Review of Artificial Downwelling for Mitigating Hypoxia in Coastal Waters
Abstract
:1. Introduction
2. Artificial Downwelling Technologies
- (1)
- Density current generator (DCG), powered by thermal energy, to bring surface water down and bottom water up to an intermediate layer. A wide-area survey of the seafloor at Gokasho Bay, Japan, in 2006, where a DCG worked for ten years, confirmed the DCG effects of avoiding hypoxia and improving benthos [27].
- (2)
- Wind-powered pump. Wind energy is used to overcome the density structure of the ocean and pump warm, oxygen-rich surface water into the bottom sea layers (BOX project) [21].
- (3)
- (4)
- Current-induced artificial downwelling. Semi-diurnal tidal currents exist in many coastal areas, estuaries, and their adjacent areas. This method utilizes the kinetic energy of the surface current to drive downwelling flow to improve DO condition in bottom waters [30].
2.1. Density Current Generator (DCG)
2.2. Wind-Powered Pump
2.3. Wave-Powered Pump
2.4. Current-Induced Artificial Downwelling
3. Overview of Numerical Studies for Artificial Downwelling
4. Overview of the Experimental Studies for Artificial Downwelling
4.1. Laboratory Experiments of Artificial Downwelling Systems
4.1.1. Laboratory Experiments of WEBAP
4.1.2. Laboratory Experiments of OXYFLUX
4.1.3. Laboratory Experiments of DCG
4.1.4. Laboratory Experiments of the Tidal Pump Devices
4.2. Sea Trials of the Artificial Downwelling Systems
4.2.1. Sea Trial of DCG System
4.2.2. Sea Trial of BOX System
5. Environmental Effects of Artificial Downwelling
6. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zillén, L.; Conley, D.J.; Andrén, T.; Andrén, E.; BjöRck, S. Past occurrences of hypoxia in the Baltic Sea and the role of climate variability, environmental change and human impact. Earth Sci. Rev. 2008, 91, 77–92. [Google Scholar] [CrossRef]
- Conley, D.J. Ecology: Save the Baltic Sea. Nature 2012, 486, 463–464. [Google Scholar] [CrossRef] [PubMed]
- Diaz, R.J.; Rosenberg, R. Spreading Dead Zones and Consequences for Marine Ecosystems. Science 2008, 321, 926–929. [Google Scholar] [CrossRef] [PubMed]
- Tilman, D.; Fargione, J.; Wolff, B.; D’Antonio, C.; Dobson, A.; Howarth, R.; Schindler, D.; Schlesinger, W.H.; Simberloff, D.; Swackhamer, D. Forecasting agriculturally driven global environmental change. Science (New York, N.Y.) 2001, 292, 281–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabalais, N.N.; Turner, R.E. [Coastal and Estuar. Studies] Coastal Hypoxia: Consequences for Living Resources and Ecosystems Volume 58||Responses of Nekton and Demersal and Benthic Facuna to Decreasing Oxygen Concentrations; American Geophyical Union: Washington, DC, USA, 2001. [Google Scholar]
- Diaz, R.J.; Rosenberg, R. Marine benthic hypoxia: A review of its ecological effects and the behavioural response of benthic macrofauna. Oceanogr. Mar. Biol. Ann. Rev. 1995, 33, 245–303. [Google Scholar]
- Justi, D.; Legovi, T.; Rottini-Sandrini, L. Trends in oxygen content 1911–1984 and occurrence of benthic mortality in the northern Adriatic Sea. Estuar. Coast. Shelf Sci. 1987, 25, 435–445. [Google Scholar] [CrossRef]
- Walsh, J.; Frederickson, S. Assessing the Hypoxia Threat in U.S. Coastal Waters; Nova Science Publishers: Hauppauge, NY, USA, 2012. [Google Scholar]
- Helly, J.J.; Levin, L.A. Global distribution of naturally occurring marine hypoxia on continental margins. Deep Sea Res.Part I Oceanogr. Res. Pap. 2004, 51, 1159–1168. [Google Scholar] [CrossRef]
- Chan, F.; Barth, J.A.; Lubchenco, J.; Kirincich, A.; Weeks, H.; Peterson, W.T.; Menge, B.A. Emergence of Anoxia in the California Current Large Marine Ecosystem. Science 2008, 319, 920. [Google Scholar] [CrossRef]
