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Abstract: The COVID-19 pandemic is adversely impacting food and nutrition security and requires
urgent attention from policymakers. Sustainable intensification of agriculture is one strategy that
attempts to increase food production without adversely impacting the environment, by shifting from
water-intensive crops to other climate-resistant and nutritious crops. This paper focuses on the Indian
state of Andhra Pradesh by studying the impact of shifting 20% of the area under paddy and cotton
cultivation to other crops like millets and pulses. Using FAO’s CROPWAT model, along with monsoon
forecasts and detailed agricultural data, we simulate the crop water requirements across the study area.
We simulate a business-as-usual base case and compare it to multiple crop diversification strategies
using various parameters—food, calories, protein production, as well as groundwater and energy
consumption. Results from this study indicate that reduced paddy cultivation decreases groundwater
and energy consumption by around 9–10%, and a calorie deficit between 4 and 8%—making up
this calorie deficit requires a 20–30% improvement in the yields of millets and pulses. We also
propose policy interventions to incentivize the cultivation of nutritious and climate-resistant crops
as a sustainable strategy towards strengthening food and nutrition security while lowering the
environmental footprint of food production.

Keywords: sustainable intensification; crop diversification; COVID-19; food security; nutrition
security; water security

1. Introduction

The disruptions caused by the COVID-19 pandemic extend across the world and to all spheres
of human activity. As a result, emerging and developing nations are likely to see a negative growth
rate in 2020 according to the World Economic Outlook, and in the case of India, the growth rate is
estimated to be 1.9% [1]. In particular, in the context of agriculture, Food and Agriculture Organization
(FAO) and World Food Programme (WFP) have predicted that the COVID-19 pandemic may result
in food crises of “biblical proportion” [2,3]. The causes are not far to seek: (i) disruption to supply
chains at different levels, such as global, national, and regional, (ii) lack of consumer demand due to
plummeting income, and (iii) unavailability of agricultural inputs, such as seed, fertilizer, pesticide,
and, most importantly, labor. The shortage of labor, followed by outward migration due to COVID-19,
can be particularly disruptive in the more impoverished regions of the world (e.g., developing nations
like India), where small-holdings farmers typically do not rely extensively on farm mechanization.
Labor-intensive crops, such as paddy, which is one of the staple food grains around the world, could be
severely impacted, particularly in India. In some regions, policymakers are planning to promote crops,
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such as maize, in place of paddy in anticipation of labor shortages [4]. The International Monetary
Fund (IMF) has also noted an almost 20% decline in the price of cotton compared to October 2019 [5].
With further sluggish consumer demand predicted in the remainder of 2020 and an uncertain future,
this can result in economic hardships for cotton farmers all over the world. What impact these
challenges will have on crop cultivation in the upcoming monsoon agriculture season all over South
Asia is as yet unclear.

At the policy level, the most significant issue is to sustain farm incomes in a nation like India,
where there are around 140 million farm households. [6]. The Indian economy has been experiencing
an economic slowdown in recent years; we have already witnessed a declining trend in consumption
expenditure [7]. The lockdown implemented following the COVID-19 outbreak may lead to a
demand-supply failure [1]. Further, following the classic work by Sen [8], the present situation could be
viewed as a failure of exchange and lack of entitlement capacity. For instance, the pandemic could affect
peoples’ endowment capacity, i.e., labor, and as a result, there would be a deficiency of demand [1],
which further aggravates food and nutritional insecurity. It is anticipated that such a situation could
push a large number of households, especially farming and informal labor, into the poverty trap,
resulting in malnutrition and hunger. Overcoming these challenges will be critical in tiding over the
current crisis and may help imbibe useful lessons for the future.

As the global population inches towards 10 billion by the year 2050 [9], meeting the growing
food demands while reducing the environmental impacts of agriculture will be of prime importance
for policymakers, practitioners, and researchers. While the green revolution was successful in
considerably increasing food production and also in improving the economic status of farmers [10],
intensive groundwater-fed agriculture across the world has resulted in plummeting groundwater levels,
increased energy costs, biodiversity loss, greenhouse gas emissions, losses in soil fertility, and also
the migration of farmers from rural to urban areas [11–19]. Sustainable intensification, conservation
agriculture, and nutrition-sensitive agriculture are some of the approaches that attempt to reduce
these negative impacts [20–25]. Sustainable intensification (SI) of agriculture attempts to increase
agricultural output without causing adverse environmental impacts, and this could be viewed as a
win-win situation, given the pandemic condition [23,26,27]. One of the common strategies adopted in
SI is the cultivation of millets and pulses rather than the staple cereals.

