Determination of the Bioaccumulative Potential Risk of Emerging Contaminants in Fish Muscle as an Environmental Quality Indicator in Coastal Lagoons of the Central Mexican Pacific
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Sample Collection
2.2. Sample Processing
2.3. Analysis of ECs
3. Calculation
3.1. Ecological Risk Factors
3.2. Human Health Risk Factor
3.3. Bioaccumulative Potential Risk
4. Results and Discussion
5. Conclusions and Comments
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Thompson, E. Indicators of Anthropogenic Change and Biological Risk in Coastal Aquatic Environments Earth Systems and Environmental Sciences. Encyclopedia of the Anthropocene. Elsevier 2018, 3, 97–124. [Google Scholar]
- Omar, T.F.T.; Aris, A.Z.; Yusoff, F.M.; Mustafa, S. Occurrence, distribution, and sources of emerging organic contaminants in tropical coastal sediments of anthropogenically impacted Klang River estuary, Malaysia. Mar. Pollut. Bull. 2017, 131, 284–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mankes, F.; Silver, C. Pharmaceutical Dispensing and Wasting In Health Care Facilities, Amounts, Costs and Evaluation of Potential Ecologic Effects. SOJ Pharm. Pharm. Sci. 2017, 4, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Richardson, S.D.; Kimura, S.Y. Water analysis: Emerging contaminants and current issues. Anal. Chem. 2016, 88, 546–582. [Google Scholar] [CrossRef] [PubMed]
- Gros, M.; Petrovic, M.; Ginebreda, A.; Barcelo, D. Removal of pharmaceuticals during wastewater treatment and environmental risk assessment using hazard indexes. Environ. Int. 2009, 36, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Schröder, P.; Helmreich, B.; Skrbic, B.; Carballa, M.; Papa, M.; Pastore, C.; Emre, Z.; Oehmen, A.; Langenhoff, A.; Molinos, M.; et al. Status of hormones and painkillers in wastewater effluents across several European states—Considerations for the EU watch list concerning estradiols and diclofenac. Environ. Sci. Pollut. Res. 2016, 23. [Google Scholar] [CrossRef] [PubMed]
- Wolf, J.; Ruehl-Fehlert, C.; Segner, H.; Weber, K.; Hardisty, J. Pathology working group review of histopathologic specimens from three laboratory studies of diclofenac in trout. Aquat. Toxicol. 2013, 146, 127–136. [Google Scholar] [CrossRef] [Green Version]
- Galar-Martínez, M.; García-Medina, S.; Gómez-Olivan, L.M.; Pérez-Coyotl, I.; Mendoza-Monroy, D.J.; Arrazola-Morgain, R.E. Oxidative stress and genotoxicity induced by ketorolac on the common carp Cyprinuscarpio. Environ. Toxicol. 2016, 1035–1043. [Google Scholar] [CrossRef]
- Al-Shami, S.; Yap, C.; Wong, K.; Al-qahtani, S.; Alsabih, I.; Al-Zaqri, N. Ecological risk assessments of heavy metals in surface sediments collected from Haqal coastal waters (Tabuk Region), Saudi Arabia. Appl. Ecol. Environ. Res. 2019, 17, 3065–3075. [Google Scholar] [CrossRef]
- Stadnicka, J.; Schirmer, K.; Ashauer, R. Predicting concentrations of organic chemicals in fish by using toxicokinetic models. Environ. Sci. Technol. 2012, 46, 3273–3280. [Google Scholar] [CrossRef]
- Zenker, A.; Cicero, M.; Prestinaci, F.; Bottoni, P.; Carere, M. Bioaccumulation and biomagnification potential of pharmaceuticals with a focus to the aquatic environment. J. Environ. Manag. 2014, 133, 378–387. [Google Scholar] [CrossRef] [PubMed]
- USEPA. Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms, 4th ed.; US Environmental Protection Agency: Wahington, DC, USA, 2002.
- Hazrat, A.; Ezzat, K.; Ikram, I. Environmental Persistence, Toxicity, and Bioaccumulation. J. Environ. Chem. Ecotoxicol. 2019. [Google Scholar] [CrossRef] [Green Version]
- Tonnelier, A.; Coecke, S.; Zaldívar, J.-M. Screening of chemicals for human bioaccumulative potential with a physiologically based toxicokinetic model. Arch. Toxicol. 2011, 86, 393–403. [Google Scholar] [CrossRef] [Green Version]
- INEGI. Intercensal Survey of Population and Housing. 2015; National Institute of Statistic and Geography, México 2015. Available online: http://www.inegi.org.mx (accessed on 5 April 2020).
- Ramsar. Ramsar Sites List. Ramsar Convention. 2019. Available online: https://www.ramsar.org/document/the-list-of-wetlands-of-international-importance-theramsar-list (accessed on 5 April 2020).