- Canfield, D.E.; Stewart, F.J.; Thamdrup, B.; De Brabandere, L.; Dalsgaard, T.; Delong, E.F.; Revsbech, N.P.; Ulloa, O. A Cryptic Sulfur Cycle in Oxygen-Minimum–Zone Waters off the Chilean Coast. Science 2010, 330, 1375–1378. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.C.; Gong, G.C.; Shiah, F.K. Hypoxia in the East China Sea: One of the largest coastal low-oxygen areas in the world. Mar. Environ. Res. 2007, 64, 399–408. [Google Scholar] [CrossRef] [Green Version]
- Rabalais, N.N.; Eugene, T.R.; Díaz, R.J.; Dubravko, J. Global change and eutrophication of coastal waters. Ices J. Mar. Sci. 2009, 7, 1528–1537. [Google Scholar] [CrossRef]
- Conley, D.J.; Carstensen, J.; Vaquer-Sunyer, R.; Duarte, C.M. Ecosystem thresholds with hypoxia. Hydrobiologia 2009, 629, 21–29. [Google Scholar] [CrossRef] [Green Version]
- Stramma, L.; Johnson, G.C.; Sprintall, J.; Mohrholz, V. Expanding Oxygen-Minimum Zones in the Tropical Oceans. Science 2008, 320, 655–658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tyler, R.; Targett, T. Juvenile weakfish Cynoscion regalis distribution in relation to diel-cycling dissolved oxygen in an estuarine tributary. Mar. Ecol.-Prog. Ser. 2007, 333, 257–269. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Zhu, Z.; Lin, J.; Wu, H.; Zhang, J. Distribution of hypoxia and pycnocline off the Changjiang Estuary, China. J. Mar. Syst. 2016, 154, 28–40. [Google Scholar] [CrossRef]
- Sinha, E.; Michalak, A.M.; Balaji, V. Eutrophication will increase during the 21st century as a result of precipitation changes. Science 2017, 357, 405–408. [Google Scholar] [CrossRef] [Green Version]
- Van Meter, K.J.; Van Cappellen, P.; Basu, N.B. Legacy nitrogen may prevent achievement of water quality goals in the Gulf of Mexico. Science 2018, 360, 427–430. [Google Scholar] [CrossRef] [Green Version]
- Boesch, D.F. Barriers and Bridges in Abating Coastal Eutrophication. Front. Mar. Science 2019, 6, 123. [Google Scholar] [CrossRef] [Green Version]
- Stigebrandt, A.; Gustafsson, B.G. Improvement of Baltic Proper Water Quality Using Large-scale Ecological Engineering. Ambio A J. Hum. Environ. 2007, 36, 280–286. [Google Scholar] [CrossRef]
- Andersen, J.H.; Conley, D.J. Eutrophication in coastal marine ecosystems: Towards better understanding and management strategies. Hydrobiologia 2009, 629, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.-P.; Yuan, J.; EHartman, S.; Fan, W.; University, Z.; Centre, N.O. Enhancing the observing capacity for the surface ocean by the use of Volunteer Observing Ship. Acta Oceanolo. Sin. 2019, 38, 114–120. [Google Scholar] [CrossRef]
- Fan, W.; Zhao, R.; Yao, Z.; Xiao, C.; Pan, Y.; Chen, Y.; Jiao, N.; Zhang, Y. Nutrient Removal from Chinese Coastal Waters by Large-Scale Seaweed Aquaculture Using Artificial Upwelling. Water 2019, 11, 1754. [Google Scholar] [CrossRef] [Green Version]
- Fan, W.; Bao, W.; Cai, Y.; Xiao, C.; Zhang, Z.; Pan, Y.; Chen, Y.; Liu, S. Experimental Study on the Effects of a Vertical Jet Impinging on Soft Bottom Sediments. Sustainability 2020, 2, 3775. [Google Scholar] [CrossRef]
- Artegiani, A.; Paschini, E.; Russo, A.; Bregant, D.; Raicich, F.; Pinardi, N. The Adriatic Sea General Circulation. Part I: Air–Sea Interactions and Water Mass Structure. J. Phys. Oceanogr. 1997, 27, 1515–1532. [Google Scholar] [CrossRef]
- Ouchi, K.; Otsuka, K.; Nakatani, N.; Yamatogi, T. Effects of Density Current Generator in Semi-Enclosed Bay. In Proceedings of the OCEANS 2008—MTS/IEEE Kobe Techno-Ocean, Kobe, Japan, 8–11 April 2008. [Google Scholar]
- Carstens, C. Hydrodynamic Capacity Study of the Wave-Energized Baltic Aeration Pump: General Applicability to the Baltic Sea and Location Study for a Pilot Project in Kanholmsfjärden. 2008. Available online: https://www.diva-portal.org/smash/get/diva2:425606/FULLTEXT01.pdf (accessed on 9 October 2020).
