Tropical Cyclone Intensity Change Prediction Based on Surrounding Environmental Conditions with Deep Learning
Abstract
:1. Introduction
2. Data and Methodology
2.1. Reanalysis Data and Best Track Data
2.2. Outline of Our Methodology
- (1)
- Considering the common and widely used levels in TC studies, we select atmospheric levels of 100, 200, 300, 500, 700, 850, and 1000 hPa that, and utilize environmental variables corresponding to data from the central TC region in a range of 10° × 10° [10].
- (2)
- Previous studies [4,5,16,19] have identified certain meteorological and oceanic characteristics that are closely related to TCs, which can help to inform our work. Thus, we study atmospheric variables including temperature (T), relative humidity (U), wind velocity (u) and (v), and geopotential height (Z). The sea surface temperature (SST) is selected as the sea surface variable.
- (3)
- In general, an image contains detailed features, such as textures, which are defined by continuous spatial changes in the pixels of the image in accordance with certain rules [21,22,30]. Therefore, we visualize multiple variables at various levels in the TC region and specify corresponding representation forms for these variables in images (as shown in Figure 3). In addition, data augmentation is performed to meet the requirements of deep learning in terms of small sample set (see Section 2.3 for details).
- (4)
- The corresponding isobaric surface and sea surface maps of these variables are concatenated in spatial order to form the 3D TC samples. Then, after preprocessing, the samples are input into the model, named TC-3DCNN, and the 24 h intensity changes are finally output. The network structure and feature extraction process are described in detail in Section 2.4.
2.3. Data Augmentation
2.4. Network Structure Design
3. Experiments and Results
3.1. Model Training Process
3.2. Feature Importance and Result Analysis
3.3. Model Performance Evaluation
4. Discussion
5. Conclusion and Prospects
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gao, S.; Wang, D.; Hong, H.; Wu, N.; Li, T. Evaluation of Warm-Core Structure in Reanalysis and Satellite Data Sets Using HS3 Dropsonde Observations: A Case Study of Hurricane Edouard (2014). J. Geophys. Res. Atmos. 2018, 123, 6713–6731. [Google Scholar] [CrossRef]
- Fink, A.H.; Speth, P. Tropical cyclones. Naturwissenschaften 1998, 85, 482–493. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, L.; Liu, Q. Tropical Cyclone Damages in China 1983–2006. Bull. Am. Meteorol. Soc. 2009, 90, 489–496. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.; Zhang, W.; Liu, J.; Lin, I.I.; Chiu, L.S.; Cao, K. Improvements in Typhoon Intensity Change Classification by Incorporating an Ocean Coupling Potential Intensity Index into Decision Trees*,+. Weather Forecast. 2016, 31, 95–106. [Google Scholar] [CrossRef]
- Zhang, W.; Gao, S.; Chen, B.; Cao, K. The application of decision tree to intensity change classification of tropical cyclones in western North Pacific. Geophys. Res. Lett. 2013, 40, 1883–1887. [Google Scholar] [CrossRef]
