Technical Efficiency of China’s Agriculture and Output Elasticity of Factors Based on Water Resources Utilization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Operational Framework
2.3. Modeling
2.3.1. SFA Model
- (1)
- Random error term:
- (2)
- Non-negative error term:
- (3)
- , , and explanatory variable are independent of each other.
2.3.2. Technical Efficiency
2.3.3. The SFA Model of Translog Production Function
2.4. Data Requirements and Preparation
3. Results
3.1. Descriptive Statistics of Variables
3.2. Parameter Estimation of the Model
3.3. Technical Efficiency
3.4. The Output Elasticity of Capital
3.5. The Output Elasticity of Water
3.6. Substitution Elasticity of Capital and Water
3.7. Comparison between National and Northeast Level
4. Discussion
4.1. The Impact of Various Input Factors on Grain Production
4.2. Potential Risks of Water Resources
4.3. Strategies and Implications
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- FAO. The Future of Food and Agriculture—Trends and Challenges; FAO: Roma, Italy, 2017. [Google Scholar]
- Ibrahiem, D.M.; Hanafy, S.A. Dynamic linkages amongst ecological footprints, fossil fuel energy consumption and globalization: An empirical analysis. Manag. Environ. Qual. Int. J. 2020. [Google Scholar] [CrossRef]
- Aivazidou, E.; Tsolakis, N.; Vlachos, D.; Iakovou, E. A water footprint management framework for supply chains under green market behaviour. J. Clean. Prod. 2018, 197, 592–606. [Google Scholar] [CrossRef]
- Arnold, M.G. Corporate social responsibility representation of the German water-supply and distribution companies: From colourful to barren landscapes. Int. J. Innov. Sustain. Dev. 2017, 11, 1–22. [Google Scholar] [CrossRef]
- Scarpato, D.; Civero, G.; Rusciano, V.; Risitano, M. Sustainable strategies and corporate social responsibility in the Italian fisheries companies. Corp. Soc. Responsib. Environ. Manag. 2020, 10, 1–8. [Google Scholar] [CrossRef]
- Jiao, X.; Lyu, Y.; Wu, X.; Li, H.; Cheng, L.; Zhang, C.; Yuan, L.; Jiang, R.; Jiang, B.; Rengel, Z. Grain production versus resource and environmental costs: Towards increasing sustainability of nutrient use in China. J. Exp. Bot. 2016, 67, 4935–4949. [Google Scholar] [CrossRef]
- Pingali, P.L. Green revolution: Impacts, limits, and the path ahead. Proc. Natl. Acad. Sci. USA 2012, 109, 12302–12308. [Google Scholar] [CrossRef] [Green Version]
- Kusch-Brandt, S. Towards More Sustainable Food Systems-14 Lessons Learned. Int. J. Environ. Res. Public Health 2020, 17, 4005. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, Y.; Huang, D.-H. Contribution of factor structure change to China’s economic growth: Evidence from the time-varying elastic production function model. Econ. Res. Ekon. Istraživanja 2019, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Bian, Y.; Yang, F. Resource and environment efficiency analysis of provinces in China: A DEA approach based on Shannon’s entropy. Energy Policy 2010, 38, 1909–1917. [Google Scholar] [CrossRef]
- Feng, C.; Huang, J.-B.; Wang, M. Analysis of green total-factor productivity in China’s regional metal industry: A meta-frontier approach. Resour. Policy 2018, 58, 219–229. [Google Scholar] [CrossRef]
- Babenko, A.; Vasilyeva, O. Factors of labour productivity growth in agriculture of the agrarian region. Balt. J. Econ. Stud. 2017, 3, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Ustaoglu, E.; Castillo, C.P.; Jacobs-Crisioni, C.; Lavalle, C. Economic evaluation of agricultural land to assess land use changes. Land Use Policy 2016, 56, 125–146. [Google Scholar] [CrossRef]