Some researchers argue that SI strategies may not be advantageous as the staple cereals have higher
yields and are more calorie-dense, thereby contributing significantly to food security [26]. Nonetheless,
in the context of the COVID-19 pandemic, it becomes imperative to look at food and nutrition security
at multiple scales—from a household to a global level. While the world at large may have enough food
to feed the entire population, supply chain disruptions and export restrictions on essential items may
make it difficult for food to reach many impoverished households [2]. For instance, India depends on
the import of pulses since its production does not satisfy demand [28]. Additional transaction costs
associated with the demand side, such as psychological restrictions on visiting the market for fear of
possible contraction of the disease, and lack of confidence about the future, as well as the supply side,
such as costs required to bring back labor, and the possibility of increasing wage due to shortage of
labor [1], may further worsen production and demand for agricultural output. In the current scenario,
this may endanger nutrition security in countries like India. Thus, by adopting SI practices in food
production, nations can aim to achieve self-sufficiency.

Many researchers have opined that millets, due to their relative climate resilience and high
nutritional value, hold an edge over other staples like wheat and rice [29–31]. Similarly, FAO has also
noted that pulses will play an essential role in furthering the food and nutritional security in the coming
decades [32]. However, the global per capita consumption of both millets and pulses is relatively
low [32,33]. Moreover, the cultivation of pulses is beneficial to soil health as they naturally fix nitrogen
in the soil, which reduces the need for fertilizers, thereby reducing greenhouse gas emissions [32].
Thus, diversifying cropping patterns, smoothening income in the present situation, by increasing the
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cultivation of millets and pulses, will not only address food and nutrition security but will also help as
a climate adaptation strategy.

Bringing about reforms in the agricultural sector that can have far-reaching consequences on water,
food, and nutrition security is a daunting task. The notion of never letting a “good crisis go to waste”
applies in this context [34]. The International Crops Research Institute for the Semi-Arid Tropics
(ICRISAT) has suggested that the post-COVID situation has given a unique opportunity to design
agricultural policies to transform food systems [6]. They suggest it is imperative to stop favoring
the traditional staple cereals (rice and wheat), which have severe environmental impacts and move
towards a model where greater emphasis is laid on nutrition by diversifying diets. Indeed, the Indian
government, along with the World Food Programme (WFP), has brought out a policy document
recommending crop diversification into millets and pulses, among a slew of other measures, to ensure
food and nutrition security while ensuring sustainability in food production. For example, the Indian
state of Odisha has implemented a special program for the promotion of millet cultivation in tribal areas
of the state in 2016 [35]. The state government of Odisha has planned to improve the cultivation and
production of millets by including them in the Public Distribution System (PDS). Similarly, the state of
Andhra Pradesh launched a program calling for a “comprehensive revival of millets” in seven districts
in 2016 [36].

The objectives of this research are to evaluate the effect of adopting various crop diversification
strategies on food production and its implications on water resources and energy consumption.
In particular, this study aims to quantify the impact of diversifying from labor-intensive crops like
paddy and cotton to include millets and pulses without increasing the quantum of arable land.
The quantification incorporates various metrics, such as the tons of food produced, their nutritional
content (calories and grams of protein), and also the savings in groundwater and energy consumption
by adopting the crop diversification strategies. This research also aims to extract lessons for the future
in adopting SI practices in the coming decades.

2. Methodology

2.1. Estimating Crop Water Requirement

This research uses FAO’s CROPWAT 8.0 model for estimating irrigation water requirements for
various crops [37]. CROPWAT uses rainfall, reference evapotranspiration (ETo), soil type, and crop
information in its simulation. It uses a soil water balance approach to estimate the irrigation water
requirement for each crop in its cropping period.

