Engineered Biochar Production and Its Potential Benefits in a Closed-Loop Water-Reuse Agriculture System
Abstract
:1. Introduction
2. Methods for Producing Biochar
2.1. Pyrolysis Reactors
2.2. Slow and Fast Pyrolysis
2.3. Major Challenges for Biochar Production Technologies
3. Physicochemical Properties of Pristine and Engineered Biochar
3.1. Properties of Pristine Biochar and Major Impacting Factors
3.2. Biochar Engineering Methods
3.2.1. Physical Methods
- Impregnation pyrolysis, i.e., pyrolyzing the dried residue of a metal solution impregnated with feedstock under an inert atmosphere with limited or no oxygen [78].
- Reductive co-deposition, i.e., similar to co-precipitation except that transition metals are reduced by reducing agents such as sodium borohydride or potassium borohydride [71].
- Hydrothermal carbonization, i.e., heating the homogeneous mixture of the feedstock and a metal solution at a temperature lower than that of pyrolysis (<300 °C) [81].
- Ball milling, i.e., enforcing the incorporation of feedstock and iron oxides using a ball mill [82].
- Cross-linking of biochar and iron oxides [83].
3.2.2. Chemical Methods
3.2.3. Biological Methods
4. Multidimensional Benefits of Biochar in Circular Agriculture
4.1. Water Treatment and Reuse
4.2. Soil Fertility Enhancement
4.3. Greenhouse Gas Emission Mitigation
4.4. Multidimensional Benefits in Circular Agriculture
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Damerau, K.; Patt, A.G.; van Vliet, O.P.R. Water saving potentials and possible trade-offs for future food and energy supply. Glob. Environ. Chang. 2016, 39, 15–25. [Google Scholar] [CrossRef] [Green Version]
- Rosa, L.; Chiarelli, D.D.; Rulli, M.C.; Dell’Angelo, J.; D’Odorico, P. Global agricultural economic water scarcity. Sci. Adv. 2020, 6. [Google Scholar] [CrossRef]
- Ma, T.; Sun, S.; Fu, G.T.; Hall, J.W.; Ni, Y.; He, L.H.; Yi, J.W.; Zhao, N.; Du, Y.Y.; Pei, T.; et al. Pollution exacerbates China’s water scarcity and its regional inequality. Nat. Commun. 2020, 11. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Huo, Z.L.; Dai, X.Q.; Ma, S.Y.; Xu, X.; Huang, G.H. Impact of agricultural water-saving practices on regional evapotranspiration: The role of groundwater in sustainable agriculture in arid and semi-arid areas. Agric. For. Meteorol. 2018, 263, 156–168. [Google Scholar] [CrossRef]
- Ahmed, M.; Rauf, M.; Mukhtar, Z.; Saeed, N.A. Excessive use of nitrogenous fertilizers: An unawareness causing serious threats to environment and human health. Environ. Sci. Pollut. Res. 2017, 24, 26983–26987. [Google Scholar] [CrossRef]
- Lin, T.Y.; Wei, C.C.; Huang, C.W.; Chang, C.H.; Hsu, F.L.; Liao, V.H.C. Both Phosphorus Fertilizers and Indigenous Bacteria Enhance Arsenic Release into Groundwater in Arsenic-Contaminated Aquifers. J. Agric. Food Chem. 2016, 64, 2214–2222. [Google Scholar] [CrossRef]
- Li, S.M.; Chen, G. Contemporary strategies for enhancing nitrogen retention and mitigating nitrous oxide emission in agricultural soils: Present and future. Environ. Dev. Sustain. 2020, 22, 2703–2741. [Google Scholar] [CrossRef]
- Xiang, W.; Zhang, X.Y.; Chen, J.J.; Zou, W.X.; He, F.; Hu, X.; Tsang, D.C.W.; Ok, Y.S.; Gao, B. Biochar technology in wastewater treatment: A critical review. Chemosphere 2020, 252. [Google Scholar] [CrossRef] [PubMed]
- Michelon, N.; Pennisi, G.; Myint, N.O.; Orsini, F.; Gianquinto, G. Strategies for Improved Water Use Efficiency (WUE) of Field-Grown Lettuce (Lactuca sativa L.) under a Semi-Arid Climate. Agronomy (Basel) 2020, 10. [Google Scholar] [CrossRef]
- Rockstrom, J.; Williams, J.; Daily, G.; Noble, A.; Matthews, N.; Gordon, L.; Wetterstrand, H.; DeClerck, F.; Shah, M.; Steduto, P.; et al. Sustainable intensification of agriculture for human prosperity and global sustainability. AmBio 2017, 46, 4–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.M.; Barreto, V.; Li, R.W.; Chen, G.; Hsieh, Y.P. Nitrogen retention of biochar derived from different feedstocks at variable pyrolysis temperatures. J. Anal. Appl. Pyrolysis 2018, 133, 136–146. [Google Scholar] [CrossRef]