- Artuzo, F.D.; Foguesatto, C.R.; da Silva, L.X. Precision Agriculture: Innovation for world food production and to optimization in the use of fertilizers. Rev. Tecnol. E Soc. 2017, 13, 146–160. [Google Scholar]
- Sun, X.; Wu, G.; Ren, X. The impact of chemical fertilizer input changes on grain production efficiency—An empirical analysis based on panel data of counties in Guizhou Province. J. South. Agric. 2019, 50, 1869–1877. [Google Scholar]
- Tapia Zurita, M.; Tapia Zurita, E. The Andean markets and their requirements for agricultural machinery. 3C Empresa 2017, 6, 47–62. [Google Scholar] [CrossRef] [Green Version]
- Jiang, M.; Li, X.; Xin, L.; Tan, M. The impact of paddy rice multiple cropping index changes in Southern China on national grain production capacity and its policy implications. Acta Geogr. Sin. 2019, 74, 32–43. [Google Scholar]
- Li, Z.; Jun, Z. Study on the estimation of agricultural production efficiency in Shandong province based on DEA-Malmquist model. Hubei Agric. Sci. 2019, 58, 219. [Google Scholar]
- Shi, C.; Zhan, P.; Zhu, J. Land Transfer, Factor Allocation and Agricultural Production Efficiency Improvement. China Land Sci. 2020, 34, 49–57. [Google Scholar]
- Shi, Z.; Huang, H.; Wu, Y.; Chiu, Y.H.; Qin, S. Climate Change Impacts on Agricultural Production and Crop Disaster Area in China. Int. J. Environ. Res. Public Health 2020, 17, 4792. [Google Scholar] [CrossRef]
- Lv, N.; Zhu, L. Study on China’s Agricultural Environmental Technical Efficiency and Green Total Factor Productivity Growth. J. Agrotech. Econ. 2019, 4, 95–103. [Google Scholar]
- Agovino, M.; Cerciello, M.; Gatto, A. Policy efficiency in the field of food sustainability. The adjusted food agriculture and nutrition index. J. Environ. Manag. 2018, 218, 220–233. [Google Scholar] [CrossRef] [PubMed]
- Le, T.L.; Lee, P.-P.; Peng, K.C.; Chung, R.H. Evaluation of total factor productivity and environmental efficiency of agriculture in nine East Asian countries. Agric. Econ. 2019, 65, 249–258. [Google Scholar]
- Vicente, J.R. Economic efficiency of agricultural production in Brazil. Rev. De Econ. E Sociol. Rural 2004, 42, 201–222. [Google Scholar] [CrossRef] [Green Version]
- Holden, S.; Shiferaw, B. Land degradation, drought and food security in a less-favoured area in the Ethiopian highlands: A bio-economic model with market imperfections. Agric. Econ. 2004, 30, 31–49. [Google Scholar] [CrossRef]
- Vollrath, D. Land distribution and international agricultural productivity. Am. J. Agric. Econ. 2007, 89, 202–216. [Google Scholar] [CrossRef]
- Abou-Ali, H.; El-Ayouti, A. Nile water pollution and technical efficiency of crop production in Egypt: An assessment using spatial and non-parametric modelling. Environ. Ecol. Stat. 2014, 21, 221–238. [Google Scholar] [CrossRef]
- Ogundari, K. Crop diversification and technical efficiency in food crop production. Int. J. Soc. Econ. 2013, 40, 267–288. [Google Scholar] [CrossRef]
- Devi, L.G.; Singh, Y.C. Resource use and technical efficiency of rice production in Manipur. Econ. Aff. 2014, 59, 823. [Google Scholar]
- Griliches, Z. Research expenditures, education, and the aggregate agricultural production function. Am. Econ. Rev. 1964, 54, 961–974. [Google Scholar]
- Yuize, Y. Nogyo ni okeru Kyoshiteki Seisan-kansu no Keisoku. Aggreg. Prod. Funct. Agric. Nogyo Sogo Kenkyu 1964, 18, 1–54. [Google Scholar]
- Lio, M.; Liu, M.-C. Governance and agricultural productivity: A cross-national analysis. Food Policy 2008, 33, 504–512. [Google Scholar] [CrossRef]