This study focuses on the south-Indian state of Andhra Pradesh for this analysis (Figure 1).
The state occupies an area of more than 160,000 km2, of which almost 40% is under agriculture [38].
This region is characterized by semi-arid and sub-humid climatic zones, with an average rainfall of
around 940 mm, which it receives over two monsoon spells—southwest and northeast. Agriculture
creates employment opportunities for approximately 60% of the population in the state [39]. After the
bifurcation of the state in 2014, the state government has adopted various interventions to provide
sustainable livelihood opportunities to the farmers [39]. As per Suryanarayana et al.’s [40] estimation,
the state stood at 11th position in terms of human index value in 2011, i.e., 0.485.

A large amount of data on agriculture is available for the study area, including the different crops
cultivated (see Table 1) and their corresponding acreages and yields [41]. This information is available
for all 13 districts in the state. The Indian Meteorological Department’s (IMD) long-range forecast for the
upcoming 2020 southwest monsoon has predicted that there is an 82% chance that the 2020 southwest
monsoon rainfall amounts would be within 10% of the normal rainfall [42]. Therefore, CROPWAT
simulations have incorporated three rainfall scenarios—normal rainfall, 90% of normal rainfall,
and 110% of normal rainfall. Normal rainfall for each district in the study area is obtained from the
Andhra Pradesh Water Resources Information and Management System (APWRIMS) [43]. Historical
ETo data is obtained from the publicly-available India Water Portal [44]. For each district, minimum,
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maximum, and average ETo rates are obtained and used in the CROPWAT simulations. Crop sowing
dates for each crop in each district are incorporated in the CROPWAT simulations based on available
data [41]. It is assumed that the sowing date for every crop within each district varies within a
one-month window of time.Water 2020, 12, x FOR PEER REVIEW 4 of 13 
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Figure 1. The state of Andhra Pradesh in southern India and the spatial distribution of normal annual
rainfall across the districts of Andhra Pradesh.

Table 1. Major crops cultivated in Andhra Pradesh in the Kharif season. The area represents the
average area under cultivation from 2013–2018. The last column is the overall percentage of area under
groundwater irrigation in the study area [41].

Crop Area under Cultivation (′000 ha) Percentage Irrigated by
Groundwater (%)

Maize 106.8 20.7
Paddy 1477.7 14.7

Bengal gram 0.3 4.3
Black gram 44.2 12.7
Green gram 14.3 9.1
Horse gram 24.1 0.5
Red gram 266.4 2.2

Bajra (pearl millet) 40.2 19.2
Jowar (sorghum) 40.8 3.5

Ragi (finger millet) 26.9 1.8
Groundnut 673.2 4.9

Chilies 87.3 35.4
Cotton 644.5 5.9

Sugarcane 98.8 41.4

For each crop, nine simulations are run with three rainfall values, viz. normal, 90% of normal, and
110% of normal, and three ETo values, viz. minimum, average, and maximum from historical ETo data.
The final predicted irrigation water requirement for each crop is obtained as the average of all nine
simulations. This water requirement is multiplied by the area under cultivation for the corresponding
crop to obtain the total water consumption of each crop, which are then summed to obtain the total
irrigation groundwater requirement. We have restricted the area under cultivation to the area under
groundwater irrigation in each district. The total area under groundwater irrigation in the study area
is around half a million hectares.
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2.2. Evaluating Crop Diversification Strategies

Given the current context of the COVID-19 pandemic, it is proposed to reduce the area under paddy
and cotton cultivation by 20%. Accordingly, three scenarios are tested: (A). Base case (no reductions), (B).
Reduction in paddy cultivation by 20%, and (C). Reduction in both paddy and cotton cultivation
by 20% each. While there is no direct evidence on whether there will indeed be such declines in
the upcoming sowing season, initial reports suggest an almost 20% decline in the procurement of
wheat from the preceding harvest season (Rabi), which has also been impacted by the pandemic [45].
The price of cotton has fallen by almost 20% due to the pandemic [5], which may disincentivize its
cultivation this season. Taking these factors into account, we have proposed reductions in paddy and
cotton cultivation by 20% each in the upcoming sowing season. The objective of this research is to
evaluate the consequences of these scenarios, which may offer us valuable lessons for the future.