- Jenkins, J.; Bart, H.; Bowker, J.; Bowser, J.; Macmillan, J.; Nickum, J.; Rose, J.; Sorensen, P. Guidelines for the Use of Fishes in Research; American Fisheries Society: Bethesda, MD, USA, 2014. [Google Scholar]
- Huerta, B.; Rodríguez-Mozaz, S.; Lazorchak, J.; Barcelo, D.; Batt, A.; Wathen, J.; Stahl, L. Presence of pharmaceuticals in fish collected from urban rivers in the U.S. EPA 2008–2009 National Rivers and Streams Assessment. Sci. Total Environ. 2018, 634, 542–549. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, A.; Mohammad, A.; Mottaleb, B.; Brooks, W.; Chambliss, K. Analysis of Pharmaceuticals in Fish Using Liquid Chromatography-Tandem Mass Spectrometry. Anal. Chem. 2007, 79, 3155–3163. [Google Scholar] [CrossRef]
- Padrón, M.E.; Afonso-Olivares, C.; Sosa-Ferrera, Z.; Santana-Rodríguez, J. Microextraction techniques coupled to liquid chromatography with mass spectrometry for the determination of organic micropollutants in environmental water samples. Molecules 2014, 19, 10320–10349. [Google Scholar] [CrossRef] [PubMed]
- Arguello-Pérez, M.; Mendoza-Pérez, J.; Tintos-Gómez, A.; Ramírez-Ayala, E.; Godínez-Domínguez, E.; Silva-Bátiz, F. Ecotoxicological Analysis of Emerging Contaminants from Wastewater Discharges in the Coastal Zone of Cihuatlán (Jalisco, Mexico). Water 2019, 11, 1386. [Google Scholar] [CrossRef] [Green Version]
- Hakanson, L. An Ecological Risk Index for Aquatic Pollution Control—A Sedimentological Approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Grabicova, K.; Lindberg, R.; Östman, M.; Grabic, R.; Randak, T.; Joakim Larsson, D.G.; Fick, J. Tissue-specific bioconcentration of antidepressants in fish exposed to effluent from a municipal sewage treatment plant. Sci. Total Environ. 2014, 488–489, 46–50. [Google Scholar] [CrossRef]
- Carlsson, G.; Norrgren, L. Synthetic musk toxicity to early life stages of zebrafish (Danio rerio). Arch. Environ. Contam. Toxicol. 2004, 46, 102–105. [Google Scholar] [CrossRef]
- Cleuvers, M. Mixture Toxicity of the Anti-Inflammatory Drugs Diclofenac, Ibuprofen, Naproxen, and Acetylsalicylic Acid. Ecotoxicol. Environ. Saf. 2004, 59, 309–315. [Google Scholar] [CrossRef]
- Mohebi Derakhsh, P.; Mashinchian Moradi, A.; Sharifpour, I.; Jamili, S. Toxic effects of diclofenac on gills, liver and kidney of Cyprinus carpio. Iran. J. Fish. Sci. 2018, 19, 735–747. [Google Scholar] [CrossRef]
- Keitel-Gröner, F.; Höhne, C.; Kleiner, W.; Kloas, W. Chronic diclofenac exposure affects gill integrity and pituitary gene expression and displays estrogenic activity in nile tilapia (Oreochromisniloticus). Chemosphere 2017, 166. [Google Scholar] [CrossRef]
- Ji, K.; Liu, X.; Lee, S.; Kang, S.; Kho, Y.; Choi, K. Effects of non-steroidal anti-inflammatory drugs on hormones and genes of the hypothalamic-pituitary-gonad axis, and reproduction of zebrafish. J. Hazard. Mater. 2013, 254–255, 242–251. [Google Scholar] [CrossRef] [PubMed]
- Espino-Barr, E.; Cabral-Solís, E.G.; García-Boa, A.; Puente-Gómez, M. Marine Species with Commercial Value on the Coast of Jalisco, Mexico. SAGARPA; National Fisheries Institute: Washington, DC, USA, 2004; Volume 145. [Google Scholar]
- Espino-Barr, E.; Cruz-Romero, M.; García-Boa, A. Marine Species with Commercial Value on the Coast of Colima, Mexico. CONABIO; National Fisheries Institute: Washington, DC, USA, 2003; Volume 115. [Google Scholar]
- Schrenk, D.; Cartus, A. Chemical Contaminants and Residues in Food, 2nd ed.; Woodhead Publishing: Cambridge, UK, 2017. [Google Scholar]