- Po-Chi, C.; Ming-Miin, Y.; Chang, C.-C.; Shih-Hsun, H. Total factor productivity growth in China’s agricultural sector. China Econ. Rev. 2008, 19, 580–593. [Google Scholar]
- Monchuk, D.C.; Chen, Z.; Bonaparte, Y. Explaining production inefficiency in China’s agriculture using data envelopment analysis and semi-parametric bootstrapping. China Econ. Rev. 2010, 21, 346–354. [Google Scholar] [CrossRef]
- Amaza, P.S.; Olayemi, J. Analysis of technical inefficiency in food crop production in Gombe State, Nigeria. Appl. Econ. Lett. 2002, 9, 51–54. [Google Scholar] [CrossRef]
- Latruffe*, L.; Balcombe, K.; Davidova, S.; Zawalinska, K. Determinants of technical efficiency of crop and livestock farms in Poland. Appl. Econ. Lett. 2004, 36, 1255–1263. [Google Scholar] [CrossRef]
- Min, R.; Gu, G. Empirical study on technical efficiency of grain production from the perspective of sustainable development—Observation based on panel data and sequence DEA of counties in Hubei Province. J. Hubei Univ. Philos. Soc. Sci. 2012, 39, 46–51. [Google Scholar] [CrossRef]
- Mareth, T.; Scavarda, L.F.; Thomé, A.M.T.; Oliveira, F.L.C.; Alves, T.W. Analysing the determinants of technical efficiency of dairy farms in Brazil. Int. J. Product. Perform. Manag. 2019, 68, 464–481. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, C. Organic Agricultural Production Efficiency Based on a Three-stage DEA Model: A Case Study of Yang County, Shaanxi Province. Chin. J. Popul. Resour. Environ. 2015, 25, 105–112. [Google Scholar]
- Moutinho, V.; Madaleno, M.; Macedo, P.; Robaina, M.; Marques, C. Efficiency in the European agricultural sector: Environment and resources. Environ. Sci. Pollut. Res. 2018, 25, 17927–17941. [Google Scholar] [CrossRef]
- Feng, J.; Yang, J.; Jiang, H. Analysis of Grain Production Efficiency in the Major Grain Producing Counties of Jilin Province. J. Jilin Agric. Univ. 2015, 4, 493–498. [Google Scholar]
- Zhan-wei, L. On the Efficiency of Grain Production in the Undeveloped Areas—A Study Based on the DEA Method and Malmquist Index. J. Jiangxi Agric. Univ. 2011, 2, 9–15. [Google Scholar]
- Mwangi, T.M.; Ndirangu, S.N.; Isaboke, H.N. Technical efficiency in tomato production among smallholder farmers in Kirinyaga County, Kenya. Afr. J. Agric. Res. 2020, 16, 667–677. [Google Scholar]
- Fan, Q.; Dong, Z.; Du, F.; Chen, K. Application of stochastic frontier production function in the study of technical efficiency of grain production. Water Sav. Irrig. 2008, 6, 30–33. [Google Scholar]
- Tan, Z.; Guo, X. Evaluation and analysis of China’s grain production efficiency: Based on the super efficiency DEA model. Res. Agric. Mod. 2019, 3, 431–440. [Google Scholar]
- Dooley, D.M.; Griffiths, E.J.; Gosal, G.S.; Buttigieg, P.L.; Hoehndorf, R.; Lange, M.C.; Schriml, L.M.; Brinkman, F.S.; Hsiao, W.W. FoodOn: A harmonized food ontology to increase global food traceability, quality control and data integration. NPJ Sci. Food 2018, 2, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Zhang, Q.; Li, F.; Fu, H.; Yang, X. Evaluation of grain production efficiency in the main production area based on the three stage DEA-WINDOWS. Chin. J. Agric. Resour. Reg. Plan 2019, 40, 158–165, 194. [Google Scholar]
- Wu, G.; Zhang, Q.; Zhang, F. Research on Grain Production Efficiency and Its Spatial Spillover Effects in China. Econ. Geogr. 2019, 9, 207–212. [Google Scholar]
- Wu, Y. Measurement of input-output elasticity of regional agricultural production factors in China—An empirical study based on spatial econometric model. Chin. Rural Econ. 2010, 6, 25–37. [Google Scholar]
