, Infiltração de Chuva, Escoamento Superficial e Índice de Erosão em Terrenos com Diversos Tipos de Cobertura. Master’s Thesis, COPPE/UFRJ, Rio de Janeiro, Brasil, 2015. [Google Scholar]
- Aoyama, E.M.; Gontijo, A.B.P.L.; Faria, D.V. Propagação em Bromeliaceae: Germinação de sementes e cultivo in vitro. Enciclopédia Biosfera Centro Científico Conhecer 2012, 8, 1452–1471. [Google Scholar]
- Fontoura, T.; Santos, F.A.M. Geographic distribution of epiphytic bromeliads of the Una region, Northeastern Brazil. Biota Neotrop. 2010, 10, 127–131. [Google Scholar] [CrossRef] [Green Version]
- Leme, E.M.C. Two new species of Orthophytum (Bromeliaceae: Bromelioideae) from Minas Gerais, Brazil. Phytotaxa 2015, 205, 8–10. [Google Scholar] [CrossRef]
- Peter, A.Y.A.; John, J.S.; Raul, I.C.; Derald, A.H.; Fouad, H.J. Green Roof Growing Substrates: Types, Ingredients, Composition and Properties. J. Environ. Hortic. 2010, 28, 244–252. [Google Scholar]
- Kelly, M.; Hardin, M.; Wanielista, M. A Stormwater Management Evaluation of the 2007 New American Home Stormwater Treatment System and the Stormwater Academy Green Roof; University of Central Florida: Orlando, FL, USA, 2007. [Google Scholar]
- Sistema Alerta Rio da Prefeitura do Rio de Janeiro. Informações sobre o Sistema de Alerta de Chuvas da Prefeitura do Rio de Janeiro. Available online: http://alertario.rio.rj.gov.br/institucional/quem-somos/ (accessed on 1 September 2019).
- Razzaghmanesh, M.; Beecham, S. The hydrological behaviour of extensive and intensive green roofs in a dry climate. Sci. Total Environ. 2014, 499, 284–296. [Google Scholar] [CrossRef]
- Villarreal, E.L.; Bengtsson, L. Response of a Sedum green-roof to individual rain events. Ecol. Eng. 2005, 25, 1–7. [Google Scholar] [CrossRef]
- Speak, A.F.; Rothwell, J.J.; Lindley, S.J.; Smith, C.L. Rainwater runoff retention on an aged intensive green roof. Sci. Total Environ. 2013, 461–462, 28–38. [Google Scholar] [CrossRef]
- Goussousa, J.; Siam, H.; Hussain, A. Prospects of green roof technology for energy and thermal benefits in buildings: Case of Jordan. Sustain. Cities Soc. 2015, 14, 425–440. [Google Scholar] [CrossRef]
- Ismail, M.R. Quiet environment: Acoustics of vertical green wall systems of the Islamic urban form. Front. Archit. Res. 2013, 2, 162–177. [Google Scholar] [CrossRef] [Green Version]
Reference | Green Roof Type | Retention Range |
---|---|---|
Metselaar (2012) [21] | Extensive and Intensive (5, 10, 20, 40, 60 and 80 cm) | 55 to 75% |
Wong and Jim (2014) [22] | Intensive (16 platforms with 40 and 80 cm) | Average from 39 to 43%. |
Stovin (2010) [23] | Extensive (prototype with 5 cm) | Average of 34% |
Graceson et al. (2013) [12] | Extensive (36 decks 1.0 m2 with 20 cm) | 44% |
Stovin (2013) [24] | Extensive (20 cm) | 3.2 to 23% |
Ohnuma et al. (2014) [25] | Extensive (5cm) | 30 to 57% |
Lee et al. (2015) [26] | Extensive (7 pilots with 15 and 20 cm) | 13 to 34% (15 cm) 43 to 61% (20 cm) |
Carson et al. (2013) [27] | Extensive (3 pilots with 5 cm) | 21 to 34% for rain >5 cm |
Palla et al. (2010) [28] | Extensive (prototype with 12 cm) | Average of 51% |
Longobardi et al. (2010) [18] | Extensive (two prototypes with 15 cm) | above 75% Between 50% and 100% |
Palla et al. (2008) [29] | Extensive (20 cm) | Average of 85% |
References | Extensive Green Roof | Intensive Green Roof |
---|---|---|
Oberndorfer et al. (2007) [30] | 66 to 69% | 26 to 100% |