- Antonini, A.; Gaeta, M.G.; Lamberti, A. Wave—Induced devices for the oxygenation of deep layer: A physical investigation. Coast. Eng. Proc. 2012, 1, 2–6. [Google Scholar] [CrossRef] [Green Version]
- Xiao, C.; Fan, W.; Qiang, Y.; Xu, Z.; Pan, Y. A tidal pump for artificial downwelling: Theory and experiment. Ocean Eng. 2018, 151, 93–104. [Google Scholar] [CrossRef]
- Nakahara, K.O.a.H. The Deep Ocean Water Upwelling Machine using density current-creation of fishing ground and absorption of CO2. In Proceedings of the Oceans 99. MTS/IEEE. Riding the Crest into the 21st Century. Conference and Exhibition. Conference Proceedings (IEEE Cat. No.99CH37008), Seattle, WA, USA, 13–16 September 1999; Volume 2, pp. 1019–1024. [Google Scholar]
- Ouchi, K.; Yamatogi, T.; Kobayashi, K.; Nakamura, M. Research and Development of Density Current Generator. J. Jpn. Soc. Naval Arch.Ocean Eng. 1998, 1998, 281–289. [Google Scholar] [CrossRef] [Green Version]
- Ouchi, K. Density Current Generator-A New Concept Machine for Agitating and Upwelling a Stratified Water Area. In Proceedings of the Ocean Community Conference, Lisbon, Portugal, 1–3 July 1998. [Google Scholar]
- Ouchi, K.; Yamatogi, T. A study on the entrainment with density current generator. In Proceedings of the Oceans Mts/IEEE Conference & Exhibition, Providence, RI, USA, 11–14 September 2000. [Google Scholar]
- Nomura, N.; Minami, A.; Yamatogi, T.; Ouchi, K.; Matsumura, M. Application of Density Current Generator for Large Scale Inprovement of Sediment Quality in Lake Kasumigaura. Jpn. J. Water Treat. Biol. 2003, 39, 85–91. [Google Scholar] [CrossRef] [Green Version]
- Conley*, D.J.; Bonsdorff, E.; Carstensen, J.; Destouni, G.; Gustafsson, B.G.; Hansson, L.A.; Rabalais, N.N.; Voss, M.; ZilléN, L. Tackling Hypoxia in the Baltic Sea: Is Engineering a Solution? Environ. Sci. Technol. 2009, 43, 3407–3411. [Google Scholar] [CrossRef] [Green Version]
- Zillén, L.; Conley, D.J. Understanding Hypoxia in the Baltic Sea. In Report from the Baltic Sea 2020 Workshop; 2007; pp. 1–35. Available online: http://balticsea2020.org/english/alla-projekt/overgodning/eutrophication-completed-projects/126-understanding-hypoxia-in-the-baltic-sea (accessed on 9 October 2020).