- Yang, X.; Mu, Y. Irrigation water pressure, supply elasticity and grain production structure based on heterogeneous coefficient Nerlove model. J. Nat. Resour. 2020, 35, 728–742. [Google Scholar]
- Zhang, L.; Li, R. Research on Agricultural Machinery Service Development and Grain Production Efficiency: 2004–2016—Based on stochastic Frontier analysis of variable coefficients. J. Huazhong Agric. Univ. Soc. Sci. Ed. 2020, 2, 67–77. [Google Scholar]
- Liu, C.; Chen, X. Study on technical efficiency and influencing factors of grain production in China: Analysis of translog-SFA model based on interprovincial panel data. J. Chin. Agric. Mech. 2019, 40, 201–207. [Google Scholar]
- Hampf, B. Estimating emission coefficients and mass balances using economic data: A stochastic frontier approach. J. Ind. Ecol. 2019, 23, 932–945. [Google Scholar]
- Song, J.; Oh, D.-h.; Kang, J. Robust estimation in stochastic frontier models. Comput. Stat. Data Anal. 2017, 105, 243–267. [Google Scholar]
- Kumbhakar, S.C.; Lovell, C.K. Stochastic Frontier Analysis; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Battese, G.E.; Coelli, T.J. Frontier production functions, technical efficiency and panel data: With application to paddy farmers in India. J. Product. Anal. 1992, 3, 153–169. [Google Scholar]
- Benedetti, I.; Branca, G.; Zucaro, R. Evaluating input use efficiency in agriculture through a stochastic frontier production: An application on a case study in Apulia (Italy). J. Clean. Prod. 2019, 236, 117609. [Google Scholar]
- Farrell, M.J. The measurement of productive efficiency. J. R. Stat. Soc. Ser. A 1957, 120, 253–281. [Google Scholar]
- Christensen, L.R.; Jorgenson, D.W.; Lau, L.J. Transcendental logarithmic production frontiers. Rev. Econ. Stat. 1973, 55, 28–45. [Google Scholar]
- Christensen, L.R.; Jorgenson, D.W.; Lau, L.J. Transcendental logarithmic utility functions. Am. Econ. Rev. 1975, 65, 367–383. [Google Scholar]
- Zhao, H.; Lin, B. Resources allocation and more efficient use of energy in China’s textile industry. Energy 2019, 185, 111–120. [Google Scholar]
- Cheng, Z.; Li, L.; Liu, J.; Zhang, H. Research on energy directed technical change in China’s industry and its optimization of energy consumption pattern. J. Environ. Manag. 2019, 250, 109471. [Google Scholar]
- Kutlu, L.; Tran, K.C.; Tsionas, M.G. A spatial stochastic frontier model with endogenous frontier and environmental variables. Eur. J. Oper. Res. 2020, 286, 389–399. [Google Scholar] [CrossRef]
- Jradi, S.; Parmeter, C.F.; Ruggiero, J. Quantile estimation of the stochastic frontier model. Econ. Lett. 2019, 182, 15–18. [Google Scholar] [CrossRef]
- Baggio, D.K.; Brizolla, M.M.B. Assessing Market Timing Performance of Brazilian Multi-Asset Pension Funds using the Battese and Coelli’s Stochastic Frontier Model (1995). Econ. Bull. 2020, 40, 50–60. [Google Scholar]
- Cechura, L.; Grau, A.; Hockmann, H.; Levkovych, I.; Kroupova, Z. Catching Up or Falling Behind in European Agriculture: The Case of Milk Production. J. Agric. Econ. 2017, 68, 206–227. [Google Scholar] [CrossRef]
- Coelli, T. Estimators and hypothesis tests for a stochastic frontier function: A Monte Carlo analysis. J. Product. Anal. 1995, 6, 247–268. [Google Scholar] [CrossRef]
- Hicks, J.R. Value and Capital: An Inquiry into Some Fundamental Principles of Economic Theory; Oxford University Press: New York, NY, USA, 1975. [Google Scholar]
- Drago, C.; Gatto, A. A robust approach to composite indicators exploiting interval data: The interval-valued global gender gap index (IGGGI). In Proceedings of IPAZIA Workshop on Gender Issues; Springer: Berlin/Heidelberg, Germany, 2018; pp. 103–114. [Google Scholar]