The proposed reduction in paddy cultivation will naturally result in lower food production and
a corresponding decline in calories and grams of proteins. For overcoming this nutrition deficit,
the land “freed” from paddy and cotton cultivation is distributed among other crops. To maintain
crop diversity, the land is distributed among a variety of crops: one crop each from amongst cereals
(other than paddy), millets, oilseeds, and pulses. Table 2 lists the various crops grown in the study
area, their average yields, calorific, and protein contents. By selecting those crops with the highest
yields and calorific content, the following four crops are chosen: maize, pearl millet, groundnut,
and black gram. Although black gram has a relatively lower yield and a marginally lower calorific
value than Bengal gram, it is more widely grown in the study region (see Table 1). Therefore, it is
decided to choose black gram over other pulses.

Table 2. Average yields and nutritional content (energy and protein) of various crops. Yield data is the
average of yields from 2013–2017 [41]. Data on the nutritional content of various crops obtained from
multiple sources [29,32,46].

Crop Average Yield (kg ha−1) Energy (kcal kg−1) Protein (g kg−1)

Maize 3764.7 3008.3 72.7
Paddy 4073.7 3695.4 69.5

Bengal gram 1322.5 3320 212
Black gram 856.6 3160 239
Green gram 644.0 3250 209
Horse gram 269.2 3090 253
Red gram 595.1 3060 206

Bajra (pearl millet) 1738.3 3630 114
Jowar (sorghum) 1294.9 3290 108.2

Ragi (finger millet) 959.3 3340 74.4
Groundnut 1658.2 5373.8 230.4

Several strategies for distributing the land among the four chosen crops are attempted:

1. Equal distribution
2. Proportionate distribution
3. Crop-ranking distribution based on average yield
4. Crop-ranking distribution based on maximum yield
5. Crop-ranking distribution based on a modified average yield

In the first and most straightforward approach, the area to be distributed is split evenly among all
the crops. In the second strategy, the area is distributed in the proportion of the existing area cultivated
of each crop. For instance, if crops P, Q, and R are currently cultivating areas of A1, A2, and A3,

respectively, then crop P would be allocated an area in the proportion of A1/
∑

Ai. In the third strategy,
the crops are ranked in ascending order based on their average yields over the period 2013–2017 [41].
The crop with the highest rank, i.e., highest average yield, would get the largest proportion (ratio of
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its rank to the sum of all ranks) of the area to be redistributed. In strategy 4, the crops are ranked in
ascending order based on their maximum yields over the period 2013–2017 [41]. The crop proportions
are then computed similar to strategy 3. In strategy 5, the ranking of the crops is the same as in
strategy 3, but the average yield is multiplied by a common factor F (F ≥ 1). The objective of this
strategy is to identify the value of F that would be sufficient to “break-even” with the base case in
terms of food produced and its nutrition content.

The objective of attempting these different strategies is to quantify and compare them with the
base case (where paddy and cotton are unchanged). For each strategy, the total tons of food, calories,
and grams of protein produced are computed using the yield, calorific, and protein content values
presented in Table 2. (Note: The calculation has used yield values at the district scale, while Table 2
lists the average for the whole state.) Strategy 4 uses maximum yields obtained between 2013 and 2017,
while the remaining strategies use average yields [41]. The groundwater consumed in producing these
crops is estimated by multiplying the area under cultivation of each crop with the corresponding
irrigation water requirement, as computed in Section 2.1. The energy consumed in extracting this
groundwater is computed using the following equation:

E =
ρgVH
η

, (1)

where E is the energy consumed (in kW-h) in extracting the groundwater volume V (m3) from an
average depth of H (m) below the ground level, and ρ, g, and η are the density of water (1000 kg/m3),
acceleration due to gravity (9.81 m/s2), and the efficiency of the pumps (assumed to be 70%) that extract
the groundwater, respectively. The average depth to groundwater level data is obtained for May
(pre-monsoon) and November (post-monsoon) from 2014–2019 [47]. The average depth to groundwater
level is used in the energy computation.

3. Results and Discussion

3.1. Irrigation Water Requirement

The irrigation water requirement for each crop is obtained, as shown in Table 3. Based on the
average water required, it is clear that sugarcane, paddy, and cotton are the most water-intensive crops
in this region, while crops like millets and pulses are better suited to regions with low rainfall.