- Russell, L.E.; Lianshou, C.; Jim, D.; Robert, R.; Yuqing, W.; Liguang, W. Advances in Understanding and Forecasting Rapidly Changing Phenomena in Tropical Cyclones. Trop. Cyclone Res. Rev. 2013, 2, 13–24. [Google Scholar] [CrossRef]
- Lee, W.; Kim, S.-H.; Chu, P.; Moon, I.-J.; Soloviev, A.V. An Index to Better Estimate Tropical Cyclone Intensity Change in the Western North Pacific. Geophys. Res. Lett. 2019, 46, 8960–8968. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, J.; Rozoff, C.M.; DeMaria, M.; Sampson, C.R.; Kossin, J.P.; Velden, C.S.; Cione, J.J.; Dunion, J.; Knaff, J.A.; Zhang, J.A.; et al. Evaluating Environmental Impacts on Tropical Cyclone Rapid Intensification Predictability Utilizing Statistical Models. Weather Forecast. 2015, 30, 1374–1396. [Google Scholar] [CrossRef]
- Balaguru, K.; Foltz, G.R.; Leung, L.R.; Hagos, S.; Judi, D.R. On the Use of Ocean Dynamic Temperature for Hurricane Intensity Forecasting. Weather Forecast. 2018, 33, 411–418. [Google Scholar] [CrossRef]
- Chen, R.; Wang, X.; Zhang, W.; Zhu, X.; Li, A.; Yang, C. A hybrid CNN-LSTM model for typhoon formation forecasting. GeoInformatica 2019, 23, 375–396. [Google Scholar] [CrossRef]
- Makarieva, A.M.; Gorshkov, V.G.; Nefiodov, A.V.; Chikunov, A.V.; Sheil, D.; Nobre, A.D.; Nobre, P.; Li, B.-L. Hurricane’s maximum potential intensity and surface heat fluxes. arXiv 2018, arXiv:1810.12451. [Google Scholar]
- Jiang, G.Q.; Xu, J.; Wei, J. A Deep Learning Algorithm of Neural Network for the Parameterization of Typhoon-Ocean Feedback in Typhoon Forecast Models. Geophys. Res. Lett. 2018, 45, 3706–3716. [Google Scholar] [CrossRef] [Green Version]
- Cloud, K.A.; Reich, B.J.; Rozoff, C.M.; Alessandrini, S.; Lewis, W.E.; Monache, L.D. A Feed Forward Neural Network Based on Model Output Statistics for Short-Term Hurricane Intensity Prediction. Weather Forecast. 2019, 34, 985–997. [Google Scholar] [CrossRef]
- Emanuel, K. A Similarity Hypothesis for Air–Sea Exchange at Extreme Wind Speeds. J. Atmos. Sci. 2003, 60, 1420–1428. [Google Scholar] [CrossRef]
- Ito, K.; Kuroda, T.; Saito, K.; Wada, A. Forecasting a Large Number of Tropical Cyclone Intensities around Japan Using a High-Resolution Atmosphere–Ocean Coupled Model. Weather Forecast. 2015, 30, 793–808. [Google Scholar] [CrossRef]
- Zhang, M.; Zhou, L.; Chen, D.; Wang, C. A genesis potential index for Western North Pacific tropical cyclones by using oceanic parameters. J. Geophys. Res. Oceans 2016, 121, 7176–7191. [Google Scholar] [CrossRef] [Green Version]
- Sitkowski, M.; Kossin, J.P.; Rozoff, C.M. Intensity and Structure Changes during Hurricane Eyewall Replacement Cycles. Mon. Weather Rev. 2011, 139, 3829–3847. [Google Scholar] [CrossRef]
- Ge, X.; Li, T.; Peng, M. Effects of Vertical Shears and Midlevel Dry Air on Tropical Cyclone Developments*. J. Atmos. Sci. 2013, 70, 3859–3875. [Google Scholar] [CrossRef]
- Wijnands, J.S.; Qian, G.; Kuleshov, Y. Variable Selection for Tropical Cyclogenesis Predictive Modeling. Mon. Weather Rev. 2016, 144, 4605–4619. [Google Scholar] [CrossRef]
- Ge, K.; Colle, B.A. Multidecadal Historical Trends in Tropical Cyclone Intensity and Evolution Characteristics for Two North Atlantic Subbasins. J. Geophys. Res. Atmos. 2019, 124, 9893–9904. [Google Scholar] [CrossRef]