- WANG, Z.-F.; SU, X.; CHANG, H.-L. Water Resource Endowment and its Spatial Difference in China. J. Gansu Sci. 2007, 1, 145–148. [Google Scholar]
- Shepherd, K.D.; Soule, M.J. Soil fertility management in west Kenya: Dynamic simulation of productivity, profitability and sustainability at different resource endowment levels. Agric. Ecosyst. Environ. 1998, 71, 131–145. [Google Scholar] [CrossRef]
- Zhang, X.; Jiao, J. Formation and Evolution of Black Soil. J. Jilin Univ. (Earth Sci. Ed.) 2020, 2, 553–568. [Google Scholar]
- Tan, J.; Vila, J. Research on technical efficiency of grain production and its influencing factors—From panel data of 31 provinces in China from 1990 to 2013. J. Agrotech. Econ. 2016, 9, 72–83. [Google Scholar]
- Zhai, S.; Song, G.; Qin, Y.; Ye, X.; Lee, J. Modeling the impacts of climate change and technical progress on the wheat yield in inland China: An autoregressive distributed lag approach. PLoS ONE 2017, 12, e0184474. [Google Scholar] [CrossRef]
- Yan, J.; Zhang, Y.; Hua, X.; Yang, L. An explanation of labor migration and grain output growth: Findings of a case study in eastern Tibetan Plateau. J. Geogr. Sci. 2016, 26, 484–500. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Zhu, Y.; Wang, X.; Sun, X.; Ding, Y.; Cao, W.; Hu, Z. Progress and development on biological information of crop phenotype research applied to real-time variable-rate fertilization. Plant Methods 2020, 16, 11. [Google Scholar] [CrossRef] [PubMed]
- Shujun, L. Status and trends on sci-tech development of agricultural machinery in China. AMA Agric. Mech. Asia Afr. Lat. Am. 2016, 47, 115–120. [Google Scholar]
- Chen, K.; He, C.; Zhang, Y. The Migration of Surplus Labor and Technology Progress in China’s Agricultural Sector—The Theoretical Mechanism Based on Ranis-Fei Model and Micro Evidence from Eight Rural Villages in West China. Ind. Econ. Res. 2010, 1, 1–8. [Google Scholar]
- Kang, S.; Hao, X.; Du, T.; Tong, L.; Su, X.; Lu, H.; Li, X.; Huo, Z.; Li, S.; Ding, R. Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice. Agric. Water Manag. 2017, 179, 5–17. [Google Scholar] [CrossRef]
- Shen, C.; Wang, Y.; Zhao, L.; Xu, X.; Yang, X.; Liu, X. Characteristics of material migration during soil erosion in sloped farmland in the black soil region of Northeast China. Trop. Conserv. Sci. 2019, 12, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Xin, Y.; Liu, G.; Xie, Y.; Gao, Y.; Liu, B.; Shen, B. Effects of soil conservation practices on soil losses from slope farmland in northeastern China using runoff plot data. Catena 2019, 174, 417–424. [Google Scholar] [CrossRef]
- Gatto, A.; Polselli, N.; Bloom, G. Empowering gender equality through rural development: Rural markets and micro-finance in Kyrgyzstan. In L’europa E La Comunità Internazionale Difronte Alle Sfide Dello Svilupp; Giannini: Naples, Italy, 2016; pp. 65–89. [Google Scholar]
- Steinfeld, C.M.; Sharma, A.; Mehrotra, R.; Kingsford, R.T. The human dimension of water availability: Influence of management rules on water supply for irrigated agriculture and the environment. J. Hydrol. 2020, 588, 125009. [Google Scholar] [CrossRef]
- Wagan, S.A.; Memon, Q.U.A.; Yanwen, T. A comparison of input resource use and production efficiency of wheat between China and Pakistan using Stochastic Frontier Analysis (SFA). Custos E Agronegocio Line 2020, 16, 79–98. [Google Scholar]