- Gerlach, S.A. Oxygen conditions improve when the salinity in the Baltic Sea decreases. Mar. Pollut. Bull. 1994, 28, 413–416. [Google Scholar] [CrossRef]
- Rosenberg, R.; Elmgren, R.; Fleischer, S.; Jonsson, P.; Dahlin, H. Marine eutrophic case studies in Sweden. Ambio A J. Hum. Environ. 1990, 19, 102–108. [Google Scholar]
- Meier, H.E.M.; Feistel, R.; Piechura, J.; Arneborg, L. Ventilation of the Baltic Sea deep water: A brief review of present knowledge from observations and models. Oceanologia 2006, 48, 133–164. [Google Scholar]
- Sjöberg, B.; Stigebrandt, A. Computations of the geographical distribution of the energy flux to mixing processes via internal tides and the associated vertical circulation in the ocean. Nucl. Phys. A 2016, 139, 451–464. [Google Scholar] [CrossRef]
- Bo, G.; Meier, M.; Savchuk, O.; Eilola, K.; Axell, L.; Almroth, E. Simulation of some engineering measures aming at reducing effects from eutrophication of the Baltic Sea. Mech. Dev. 2008, 60, 13–32. [Google Scholar]
- Stigebrandt, A.; Liljebladh, B.; de Brabandere, L.; Forth, M.; Granmo, Å.; Hall, P.; Hammar, J.; Hansson, D.; Kononets, M.; Magnusson, M.; et al. An Experiment with Forced Oxygenation of the Deepwater of the Anoxic by Fjord, Western Sweden. AMBIO 2015, 44, 42–54. [Google Scholar] [CrossRef] [Green Version]
- Margheritini, L.; Claeson, L. An Innovative Way of Utilizing Wave Energy to Counteract Eutrophication and Hypoxia. In Proceedings of the European Wave & Tidal Energy Conference: Ewtec, Southampton, UK, 5 September 2011. [Google Scholar]
- Fan, W.; Pan, Y.; Zhang, D.; Xu, C.; Qiang, Y. Experimental study on the performance of a wave pump for artificial upwelling. Ocean Eng. 2016, 113, 191–200. [Google Scholar] [CrossRef]
- Antonini, A.; Lamberti, A.; Archetti, R. OXYFLUX, an innovative wave-driven device for the oxygenation of deep layers in coastal areas: A physical investigation. Coast. Eng. 2015, 104, 54–68. [Google Scholar] [CrossRef]
- Diaz, R.J. Overview of Hypoxia around the World. J. Environ. Qual. 2001, 30, 275–281. [Google Scholar] [CrossRef]
- Wei, F.; Chen, J.; Pan, Y.; Huang, H.; Chen, C.-T.A.; Ying, C. Experimental study on the performance of an air-lift pump for artificial upwelling. Ocean Eng. 2013, 59, 47–57. [Google Scholar]
- Zhou, F.; Xue, H.; Huang, D.; Chai, F.; Xiu, P.; Xuan, J.L.; Ni, X. How Does One of the Largest Hypoxia in the World Occur on the Shelf of the East China Sea? Comput. Inf. Sci. 2014, 2014, GC21A-0512. [Google Scholar]
- Chen, Q.; Huang, D.; Zhang, B.; Wang, M. Characteristics of the tidal current and residual current in the seas adjacent to Zhejiang. Donghai Mar. Sci. 2003, 21, 1–14. [Google Scholar]
- Mellor, G.L. Users guide for a three-dimensional, primitive equation, numerical ocean model. Progr. Atmos. Ocean Sci. Princet. Univ. 2002, 17, 1. [Google Scholar]
- Viktorsson, L.; Kononets, M.; Roos, P.; Hall, P.O.J. Recycling and burial of phosphorus in sediments of an anoxic fjord—The by Fjord, western Sweden. J. Mar. Res. 2013, 71, 351–374. [Google Scholar] [CrossRef]
- Bendtsen, J.; Gustafsson, K.E.; Lehtoranta, J.; Saarijrvi, E.; Pitknen, H. Modeling and tracer release experiment on forced buoyant plume convection from coastal oxygenation. Boreal Environ. Res. 2013, 18, 37–52. [Google Scholar]
- Fan, W.; Pan, D.; Xiao, C.; Lin, T.; Pan, Y.; Chen, Y. Experimental Study on the Performance of an Innovative Tide-Induced Device for Artificial Downwelling. Sustainability 2019, 11, 5268. [Google Scholar] [CrossRef] [Green Version]