- Han, Y.; Gao, Y.; Zhang, Y.; Wang, J.; Yang, S. Hyperspectral Sea Ice Image Classification Based on the Spectral-Spatial-Joint Feature with Deep Learning. Remote Sens. 2019, 11, 2170. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhang, H.; Shen, Q. Spectral–Spatial Classification of Hyperspectral Imagery with 3D Convolutional Neural Network. Remote Sens. 2017, 9, 67. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Im, J.; Cha, D.; Park, H.; Sim, S. Tropical Cyclone Intensity Estimation Using Multi-Dimensional Convolutional Neural Networks from Geostationary Satellite Data. Remote Sens. 2019, 12, 108. [Google Scholar] [CrossRef] [Green Version]
- Maloney, E.D.; Hartmann, D.L. Modulation of Eastern North Pacific Hurricanes by the Madden–Julian Oscillation. J. Clim. 2000, 13, 1451–1460. [Google Scholar] [CrossRef]
- Schenkel, B.A.; Hart, R.E. An Examination of Tropical Cyclone Position, Intensity, and Intensity Life Cycle within Atmospheric Reanalysis Datasets. J. Clim. 2012, 25, 3453–3475. [Google Scholar] [CrossRef]
- Cocks, S.B.; Gray, W.M. Variability of the Outer Wind Profiles of Western North Pacific Typhoons: Classifications and Techniques for Analysis and Forecasting. Mon. Weather Rev. 2002, 130, 1989–2005. [Google Scholar] [CrossRef] [Green Version]
- Ying, M.; Zhang, W.; Yu, H.; Lu, X.; Feng, J.; Fan, Y.; Zhu, Y.; Chen, D. An Overview of the China Meteorological Administration Tropical Cyclone Database. J. Atmos. Ocean. Technol. 2014, 31, 287–301. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Leung, Y.; Wang, Y. Cluster analysis of post-landfall tracks of landfalling tropical cyclones over China. Clim. Dyn. 2012, 40, 1237–1255. [Google Scholar] [CrossRef]
- Kerns, B.W.; Chen, S.S. Cloud Clusters and Tropical Cyclogenesis: Developing and Nondeveloping Systems and Their Large-Scale Environment. Mon. Weather Rev. 2013, 141, 192–210. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.-F.; Chen, B.; Lin, H.-T.; Elsberry, R.L. Estimating Tropical Cyclone Intensity by Satellite Imagery Utilizing Convolutional Neural Networks. Weather Forecast. 2019, 34, 447–465. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Nair, V.; Hinton, G.E. Rectified linear units improve Restricted Boltzmann machines. In Proceedings of the 27th International Conference on Machine Learning, ICML 2010, Haifa, Israel, 21–25 June 2010; pp. 807–814. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference for Learning Representations, San Diego, CA, USA, 7–9 May 2014. [Google Scholar]
- Fischer, M.S.; Tang, B.H.; Corbosiero, K.L. A Climatological Analysis of Tropical Cyclone Rapid Intensification in Environments of Upper-Tropospheric Troughs. Mon. Weather Rev. 2019, 147, 3693–3719. [Google Scholar] [CrossRef]
- Shishi Liu, S.L. Atmospheric Dynamics; Peking University Press: Beijing, China, 1991; p. 536. [Google Scholar]
- Fischer, M.S.; Tang, B.H.; Corbosiero, K.L. Assessing the Influence of Upper-Tropospheric Troughs on Tropical Cyclone Intensification Rates after Genesis. Mon. Weather Rev. 2017, 145, 1295–1313. [Google Scholar] [CrossRef] [Green Version]