- Cattivelli, V.; Rusciano, V. Social Innovation and Food Provisioning during Covid-19: The Case of Urban–Rural Initiatives in the Province of Naples. Sustainability 2020, 12, 4444. [Google Scholar] [CrossRef]
Variable | N | Minimum | Maximum | Mean | Standard Deviation |
---|---|---|---|---|---|
Grain () | 450 | 34.1400 | 7615.8000 | 1928.381227 | 1623.8381258 |
Capital ( yuan) | 450 | 0.1122 | 46.6058 | 9.184820 | 9.0198438 |
Labor ( people) | 450 | 205.0000 | 7045.2800 | 2417.289730 | 1685.1997177 |
Water () | 450 | 4.2000 | 561.7500 | 123.504202 | 102.4522041 |
Variable | Coefficient to Be Estimated | Value | Standard Deviation | t Test |
---|---|---|---|---|
Constant | −4.192053 | 2.838707 | −1.476747 | |
0.787380 | 0.185058 | 4.254774 *** | ||
0.915338 | 0.787451 | 1.162408 | ||
2.662388 | 0.838769 | 3.174161 *** | ||
0.070855 | 0.027508 | 2.575759 ** | ||
0.012049 | 0.148305 | 0.081247 | ||
−0.338214 | 0.110734 | −3.054295 *** | ||
−0.119321 | 0.025465 | −4.685656 *** | ||
0.046295 | 0.027361 | 1.691980 * | ||
−0.111242 | 0.120526 | −0.922977 | ||
0.656665 | 0.293462 | 2.237647 ** | ||
0.840179 | 0.073301 | 11.462051 *** | ||
0.766576 | 0.361893 | 2.118242 ** | ||
−0.028928 | 0.007408 | −3.904911 *** | ||
Log Likelihood | −183.702090 *** | |||
LR | 392.044620 *** |
Province | 2004–2005 | 2006–2010 | 2011–2015 | 2016–2018 | AVG | Rank |
---|---|---|---|---|---|---|
Beijing | 0.649 | 0.620 | 0.576 | 0.538 | 0.593 | 11 |
Tianjin | 0.811 | 0.793 | 0.766 | 0.741 | 0.776 | 5 |
Hebei | 0.688 | 0.661 | 0.620 | 0.585 | 0.636 | 9 |
Shanxi | 0.564 | 0.531 | 0.482 | 0.441 | 0.501 | 16 |
Neimenggu | 0.696 | 0.669 | 0.629 | 0.595 | 0.644 | 8 |
Liaoning | 0.587 | 0.554 | 0.506 | 0.466 | 0.525 | 14 |
Jilin | 0.912 | 0.904 | 0.890 | 0.877 | 0.895 | 3 |
Heilongjiang | 0.932 | 0.925 | 0.915 | 0.905 | 0.919 | 2 |
Shanghai | 0.406 | 0.369 | 0.317 | 0.275 | 0.338 | 21 |
Jiangsu | 0.649 | 0.620 | 0.576 | 0.539 | 0.593 | 10 |
Zhejiang | 0.226 | 0.193 | 0.149 | 0.118 | 0.168 | 30 |
Anhui | 0.697 | 0.670 | 0.630 | 0.596 | 0.646 | 7 |
Fujian | 0.259 | 0.224 | 0.178 | 0.144 | 0.197 | 29 |
Jiangxi | 0.557 | 0.523 | 0.473 | 0.432 | 0.493 | 17 |
Shandong | 0.828 | 0.812 | 0.786 | 0.764 | 0.796 | 4 |
Henan | 0.946 | 0.940 | 0.931 | 0.923 | 0.935 | 1 |
Hubei | 0.575 | 0.542 | 0.493 | 0.452 | 0.512 | 15 |
Hunan | 0.621 | 0.590 | 0.544 | 0.505 | 0.562 | 12 |
Guangdong | 0.340 | 0.303 | 0.252 | 0.213 | 0.273 | 24 |
Guangxi | 0.377 | 0.340 | 0.288 | 0.247 | 0.309 | 23 |
Hainan | 0.286 | 0.251 | 0.202 | 0.166 | 0.222 | 28 |
Chongqing | 0.782 | 0.762 | 0.731 | 0.703 | 0.742 | 6 |
Sichuan | 0.594 | 0.562 | 0.514 | 0.474 | 0.533 | 13 |
Guizhou | 0.504 | 0.468 | 0.417 | 0.374 | 0.437 | 19 |
Yunnan | 0.510 | 0.475 | 0.423 | 0.381 | 0.444 | 18 |
Shaanxi | 0.314 | 0.277 | 0.227 | 0.190 | 0.248 | 27 |
Gansu | 0.403 | 0.366 | 0.313 | 0.272 | 0.335 | 22 |
Qinghai | 0.330 | 0.293 | 0.243 | 0.204 | 0.263 | 25 |
Ningxia | 0.408 | 0.371 | 0.318 | 0.276 | 0.339 | 20 |
Xinjiang | 0.328 | 0.292 | 0.241 | 0.202 | 0.262 | 26 |
Province | 2004–2005 | 2006–2010 | 2011–2015 | 2016–2018 | AVG | Rank |
---|---|---|---|---|---|---|
Beijing | 0.182 | 0.250 | 0.286 | 0.284 | 0.260 | 9 |
Tianjin | 0.157 | 0.243 | 0.310 | 0.329 | 0.271 | 7 |
Hebei | −0.006 | 0.076 | 0.193 | 0.228 | 0.135 | 28 |
Shanxi | 0.007 | 0.105 | 0.250 | 0.299 | 0.179 | 22 |
Neimenggu | 0.173 | 0.270 | 0.381 | 0.418 | 0.324 | 4 |
Liaoning | 0.082 | 0.176 | 0.260 | 0.323 | 0.221 | 11 |
Jilin | 0.115 | 0.231 | 0.326 | 0.376 | 0.276 | 6 |
Heilongjiang | 0.182 | 0.298 | 0.408 | 0.445 | 0.349 | 2 |
Shanghai | 0.188 | 0.310 | 0.346 | 0.367 | 0.317 | 5 |