Table 3. Irrigation water requirement for major crops cultivated in the study area. The numbers listed
represent the range (minimum to maximum) and average across the entire region.

Crop Range of Irrigation Water
Requirement (mm)

Average Irrigation Water
Requirement (mm)

Maize 9–320 117
Paddy 153–1037 478

Bengal gram 3–387 150
Black gram 0–225 97
Green gram 3–290 102
Horse gram 14–206 109
Red gram 3–216 88

Bajra (pearl millet) 0–235 77
Jowar (sorghum) 0–294 85

Ragi (finger millet) 0–235 39
Groundnut 0–400 135

Chilies 20–232 127
Cotton 35–490 266

Sugarcane 554–1471 1039
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The crop water requirements for each crop and their corresponding areas are used to estimate the
total water requirement for each district and the entire study area and are given in Table 4. Figure 1
shows the spatial distribution of food production and its associated attributes for the base case across
the study area. On closer analysis of the results, we find that while paddy accounts for around 50% of
the total area under groundwater irrigation across the region, it accounts for almost 56% of the total
groundwater consumption. Paddy, cotton, and sugarcane together account for 73% of the area under
cultivation but consume almost 90% of the total groundwater. Millets and pulses, on the other hand,
while occupying 1.4% and 5.2% of the total cultivated area, only account for 0.4% and 1.7% of the total
groundwater consumed, respectively.

Table 4. Total groundwater consumption across the study area.

District Total Groundwater Consumption (mm3)

Ananthapur 118.2
Chittoor 335.8

East Godavari 84.9
Guntur 104.3
Krishna 143.9
Kurnool 220.0

Prakasam 111.1
S.P.S. Nellore 425.4
Srikakulam 17.1

Visakhapatnam 81.7
Vizianagaram 32.2
West Godavari 374.9
Y.S.R. Kadapa 191.1

Total 2240.6

3.2. Crop Diversification

Crop diversification is implemented using the five strategies, as detailed in Section 2.2, and a
comparison of results between Scenarios A, B, and C is displayed in Table 5. We first discuss the results
of strategies 1–3. From the results, it is clear that these strategies fall short of fully matching the food
and calorific production of the base case by around 5.9–8.0% and 6.3–8.0% in scenario B, and 4.0–6.5%
in scenario C, respectively (see Figures 2 and 3). The reason for this decline is evident since paddy has a
higher yield and calorific content than the crops that replaced it. However, all three strategies produce
more grams of protein (ranging from 0.7–5.7%) than the base case. This increase, too, is evident since
the crops that replace paddy have higher protein content than it. Besides, all three strategies consume
less groundwater than the base case, ranging from 8.4–8.9% for scenario B and 8.9–9.6% for scenario C.
The energy consumption values also show similar reductions.

Table 5. Comparison of food production and associated groundwater and energy consumption between
Scenarios A, B, and C.

Scenario Strategy Food
(million tons)

Energy
(1012 kCal)

Protein
(1011 g)

Groundwater
(billion m3)

Energy
(GW h)

A - 1.30 4.81 1.05 2.24 119.9

B

1 1.19 4.42 1.05 2.04 109.7
2 1.21 4.49 1.07 2.05 110.1
3 1.22 4.50 1.06 2.04 109.8
4 1.30 4.82 1.18 2.04 109.8

5 (K = 1.3) 1.31 4.84 1.18 2.04 109.8

C

1 1.21 4.49 1.08 2.03 109.0
2 1.23 4.58 1.11 2.04 109.5
3 1.24 4.59 1.09 2.03 109.1
4 1.33 4.93 1.22 2.03 109.1

5 (K = 1.2) 1.31 4.83 1.18 2.03 109.1
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In the plot, positive values indicate an increase in the given attribute as compared to the base case and
vice versa.