- Tsutsumi, H.; Okamura, E.; Ogawa, M.; Takahashi, T.; Komatsu, T. Studies of the Cross Section of Water in the Innermost Areas of Ariake Bay with the Recent Occurrence of Hypoxic Water and Red Tide. Oceanogr. Jpn. 2003, 12, 291–305. [Google Scholar]
- Mizumukai, K.; Sato, T.; Tabeta, S.; Kitazawa, D. Numerical studies on ecological effects of artificial mixing of surface and bottom waters in density stratification in semi-enclosed bay and open sea. Ecol. Model. 2008, 214, 251–270. [Google Scholar] [CrossRef]
- Sato, T.; Tonoki, K.; Yoshikawa, T.; Tsuchiya, Y. Numerical and hydraulic simulations of the effect of Density Current Generator in a semi-enclosed tidal bay. Coast. Eng. 2006, 53, 49–64. [Google Scholar] [CrossRef]
- Tonoki, K.; Sato, T. Numerical Simulation on Effects of Purification Apparatus in Enclosed Sea by Using MEC Model. J. Kansai Soc. Nav. Arch. Jpn. 2001, 289–296. [Google Scholar]
- Vichi, M.; Masina, S.; Navarra, A. A generalized model of pelagic biogeochemistry for the global ocean ecosystem. Part II: Numerical simulations. J. Mar. Syst. 2007, 64, 110–134. [Google Scholar] [CrossRef]
- Otsuka, K.N.; Takahashi, Y.; Ouchi, K.; Awashima, Y.; Yamatogi, T. Monitoring of environmental restoration by a Density Current Generator. Jpn. Soc. Naval Arch. Ocean Eng. 2008, 115–118. [Google Scholar]
- Antonini, A.; Lamberti, A.; Archetti, R.; Miquel, A.M. CFD investigations of OXYFLUX device, an innovative wave pump technology for artificial downwelling of surface water. Appl. Ocean Res. 2016, 61, 16–31. [Google Scholar] [CrossRef] [Green Version]
- Xiao, C.; Fan, W.; Yao, Z.; Qiang, Y.; Pan, Y.; Chen, Y. On the total entrained flow rate of artificial downwelling. Ocean Eng. 2019, 181, 13–28. [Google Scholar] [CrossRef]
- Lin, T.; Xiao, C.; Qiang, Y.; Fan, W.; Pan, H. The CFD simulation and experiment of a venturi-type artificial downwelling device. In Proceedings of the Oceans Mts/IEEE Charleston, Charleston, SC, USA, 22–25 October 2018. [Google Scholar]
- Yao, Z.; Fan, W.; Xiao, C.; Lin, T.; Zhang, Y.; Zhang, Y.; Liu, J.; Zhang, Z.; Pan, Y.; Chen, Y. Numerical Studies on the Suitable Position of Artificial Upwelling in a Semi-Enclosed Bay. Water 2020, 12, 177. [Google Scholar] [CrossRef] [Green Version]
- Ebara, K.; Sato, T.; Tabeta, S.; Tsuchiya, Y. Hydraulic Model Experiments of Diffusion Induced by Density Current in a Rotating Tank. Ageing Int. 2001, 2001, 271–278. [Google Scholar] [CrossRef]
- Koike, K.; Sato, T.; Tsuchiya, Y. An Experimental and Numerical Study of Density Current Intruding between Stratified Two Water Layers in Rotating System. Neuropsychopharmacology 2002, 2002, 121–128. [Google Scholar] [CrossRef] [Green Version]
- Qiang, Y.; Fan, W.; Xiao, C.; Rivkin, R.B.; Pan, Y.; Wu, J.; Guo, J.; Chen, Y. Behaviors of Bubble-Entrained Plumes in Air-Injection Artificial Upwelling. J. Hydraulic Eng. 2018, 144, 04018032. [Google Scholar] [CrossRef]
- Yao, Z.; Fan, W.; Xiao, C.; Qiang, Y.; Pan, Y.; Liang, N.-K.; Chen, Y. Theoretical and experimental study on influence factors of bubble-entrained plume in air-injection artificial upwelling. Ocean Eng. 2019, 192, 106572. [Google Scholar] [CrossRef]
- Xu, Z.; Fan, W.; Xiao, C.; Yao, Z.; Qiang, Y.; Chen, Y. Experimental and numerical study of current-induced artificial upwelling. Appl. Ocean Res. 2019, 87, 26–37. [Google Scholar] [CrossRef]
- Otsuka, K.; Nakatani, N.; Takahashi, Y.; Ouchi, K.; Awashima, Y.; Yamatogi, T. Field Study of Seaweed Bed Restoration by a Density Current Generator. Conf. Proc. Jpn. Soc. Nav. Arch. Ocean Eng. 2006, 3, 19–22. [Google Scholar]