Jiangsu | 0.122 | 0.218 | 0.316 | 0.352 | 0.265 | 8 |
Zhejiang | 0.046 | 0.114 | 0.180 | 0.263 | 0.157 | 25 |
Anhui | 0.012 | 0.136 | 0.237 | 0.262 | 0.178 | 23 |
Fujian | 0.059 | 0.144 | 0.257 | 0.288 | 0.199 | 15 |
Jiangxi | 0.021 | 0.151 | 0.255 | 0.293 | 0.197 | 17 |
Shandong | 0.030 | 0.132 | 0.233 | 0.269 | 0.179 | 21 |
Henan | 0.007 | 0.099 | 0.185 | 0.236 | 0.143 | 27 |
Hubei | 0.080 | 0.151 | 0.213 | 0.301 | 0.192 | 20 |
Hunan | 0.047 | 0.143 | 0.245 | 0.290 | 0.194 | 19 |
Guangdong | 0.044 | 0.154 | 0.216 | 0.241 | 0.178 | 24 |
Guangxi | 0.105 | 0.195 | 0.267 | 0.303 | 0.228 | 10 |
Hainan | 0.073 | 0.163 | 0.246 | 0.321 | 0.210 | 13 |
Chongqing | −0.018 | 0.059 | 0.140 | 0.256 | 0.115 | 29 |
Sichuan | 0.051 | 0.134 | 0.253 | 0.295 | 0.195 | 18 |
Guizhou | −0.056 | 0.068 | 0.168 | 0.215 | 0.114 | 30 |
Yunnan | 0.035 | 0.109 | 0.203 | 0.240 | 0.156 | 26 |
Shaanxi | 0.011 | 0.147 | 0.263 | 0.303 | 0.199 | 16 |
Gansu | 0.083 | 0.162 | 0.244 | 0.273 | 0.201 | 14 |
Qinghai | 0.083 | 0.183 | 0.259 | 0.306 | 0.219 | 12 |
Ningxia | 0.183 | 0.277 | 0.376 | 0.410 | 0.324 | 3 |
Xinjiang | 0.261 | 0.267 | 0.286 | 0.317 | 0.355 | 1 |
Province | 2004–2005 | 2006–2010 | 2011–2015 | 2016–2018 | AVG | Rank |
---|---|---|---|---|---|---|
Beijing | 1.140 | 1.227 | 1.357 | 1.548 | 1.323 | 1 |
Tianjin | 1.113 | 1.179 | 1.250 | 1.298 | 1.218 | 2 |
Hebei | 0.015 | 0.072 | 0.176 | 0.242 | 0.133 | 24 |
Shanxi | 0.608 | 0.654 | 0.674 | 0.694 | 0.662 | 7 |
Neimenggu | 0.185 | 0.273 | 0.355 | 0.374 | 0.309 | 16 |
Liaoning | 0.300 | 0.343 | 0.402 | 0.487 | 0.386 | 12 |
Jilin | 0.435 | 0.489 | 0.473 | 0.505 | 0.479 | 11 |
Heilongjiang | 0.086 | 0.099 | 0.067 | 0.079 | 0.082 | 25 |
Shanghai | 0.999 | 1.123 | 1.171 | 1.182 | 1.134 | 3 |
Jiangsu | −0.117 | −0.067 | −0.010 | 0.048 | −0.032 | 29 |
Zhejiang | 0.182 | 0.257 | 0.334 | 0.448 | 0.311 | 15 |
Anhui | 0.114 | 0.120 | 0.166 | 0.184 | 0.147 | 22 |
Fujian | 0.227 | 0.299 | 0.394 | 0.448 | 0.351 | 14 |
Jiangxi | 0.100 | 0.144 | 0.176 | 0.222 | 0.164 | 21 |
Shandong | 0.014 | 0.077 | 0.178 | 0.237 | 0.134 | 23 |
Henan | 0.097 | 0.124 | 0.189 | 0.248 | 0.167 | 20 |
Hubei | 0.120 | 0.153 | 0.158 | 0.249 | 0.169 | 19 |
Hunan | −0.056 | 0.028 | 0.098 | 0.128 | 0.060 | 27 |
Guangdong | −0.125 | −0.022 | 0.022 | 0.051 | −0.006 | 28 |
Guangxi | −0.036 | 0.049 | 0.099 | 0.139 | 0.072 | 26 |
Hainan | 0.662 | 0.733 | 0.800 | 0.871 | 0.774 | 6 |
Chongqing | 0.758 | 0.844 | 0.803 | 0.890 | 0.828 | 5 |
Sichuan | 0.119 | 0.177 | 0.205 | 0.199 | 0.183 | 18 |
Guizhou | 0.397 | 0.482 | 0.560 | 0.536 | 0.508 | 10 |
Yunnan | 0.174 | 0.244 | 0.312 | 0.322 | 0.273 | 17 |
Shaanxi | 0.449 | 0.502 | 0.576 | 0.605 | 0.540 | 9 |
Gansu | 0.271 | 0.328 | 0.378 | 0.414 | 0.354 | 13 |
Qinghai | 0.877 | 0.934 | 0.978 | 1.063 | 0.967 | 4 |
Ningxia | 0.505 | 0.586 | 0.677 | 0.740 | 0.637 | 8 |
Xinjiang | −0.179 | −0.146 | −0.126 | −0.089 | −0.132 | 30 |
Province | 2004–2005 | 2006–2010 | 2011–2015 | 2016–2018 | AVG |
---|---|---|---|---|---|
Beijing | 1.117 | 1.134 | 1.124 | 1.094 | 1.120 |
Tianjin | 1.109 | 1.141 | 1.161 | 1.158 | 1.147 |
Hebei | 1.241 | 0.006 | 0.039 | −0.039 | 0.172 |
Shanxi | 1.091 | 1.237 | 1.685 | 1.946 | 1.509 |
Neimenggu | −0.034 | −0.011 | 0.059 | 0.094 | 0.030 |
Liaoning | 2.821 | −1.475 | −1.156 | −1.556 | −0.812 |
Jilin | 1.734 | 9.742 | −1.205 | −0.771 | 2.923 |
Heilongjiang | 0.111 | 0.156 | 0.138 | 0.157 | 0.144 |
Shanghai | 1.157 | 1.207 | 1.216 | 1.229 | 1.208 |
Jiangsu | 1.906 | −0.450 | −0.043 | 0.108 | 0.111 |
Zhejiang | −0.478 | 0.499 | −2.121 | −3.685 | −1.341 |