- Molinari, J.; Vollaro, D. External Influences on Hurricane Intensity. Part I: Outflow Layer Eddy Angular Momentum Fluxes. J. Atmos. Sci. 1989, 46, 1093–1105. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, J.; DeMaria, M. Large-Scale Characteristics of Rapidly Intensifying Tropical Cyclones in the North Atlantic Basin. Weather Forecast. 2003, 18, 1093–1108. [Google Scholar] [CrossRef] [Green Version]
- Chan, J.; Duan, Y.; Shay, L.K. Tropical Cyclone Intensity Change from a Simple Ocean–Atmosphere Coupled Model. J. Atmos. Sci. 2001, 58, 154–172. [Google Scholar] [CrossRef]
Layer | Input Shape | Filter Size | Stride | Activation | Output Shape |
---|---|---|---|---|---|
Conv3D.1 | 3 × 8 × 226 × 226 | 32 × 2 × 4 × 4 | (1,2,2) | ReLU | 32 × 7 × 112 × 112 |
Conv3D.2 | 32 × 7 × 112 × 112 | 32 × 2 × 4 × 4 | (1,2,2) | ReLU | 32 × 6 × 55 × 55 |
Conv3D.3 | 32 × 6 × 55 × 55 | 32 × 2 × 4 × 4 | (1,2,2) | ReLU | 32 × 5 × 26 × 26 |
Conv3D.4 | 32 × 5 × 26 × 26 | 32 × 2 × 4 × 4 | (1,2,2) | ReLU | 32 × 4 × 12 × 12 |
Conv3D.5 | 32 × 4 × 12 × 12 | 32 × 2 × 4 × 4 | (1,2,2) | ReLU | 32 × 3 × 5 × 5 |
Dropout | 32 × 3 × 5 × 5 | — | — | — | 32 × 3 × 5 × 5 |
FC1 | 2400 | — | — | ReLU | 1280 |
FC2 | 1280 | — | — | ReLU | 64 |
FC3 | 64 | — | — | Tanh | 1 |
Combination | 0.0001 | 0.0002 | 0.0003 | 0.0004 | 0.0005 | 0.0006 |
---|---|---|---|---|---|---|
U, T, Z, u, v, SST | 4.4 | 4.1 | 3.7 | 3.6 | 3.7 | 3.9 |
U, SST | 4.3 | 4.1 | 3.7 | 3.7 | 3.8 | 3.9 |
U, T, Z, SST | 4.1 | 3.9 | 3.4 | 3.4 | 3.7 | 3.8 |
Category | TC Intensity | MAE |
---|---|---|
Tropical depression | 9–17 | 3.0 |
Tropical storm | 17–32 | 3.5 |
Typhoon | 32–43 | 3.2 |
Severe typhoon | 43–54 | 3.5 |
Super typhoon | ≥54 | 3.9 |
Model | Test Period | Sample Size | MAE |
---|---|---|---|
WIPS | 2012–2016 | - | 5.6 |
GRAPES-TCM | 2012–2016 | - | 7.0 |
TC-3DCNN | 2012–2016 | 200 | 4.1 |
Classification Criteria (m/s)/24 h | Decision Tree | TC-3DCNN | ||
---|---|---|---|---|
Sample Size | Accuracy | Sample Size | Accuracy | |
and | 693 | 90.2% | 408 | 94.9% |
and | 1024 | 81.5% | 769 | 91.5% |
and | 1246 | 77.4% | 1000 | 83.0% |
Ratio | MAE (m/s) | Accuracy 1 | Accuracy 2 | Accuracy 3 | |
---|---|---|---|---|---|
Original data | 0.0 | 5.8 | 89.3% | 80.6% | 72.5% |
TC images | 0.0 | 4.1 | 92.7% | 88.2% | 81.5% |
0.5 | 3.8 | 93.5% | 90.2% | 82.0% | |
1.0 | 3.4 | 94.9% | 91.5% | 83.0% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Wang, W.; Yan, B. Tropical Cyclone Intensity Change Prediction Based on Surrounding Environmental Conditions with Deep Learning. Water 2020, 12, 2685. https://doi.org/10.3390/w12102685
Wang X, Wang W, Yan B. Tropical Cyclone Intensity Change Prediction Based on Surrounding Environmental Conditions with Deep Learning. Water. 2020; 12(10):2685. https://doi.org/10.3390/w12102685
Chicago/Turabian StyleWang, Xin, Wenke Wang, and Bing Yan. 2020. "Tropical Cyclone Intensity Change Prediction Based on Surrounding Environmental Conditions with Deep Learning" Water 12, no. 10: 2685. https://doi.org/10.3390/w12102685
APA StyleWang, X., Wang, W., & Yan, B. (2020). Tropical Cyclone Intensity Change Prediction Based on Surrounding Environmental Conditions with Deep Learning. Water, 12(10), 2685. https://doi.org/10.3390/w12102685