- Stigebrandt, A.; Liljebladh, B. Oxygenation of large volumes of natural waters by geoengineering: With particular reference to a pilot experiment in Byfjorden. In Macroengineering Seawater in Unique Environments; Badescu, V., Cathcart, R.B., Eds.; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Forth, M.; Liljebladh, B.; Stigebrandt, A.; Hall, P.O.J.; Treusch, A.H. Effects of ecological engineered oxygenation on the bacterial community structure in an anoxic fjord in western Sweden. Isme J. 2014, 9, 656–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otsuka, K. Environmental Restoration Efficiency of a Density Current Generator at Gokasho Bay. J. Jpn. Soc. Naval Arch. Ocean Eng. 2007, 6, 57. [Google Scholar]
- Anantharaman, K.; Breier, J.A.; Sheik, C.S.; Dick, G.J. Evidence for hydrogen oxidation and metabolic plasticity in widespread deep-sea sulfur-oxidizing bacteria. Proc. Natl. Acad. Sci. USA 2013, 110, 330–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jayakumar, A.; O’mullan, G.D.; Naqvi, S.W.A.; Ward, B.B. Denitrifying Bacterial Community Composition Changes Associated with Stages of Denitrification in Oxygen Minimum Zones. Microb. Ecol. 2009, 58, 350–362. [Google Scholar] [CrossRef]
- Zaikova, E.; Walsh, D.A.; Stilwell, C.P.; Mohn, W.W.; Tortell, P.D.; Hallam, S.J. Microbial community dynamics in a seasonally anoxic fjord: Saanich Inlet, British Columbia. Environ. Microbiol. 2010, 12, 172–191. [Google Scholar] [CrossRef] [PubMed]
- Tilstone, G.H.; Figueiras, F.G.; Fraga, F. Upwelling-downwelling sequences in the generation of red tides m a coastal upwelling system. Mar. Ecol. Prog. 1994, 112, 241–253. [Google Scholar] [CrossRef]
- Koweek, D.A.; García-Sánchez, C.; Brodrick, P.G.; Gassett, P.; Caldeira, K. Evaluating hypoxia alleviation through induced downwelling. Sci. Total Environ. 2020, 719, 137334. [Google Scholar] [CrossRef]
- Lin, T.; Fan, W.; Xiao, C.; Yao, Z.; Zhang, Z.; Zhao, R.; Pan, Y.; Chen, Y. Energy Management and Operational Planning of an Ecological Engineering for Carbon Sequestration in Coastal Mariculture Environments in China. Sustainability 2019, 11, 3162. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Fan, W.; Yao, Z.; Qiang, Y.; Chen, Y. Experimental study on the performance of a wave pump for artificial upwelling in irregular waves. Ocean Eng. 2019, 189, 106353. [Google Scholar] [CrossRef]
- Fan, W.; Pan, Y.; Liu, C.C.; Wiltshire, J.C.; Chen-Tung, A.C.; Chen, Y. Hydrodynamic design of deep ocean water discharge for the creation of a nutrient-rich plume in the South China Sea. Ocean Eng. 2015, 108, 356–368. [Google Scholar] [CrossRef]
- Zhang, D.; Fan, W.; Yang, J.; Pan, Y.; Chen, Y.; Huang, H.; Chen, J. Reviews of power supply and environmental energy conversions for artificial upwelling. Renew. Sustain. Energy Rev. 2016, 56, 659–668. [Google Scholar] [CrossRef]
- Pan, Y.; Li, Y.; Fan, W.; Zhang, D.; Chen, Y. A sea trial of air-lift concept artificial upwelling in the East China Sea. J. Atmos. Ocean. Technol. 2019, 36, 2191–2204. [Google Scholar] [CrossRef]
- Gilbert, D.; Rabalais, N.N.; Diaz, R.J.; Zhang, J. Evidence for greater oxygen decline rates in the coastal ocean than in the open ocean. Biogeosciences 2010, 7, 2283. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.; You, L.; Li, Y.; Fan, W.; Chen, C.T.; Wang, B.J.; Chen, Y. Achieving Highly Efficient Atmospheric CO2 Uptake by Artificial Upwelling. Sustainability 2018, 10, 664. [Google Scholar] [CrossRef] [Green Version]
- Chiba, T. Groundwater Policy and Governance in Japan; Kyoto University Press: Tokyo, Japan, 2019. [Google Scholar]