Anhui | 4.764 | −0.062 | 0.113 | 0.127 | 0.678 |
Fujian | 5.094 | −2.242 | −1.069 | −1.626 | −0.750 |
Jiangxi | 0.983 | −0.052 | 0.126 | 0.126 | 0.181 |
Shandong | 0.020 | 0.063 | 0.101 | 0.068 | 0.071 |
Henan | 6.298 | −0.135 | −0.025 | −0.034 | 0.780 |
Hubei | −0.178 | −0.020 | 0.094 | 0.099 | 0.021 |
Hunan | −2.233 | 0.024 | 0.141 | 0.166 | −0.209 |
Guangdong | 2.142 | −0.097 | 0.054 | 0.103 | 0.292 |
Guangxi | −0.175 | 0.059 | 0.148 | 0.173 | 0.080 |
Hainan | 1.164 | 1.271 | 1.372 | 1.451 | 1.326 |
Chongqing | 1.052 | 1.099 | 1.189 | 1.293 | 1.162 |
Sichuan | −0.586 | −0.220 | 0.085 | 0.149 | −0.093 |
Guizhou | 0.997 | 1.297 | 1.618 | 2.364 | 1.578 |
Yunnan | 9.477 | −4.281 | −0.767 | −0.381 | −0.496 |
Shaanxi | 1.155 | 1.748 | 2.830 | 3.487 | 2.377 |
Gansu | 4.777 | −1.010 | −1.051 | −1.126 | −0.275 |
Qinghai | 1.109 | 1.178 | 1.233 | 1.234 | 1.198 |
Ningxia | 2.136 | 3.294 | 4.613 | 3.414 | 3.603 |
Xinjiang | −77.817 | −10.592 | −1.050 | −0.500 | −14.356 |
Year | Technical Efficiency | Capital Output Elasticity | Water Output Elasticity | Total Output Elasticity | Standard Deviation | Relative Variability | ||||
---|---|---|---|---|---|---|---|---|---|---|
Nation | Northeast | Nation | Northeast | Nation | Northeast | Nation | Northeast | Nation | Nation | |
2004 | 0.563 | 0.813 | 0.069 | 0.12 | 0.308 | 0.273 | 0.377 | 0.393 | 0.205 | 0.364 |
2005 | 0.555 | 0.808 | 0.089 | 0.132 | 0.321 | 0.274 | 0.41 | 0.406 | 0.207 | 0.373 |
2006 | 0.547 | 0.804 | 0.112 | 0.153 | 0.331 | 0.266 | 0.443 | 0.419 | 0.21 | 0.384 |
2007 | 0.539 | 0.799 | 0.138 | 0.199 | 0.358 | 0.297 | 0.496 | 0.496 | 0.212 | 0.394 |
2008 | 0.53 | 0.795 | 0.172 | 0.241 | 0.376 | 0.32 | 0.548 | 0.561 | 0.214 | 0.405 |
2009 | 0.522 | 0.79 | 0.218 | 0.283 | 0.403 | 0.334 | 0.621 | 0.617 | 0.217 | 0.415 |
2010 | 0.513 | 0.785 | 0.232 | 0.299 | 0.416 | 0.335 | 0.648 | 0.634 | 0.219 | 0.426 |
2011 | 0.505 | 0.78 | 0.247 | 0.309 | 0.42 | 0.319 | 0.667 | 0.628 | 0.221 | 0.438 |
2012 | 0.496 | 0.775 | 0.258 | 0.325 | 0.421 | 0.313 | 0.679 | 0.638 | 0.223 | 0.45 |
2013 | 0.488 | 0.77 | 0.268 | 0.333 | 0.426 | 0.308 | 0.694 | 0.641 | 0.225 | 0.461 |
2014 | 0.479 | 0.765 | 0.276 | 0.341 | 0.441 | 0.311 | 0.717 | 0.652 | 0.227 | 0.474 |
2015 | 0.47 | 0.76 | 0.277 | 0.35 | 0.44 | 0.318 | 0.717 | 0.668 | 0.229 | 0.486 |
2016 | 0.462 | 0.755 | 0.292 | 0.357 | 0.462 | 0.327 | 0.754 | 0.684 | 0.23 | 0.499 |
2017 | 0.453 | 0.749 | 0.313 | 0.39 | 0.48 | 0.362 | 0.793 | 0.752 | 0.232 | 0.512 |
2018 | 0.445 | 0.744 | 0.319 | 0.397 | 0.494 | 0.381 | 0.813 | 0.778 | 0.234 | 0.525 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Wang, H.; Tong, J.; Ma, J.; Zhang, F.; Wu, S. Technical Efficiency of China’s Agriculture and Output Elasticity of Factors Based on Water Resources Utilization. Water 2020, 12, 2691. https://doi.org/10.3390/w12102691
Yang S, Wang H, Tong J, Ma J, Zhang F, Wu S. Technical Efficiency of China’s Agriculture and Output Elasticity of Factors Based on Water Resources Utilization. Water. 2020; 12(10):2691. https://doi.org/10.3390/w12102691
Chicago/Turabian StyleYang, Shiliang, Huimin Wang, Jinping Tong, Jianfeng Ma, Fan Zhang, and Shijuan Wu. 2020. "Technical Efficiency of China’s Agriculture and Output Elasticity of Factors Based on Water Resources Utilization" Water 12, no. 10: 2691. https://doi.org/10.3390/w12102691
APA StyleYang, S., Wang, H., Tong, J., Ma, J., Zhang, F., & Wu, S. (2020). Technical Efficiency of China’s Agriculture and Output Elasticity of Factors Based on Water Resources Utilization. Water, 12(10), 2691. https://doi.org/10.3390/w12102691