Gerardi et al. (2014) [20] | 57 to 71.7% | - |
Rowe (2011) [31] | 50 to 60% | - |
Gregoire; Clausen (2011) [32] | 34 to 69% | - |
Mentens et al. (2006) [33] | 27 to 81% | 54% |
Hathaway et al. (2008) [34] | 77 to 88% | 54% |
Galarza-Molina et al. (2014) [35] | 38 to 100% | 54% |
Palla et al. (2008) [29] | 95% | - |
Test | Date | I (m/h) | Days without Rain | Accumulated Precipitation. 24 h (mm) | Accumulated Precipitation. 96 h (mm) | T (min) before the Outflow Begins |
---|---|---|---|---|---|---|
1 | 08 February 2017 | 116.9 | 0 | 6.2 | 6.2 | 7 |
2 | 15 February 2017 | 116.4 | 7 | 0.0 | 0.0 | 8 |
3 | 21 February 2017 | 115.4 | 6 | 0.0 | 0.0 | 8 |
4 | 07 March 2017 | 113.3 | 0 | 4.6 | 7.2 | 4 |
5 | 14 March 2017 | 111.7 | 0 | 17.2 | 17.2 | 5 |
6 | 20 March 2017 | 120.8 | 0 | 26.8 | 40.4 | 5 |
Medium Value | - | 115.8 | - | - | - | 6.2 |
Test | Date | I (m/h) | Days without Rain | Accumulated Precipitation. 24 h (mm) | Accumulated Precipitation. 96 h (mm) | T (min) before the Outflow Begins |
---|---|---|---|---|---|---|
7 | 06 June 2017 | 144.7 | 14 | 0.0 | 0.0 | 6 |
8 | 13 June 2017 | 147.0 | 4 | 0.0 | 3.0 | 3 |
9 | 20 June 2017 | 147.8 | 0 | 4.2 | 4.2 | 6 |
10 | 27 June 2017 | 142.5 | 4 | 0.0 | 4.0 | 5 |
11 | 04 July 2017 | 148.0 | 1 | 0.4 | 10.6 | 4 |
12 | 11 July 2017 | 142.3 | 7 | 0.0 | 0.0 | 6 |
Medium Value | - | 145.4 | - | - | - | 5 |
Test | Date | I (mm/h) | ||||||
---|---|---|---|---|---|---|---|---|
1 | 08 February 2017 | 116.9 | 105.2 | 42.3 | 0.0585 | 0.0271 | 0.41 | 0.46 |
2 | 15 February 2017 | 116.4 | 104.8 | 27.2 | 0.0582 | 0.0255 | 0.27 | 0.44 |
3 | 21 February 2017 | 115.4 | 103.9 | 23.3 | 0.0577 | 0.0280 | 0.23 | 0.49 |
4 | 07 March 2017 | 113.3 | 102.0 | 34.2 | 0.0567 | 0.0197 | 0.34 | 0.35 |
5 | 14 March 2017 | 111.7 | 100.5 | 30.9 | 0.0559 | 0.0181 | 0.31 | 0.32 |
6 | 20 March 2017 | 120.8 | 108.7 | 36.4 | 0.0604 | 0.0222 | 0.34 | 0.37 |
Medium | - | 115.8 | 104.2 | 32.4 | 0.0579 | 0.0234 | 0.32 | 0.41 |
Test | Date | I (mm/h) | ||||||
---|---|---|---|---|---|---|---|---|
7 | 06 June 2017 | 144.7 | 130.2 | 16.8 | 0.0724 | 0.0099 | 0.13 | 0.14 |
8 | 13 June 2017 | 147.0 | 132.3 | 28.2 | 0.0720 | 0.0148 | 0.22 | 0.21 |
9 | 20 June 2017 | 147.8 | 133.0 | 26.6 | 0.0739 | 0.0148 | 0.20 | 0.20 |
10 | 27 June 2017 | 142.5 | 128.3 | 17.9 | 0.0713 | 0.0107 | 0.14 | 0.15 |
11 | 04 July 2017 | 148.0 | 133.2 | 23.8 | 0.0740 | 0.0132 | 0.18 | 0.18 |
12 | 11 July 2017 | 142.3 | 128.1 | 22.8 | 0.0712 | 0.0164 | 0.18 | 0.23 |
Medium | - | 145.4 | 130.9 | 22.7 | 0.0725 | 0.0133 | 0.18 | 0.19 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, M.d.; K. Najjar, M.; W. A. Hammad, A.; Haddad, A.; Vazquez, E. Assessing the Retention Capacity of an Experimental Green Roof Prototype. Water 2020, 12, 90. https://doi.org/10.3390/w12010090
Silva Md, K. Najjar M, W. A. Hammad A, Haddad A, Vazquez E. Assessing the Retention Capacity of an Experimental Green Roof Prototype. Water. 2020; 12(1):90. https://doi.org/10.3390/w12010090
Chicago/Turabian StyleSilva, Mariana da, Mohammad K. Najjar, Ahmed W. A. Hammad, Assed Haddad, and Elaine Vazquez. 2020. "Assessing the Retention Capacity of an Experimental Green Roof Prototype" Water 12, no. 1: 90. https://doi.org/10.3390/w12010090
APA StyleSilva, M. d., K. Najjar, M., W. A. Hammad, A., Haddad, A., & Vazquez, E. (2020). Assessing the Retention Capacity of an Experimental Green Roof Prototype. Water, 12(1), 90. https://doi.org/10.3390/w12010090