- Backer, H.; Leppänen, J.-M. The HELCOM system of a vision, strategic goals and ecological objectives: Implementing an ecosystem approach to the management of human activities in the Baltic Sea. Aquat. Conserv. Mar. Freshw. Ecosyst. 2008, 18, 321–334. [Google Scholar] [CrossRef]
- Marcelli, M.; Scanu, S.; Frattarelli, F.M.; Mancini, E.; Carli, F.M. A Benthic Zonation System as a Fundamental Tool for Natural Capital Assessment in a Marine Environment: A Case Study in the Northern Tyrrhenian Sea, Italy. Sustainability 2018, 10, 3786. [Google Scholar] [CrossRef] [Green Version]
Engineering Techniques | Power Supply | Application Site | Simulation | Experiment | Sea Trial |
---|---|---|---|---|---|
DCG [31] | Thermal energy | Gokasho Bay, Japan | MEC Ocean Model | Rotating hydraulic model experiment | About 12 years in operation |
BOX [21] | Wind energy | By Fjord of Baltic sea | To be studied | To be studied | Run for 2 and a half years |
WEBAP [28] | Wave energy | The Baltic Sea | To be studied | Wave mooring response | Run for more than 2 years |
OXYFLUX [21] | Wave energy | North Adriatic Sea in the Mediterranean | CFD-RANS code and overset grid method | Experiments on devices response to wave | To be conducted |
Tidal pump [30] | Tidal energy | Changjiang Estuary, China | CFD-k-ε turbulence model | Layered experiment and optimization experiment | To be conducted |
Engineering Techniques | Maintenance | Cost | Oxygen Efficiency | Advantages | Drawbacks |
---|---|---|---|---|---|
DCG | More difficult with mechanical structure | Estimated 15 USD/h with the use of 5 kW/h electric motor impeller [78] | The flow rate of 120,000 m3/day generated by 12 kW electric power | Large discharge water flow with significant effect | Energy unsustainable |
BOX | More difficult with mechanical structure | 261,900 USD for installation and estimated 10-year maintenance | Designed to use 100 devices with 0.6 kW of each power to provide 100 kg/sec water to the Baltic bottom hypoxic zone | High downwelling flow rate | Complex structure |
WEBAP | More difficult with mechanical structure | Projected to cost 1,178,605 Euro | require about 750 floating breakwaters of a length of 50 m each, which can transfer about 10,000 m3/s of surface water | Easy operation with Clean energy | Large device structure |
OXYFLUX | Relatively easy | Relatively cheap using clean energy | Surface water can be pumped when the flow rate in the pipe is about 0.3 cm/sec | Running even under small waves of mild season | Need to deploy multiple devices |
Tidal pump | Relatively easy | Relatively cheap using clean energy | Using a pipe with a cross-sectional area of 0.12 m2 to pump 200 m3/h of surface water, under the 0.4 m/s of current and 0.5 kg/m3 of density difference | Clean energy and simple structure with low cost | Need to deploy |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Zhao, L.; Xiao, C.; Fan, W.; Cai, Y.; Pan, Y.; Chen, Y. Review of Artificial Downwelling for Mitigating Hypoxia in Coastal Waters. Water 2020, 12, 2846. https://doi.org/10.3390/w12102846
Liu S, Zhao L, Xiao C, Fan W, Cai Y, Pan Y, Chen Y. Review of Artificial Downwelling for Mitigating Hypoxia in Coastal Waters. Water. 2020; 12(10):2846. https://doi.org/10.3390/w12102846
Chicago/Turabian StyleLiu, Shuo, Lige Zhao, Canbo Xiao, Wei Fan, Yong Cai, Yiwen Pan, and Ying Chen. 2020. "Review of Artificial Downwelling for Mitigating Hypoxia in Coastal Waters" Water 12, no. 10: 2846. https://doi.org/10.3390/w12102846
APA StyleLiu, S., Zhao, L., Xiao, C., Fan, W., Cai, Y., Pan, Y., & Chen, Y. (2020). Review of Artificial Downwelling for Mitigating Hypoxia in Coastal Waters. Water, 12(10), 2846. https://doi.org/10.3390/w12102846