While strategies 1–3 are unable to match the food production and calorific content of the base case,
strategy 4 surpasses the food production by 0.2% and 2.6%, and calorific content by 0.3% and 2.6% in
scenarios B and C, respectively. While this increase is relatively small, the protein content shows a
remarkable increase of 12.7% and 16.4% in scenarios B and C, respectively. Groundwater and energy
consumption values are comparable to other strategies. In the case of strategy 5, the average yield is
multiplied by a factor K, such that food production and nutritional content would “break-even” with the
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base case. For scenario B, the K value is found to be 1.3 (rounded to the first decimal). In other words,
the average yield of the four crops has to be increased by 30% to produce the same amount of food
grains and nutritional content as the base case. In this strategy, food production, calorific content,
and protein content surpass the base case by 1.1%, 0.7%, and 12.6%, respectively. For scenario C,
the K value is found to be 1.2 (i.e., a 20% increase in average yield). In this strategy, food production,
calorific content, and protein content surpass the base case by 1.0%, 0.6%, and 12.4%, respectively.
The savings in groundwater and energy consumption are comparable to the previous strategies.

It is interesting to note that while groundwater and energy savings are almost uniform across
all strategies, the food production and nutritional content vary widely from one to the other.
In other words, irrespective of the distribution strategy for crop diversification, the net irrigation
water requirement for the entire region remains almost the same. However, in terms of food and
nutrition security, the choice of distribution strategy is crucial. An even more important finding
from this study is that increased yields of crops, such as millets and pulses, are vital to improving
nutritional security. In India, the average yield of millets and pulse is around 25% of that of the yield of
cereals [28,32]. There is tremendous scope for improvement in this yield: for instance, many countries
around the world have yields of chickpea and pigeon pea that are 30–125% higher than India’s. The
results from this study indicate a minimum increase in yields of 20–30% to make crop diversification a
genuinely successful strategy for the sustainable intensification of agriculture.

Across the entire study area, there is a net improvement in food production, nutritional content, as
well as in groundwater and energy consumption in strategy 5 (scenarios B and C). However, the spatial
distribution of these attributes sheds more light on the various regions and their contribution to
the changes observed over the study area (Figures 4 and 5). For instance, more than 50% of the
districts show lower food production (negative change) compared to the base case. Most districts
(five out of seven) that have a net decline in food production also show a decline in calories. However,
in terms of protein, all districts show a positive change irrespective of the decline in food production.
The magnitudes of these changes vary from one district to the other. In terms of groundwater and
energy consumption, there is a marked reduction across the entire study region. Thus, while the food
and nutritional security aspects may be variable across the region, the environmental benefits due
to reduced groundwater and energy consumption will be felt all over the study area. In this study,
the approach used is uniform for the entire region. If instead, a hierarchy of strategies can be developed
from global to regional to local levels tailored to suit local conditions, it may be possible to obtain
favorable outcomes on all fronts.
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Figure 4. Spatial distribution of the impact of crop diversification across the study area for Scenario
B (strategy 5). The values plotted are the percentage change compared to the base case: (a) Food
production (the bar charts represent the corresponding changes in calories and protein production);
(b) Groundwater consumption (the bar chart represents the changes in energy consumption).



Water 2020, 12, 2738 10 of 13
Water 2020, 12, x FOR PEER REVIEW 10 of 13 

 

 
Figure 5. Spatial distribution of the impact of crop diversification across the study area for Scenario 
C (strategy 5). The values plotted are the percentage change compared to the base case: (a) Food 
production (the bar charts represent the corresponding changes in calories and protein production); 
(b) Groundwater consumption (the bar chart represents the changes in energy consumption). 

4. Future Perspectives and Conclusions 

Although the full impact of the COVID-19 pandemic on agriculture may become evident in the 
coming years, this study has attempted to quantify the potential impacts of diversifying crops on 
food and nutritional security. This study has illustrated the efficacy of crop diversification strategies 
for sustainable intensification of agriculture by improving food and nutritional security while 
simultaneously reducing the associated groundwater and energy footprint. The results from this 
study show that crop diversification can indeed be successful in reducing groundwater and energy 
consumption by about 9% in the entire study area. It is difficult, from a policy perspective, to impose 
a Pigouvian tax to minimize externalities associated with water and energy, and hence, diversifying 
towards low water-intensive crops would be a soft and effective measure to plunge over-extraction 
of groundwater and energy consumption. By choosing the appropriate crops and distribution 
strategy, the availability of proteins can be increased by about 12%, while also marginally increasing 
the calorific content of food grains by almost 1%. This study shows that the average yield of millets 
and pulses must increase by 30% to offset a 20% decline in paddy cultivation. This study also 
highlights the need for developing a hierarchy of strategies from the global to the local levels such 
that solutions can be tailored to suit local conditions. 