- Tsagareli, M.; Tsiklauri, N.; Nozadze, I.; Gurtskaia, G. Tolerance effects of non-steroidal anti-inflammatory drugs microinjected into central amygdala, periaqueductal grey, and nucleus raphe: Possible cellular mechanism. Neural Regen. Res. 2012, 7, 1029–1039. [Google Scholar] [CrossRef]
Analyte | Linear Range (ng/g) | LOD (ng/g) | LOQ (ng/g) | MDL (ng/g) |
---|---|---|---|---|
Diclofenac | 38.5–3000 | 1.15 | 3.83 | 33.65 |
Ibuprofen | 25.1–2700 | 3.21 | 10.66 | 45.92 |
Ketorolac | 14.0–2500 | 1.32 | 4.44 | 40.88 |
Naproxen | 45.8–3200 | 0.97 | 3.25 | 27.93 |
Contaminant | Molecular Formula | pKa | Solubility in Water (mg/L) | EC50 Daphnia Magna 48 h (mg/L) |
---|---|---|---|---|
Diclofenac | C14H11NCl2O2 | 4.15 | 19.4 | 68.30 [24] |
Ibuprofen | C13H18O2 | 5.2 | 21 | 101.2 [25] |
Ketorolac | C15H13NO3 | 3.84 | 15 | 109.2 [24] |
Naproxen | C14H14O3 | 4.15 | 15.9 | 166.3 [25] |
BPR | Risk Classification |
---|---|
<1 | Low |
1–10 | Moderate |
11–100 | Considerable |
>100 | Very High |
Site “A” | |||
---|---|---|---|
Fish Species | BCF | BPR | Classification |
Acanthurus xanthopterus | 8.4 | 26.7 | Considerable |
Ariopsis felis | 19.3 | 0.0 | Nd |
Caranx caninus | 9.3 | 0.0 | Nd |
Chanos chanos | 11.1 | 7.1 | Moderate |
Gerres cinereus | 3.6 | 0.0 | Nd |
Haemulopsis elongatus | 9.0 | 0.0 | Nd |
Lutjanus peru | 3.1 | 1.9 | Moderate |
Mugil curema | 24.1 | 0.0 | Nd |
Paralichthys californicus | 13.7 | 0.0 | Nd |
Pseudupeneus grandisquamis | 15.7 | 0.5 | Low |
Selene peruviana | 7.1 | 0.0 | Nd |
Site “B” | |||
---|---|---|---|
Fish Species | BCF | BPR | Classification |
Ariopsis felis | 13.5 | 26.7 | Considerable |
Caranx caninus | 19.3 | 0.0 | Nd |
Centropomus robalito | 1.8 | 0.0 | Nd |
Synodus lacertinus | 22.1 | 7.1 | Moderate |
Lutjanus peru | 6.5 | 0.0 | Nd |
Mugil curema | 6.1 | 0.0 | Nd |
Sarda orientalis | 4.1 | 1.9 | Moderate |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arguello-Pérez, M.Á.; Ramírez-Ayala, E.; Mendoza-Pérez, J.A.; Monroy-Mendieta, M.M.; Vázquez-Guevara, M.; Lezama-Cervantes, C.; Godínez-Domínguez, E.; Silva-Bátiz, F.d.A.; Tintos-Gómez, A. Determination of the Bioaccumulative Potential Risk of Emerging Contaminants in Fish Muscle as an Environmental Quality Indicator in Coastal Lagoons of the Central Mexican Pacific. Water 2020, 12, 2721. https://doi.org/10.3390/w12102721
Arguello-Pérez MÁ, Ramírez-Ayala E, Mendoza-Pérez JA, Monroy-Mendieta MM, Vázquez-Guevara M, Lezama-Cervantes C, Godínez-Domínguez E, Silva-Bátiz FdA, Tintos-Gómez A. Determination of the Bioaccumulative Potential Risk of Emerging Contaminants in Fish Muscle as an Environmental Quality Indicator in Coastal Lagoons of the Central Mexican Pacific. Water. 2020; 12(10):2721. https://doi.org/10.3390/w12102721
Chicago/Turabian StyleArguello-Pérez, Miguel Ángel, Eduardo Ramírez-Ayala, Jorge Alberto Mendoza-Pérez, María Magdalena Monroy-Mendieta, Miguel Vázquez-Guevara, Carlos Lezama-Cervantes, Enrique Godínez-Domínguez, Francisco de Asís Silva-Bátiz, and Adrián Tintos-Gómez. 2020. "Determination of the Bioaccumulative Potential Risk of Emerging Contaminants in Fish Muscle as an Environmental Quality Indicator in Coastal Lagoons of the Central Mexican Pacific" Water 12, no. 10: 2721. https://doi.org/10.3390/w12102721
APA StyleArguello-Pérez, M. Á., Ramírez-Ayala, E., Mendoza-Pérez, J. A., Monroy-Mendieta, M. M., Vázquez-Guevara, M., Lezama-Cervantes, C., Godínez-Domínguez, E., Silva-Bátiz, F. d. A., & Tintos-Gómez, A. (2020). Determination of the Bioaccumulative Potential Risk of Emerging Contaminants in Fish Muscle as an Environmental Quality Indicator in Coastal Lagoons of the Central Mexican Pacific. Water, 12(10), 2721. https://doi.org/10.3390/w12102721