In terms of policy interventions, we suggest the following: (1). Enabling the availability of seeds 
for millet cultivation through agricultural extension, (2). Minimum support price has to be fixed for 
millet products and their procurement through the Agricultural Produce Market Committees 
(APMCs), (3). Facilitating agricultural credit for farmers cultivating millets, (4). Inclusion of millets 
in the PDS basket across the state (at present, finger millet is distributed in Ananathpur and Chittoor 
districts, and Sorghum in Kurnool, Kadapa, and Krishna districts; [48]), (5). An additional incentive 
for millets cultivating farmers through ‘YSR RythuBharosa’—implemented in 2019, and under this 
scheme, each farming family receives Rs. 12,500 per year [48], (6). The state government should adopt 
a nudging approach by providing information about benefits and schemes related to the cultivation 
of millets through soil health cards, (7). Promote the consumption of millets by conducting fairs at 
the village, district, and state levels, and (8). Special package for promotion of millet cultivation across 
the states. Further, as the state of Andhra Pradesh is quite progressive in the context of zero-budget 
natural farming, there could be a possibility of the increasing area under millets under this program. 
While millets may not be a significant part of household diets at present, their inclusion in future 
diets may become inevitable due to their nutritional benefits and drought-resistance [29,30,49]. 
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(b) Groundwater consumption (the bar chart represents the changes in energy consumption).

4. Future Perspectives and Conclusions

Although the full impact of the COVID-19 pandemic on agriculture may become evident in
the coming years, this study has attempted to quantify the potential impacts of diversifying crops
on food and nutritional security. This study has illustrated the efficacy of crop diversification
strategies for sustainable intensification of agriculture by improving food and nutritional security
while simultaneously reducing the associated groundwater and energy footprint. The results from this
study show that crop diversification can indeed be successful in reducing groundwater and energy
consumption by about 9% in the entire study area. It is difficult, from a policy perspective, to impose a
Pigouvian tax to minimize externalities associated with water and energy, and hence, diversifying
towards low water-intensive crops would be a soft and effective measure to plunge over-extraction of
groundwater and energy consumption. By choosing the appropriate crops and distribution strategy,
the availability of proteins can be increased by about 12%, while also marginally increasing the calorific
content of food grains by almost 1%. This study shows that the average yield of millets and pulses
must increase by 30% to offset a 20% decline in paddy cultivation. This study also highlights the need
for developing a hierarchy of strategies from the global to the local levels such that solutions can be
tailored to suit local conditions.

In terms of policy interventions, we suggest the following: (1). Enabling the availability of seeds for
millet cultivation through agricultural extension, (2). Minimum support price has to be fixed for millet
products and their procurement through the Agricultural Produce Market Committees (APMCs), (3).
Facilitating agricultural credit for farmers cultivating millets, (4). Inclusion of millets in the PDS
basket across the state (at present, finger millet is distributed in Ananathpur and Chittoor districts,
and Sorghum in Kurnool, Kadapa, and Krishna districts; [48]), (5). An additional incentive for millets
cultivating farmers through ‘YSR RythuBharosa’—implemented in 2019, and under this scheme,
each farming family receives Rs. 12,500 per year [48], (6). The state government should adopt a
nudging approach by providing information about benefits and schemes related to the cultivation
of millets through soil health cards, (7). Promote the consumption of millets by conducting fairs
at the village, district, and state levels, and (8). Special package for promotion of millet cultivation
across the states. Further, as the state of Andhra Pradesh is quite progressive in the context of
zero-budget natural farming, there could be a possibility of the increasing area under millets under this
program. While millets may not be a significant part of household diets at present, their inclusion in
future diets may become inevitable due to their nutritional benefits and drought-resistance [29,30,49].
Several researchers have highlighted the need for moving towards diets with lower environmental
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impacts [16,50], in which millets and pulses can play an important role. Future research must focus on
increasing yields of millets and pulses, which can help in transitioning away from extensive rice and
wheat cultivation [51]. With an eye on future food demand, strategies for sustainable intensification of
agriculture must equally prioritize higher yields and environmental conservation.
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