- Zhao, J.J.; Shen, X.J.; Domene, X.; Alcaniz, J.M.; Liao, X.; Palet, C. Comparison of biochars derived from different types of feedstock and their potential for heavy metal removal in multiple-metal solutions. Sci. Rep. 2019, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.M.; Chen, G. Thermogravimetric, thermochemical, and infrared spectral characterization of feedstocks and biochar derived at different pyrolysis temperatures. Waste Manag. 2018, 78, 198–207. [Google Scholar] [CrossRef] [PubMed]
- Windeatt, J.H.; Ross, A.B.; Williams, P.T.; Forster, P.M.; Nahil, M.A.; Singh, S. Characteristics of biochars from crop residues: Potential for carbon sequestration and soil amendment. J. Environ. Manag. 2014, 146, 189–197. [Google Scholar] [CrossRef]
- Punia, M.; Nautiyal, V.P.; Kant, Y. Identifying biomass burned patches of agriculture residue using satellite remote sensing data. Curr. Sci. India 2008, 94, 1185–1190. [Google Scholar]
- Vu, Q.D.; de Neergaard, A.; Tran, T.D.; Hoang, H.T.T.; Vu, V.T.K.; Jensen, L.S. Greenhouse gas emissions from passive composting of manure and digestate with crop residues and biochar on small-scale livestock farms in Vietnam. Environ. Technol. 2015, 36, 2924–2935. [Google Scholar] [CrossRef]
- Sarfraz, R.; Hussain, A.; Sabir, A.; Ben Fekih, I.; Ditta, A.; Xing, S.H. Role of biochar and plant growth promoting rhizobacteria to enhance soil carbon sequestrationa review. Environ. Monit. Assess. 2019, 191. [Google Scholar] [CrossRef]
- Jindo, K.; Audette, Y.; Higashikawa, F.S.; Silva, C.A.; Akashi, K.; Mastrolonardo, G.; Sanchez-Monedero, M.A.; Mondini, C. Role of biochar in promoting circular economy in the agriculture sector. Part 1: A review of the biochar roles in soil N, P and K cycles. Chem. Biol. Technol. Agric. 2020, 7. [Google Scholar] [CrossRef]
- Yu, H.W.; Zou, W.X.; Chen, J.J.; Chen, H.; Yu, Z.B.; Huang, J.; Tang, H.R.; Wei, X.Y.; Gao, B. Biochar amendment improves crop production in problem soils: A review. J. Environ. Manag. 2019, 232, 8–21. [Google Scholar] [CrossRef]
- Tomczyk, A.; Sokolowska, Z.; Boguta, P. Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects. Rev. Environ. Sci. Bio/Technol. 2020, 19, 191–215. [Google Scholar] [CrossRef] [Green Version]
- Premarathna, K.S.D.; Rajapaksha, A.U.; Sarkar, B.; Kwon, E.E.; Bhatnagar, A.; Ok, Y.S.; Vithanage, M. Biochar-based engineered composites for sorptive decontamination of water: A review. Chem. Eng. J. 2019, 372, 536–550. [Google Scholar] [CrossRef]
- Zhang, C.; Zeng, G.M.; Huang, D.L.; Lai, C.; Chen, M.; Cheng, M.; Tang, W.W.; Tang, L.; Dong, H.R.; Huang, B.B.; et al. Biochar for environmental management: Mitigating greenhouse gas emissions, contaminant treatment, and potential negative impacts. Chem. Eng. J. 2019, 373, 902–922. [Google Scholar] [CrossRef]
- Pandey, A.; Larroche, C.; Ricke, S.; Dussap, C.-G.; Gnansounou, E. Biofuel: Alternative Feedstocks and Conversion Processes, 1st ed.; Academic Press: Oxford, UK, 2011. [Google Scholar]
- Garcia-Perez, M.; Lewis, T.; Kruger, C.E. Methods for Producing Biochar and Advanced Biofuels in Washington State. Part 1: Literature Review of Pyrolysis Reactor; First Project Report; Washington State University: Pullman, WA, USA, 2010. [Google Scholar]
- Lehmann, J.; Joseph, S. Biochar for Environmental Management: Science and Technology; Earthscan: London, UK, 2009. [Google Scholar]
- Sajjadi, B.; Broome, J.W.; Chen, W.Y.; Mattern, D.L.; Egiebor, N.O.; Hammer, N.; Smith, C.L. Urea functionalization of ultrasound-treated biochar: A feasible strategy for enhancing heavy metal adsorption capacity. Ultrason. Sonochem. 2019, 51, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Meyer, S.; Glaser, B.; Quicker, P. Technical, Economical, and Climate-Related Aspects of Biochar Production Technologies: A Literature Review. Environ. Sci. Technol. 2011, 45, 9473–9483. [Google Scholar] [CrossRef]
- Zhao, B.; O’Connor, D.; Zhang, J.L.; Peng, T.Y.; Shen, Z.T.; Tsang, D.C.W.; Hou, D.Y. Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar. J. Clean. Prod. 2018, 174, 977–987. [Google Scholar] [CrossRef]
- Veksha, A.; McLaughlin, H.; Layzell, D.B.; Hill, J.M. Pyrolysis of wood to biochar: Increasing yield while maintaining microporosity. Bioresour. Technol. 2014, 153, 173–179. [Google Scholar] [CrossRef]
- Rosales, E.; Meijide, J.; Pazos, M.; Sanroman, M.A. Challenges and recent advances in biochar as low-cost biosorbent: From batch assays to continuous-flow systems. Bioresour. Technol. 2017, 246, 176–192. [Google Scholar] [CrossRef]
- Wang, S.Q.; Zhao, X.; Xing, G.X.; Yang, L.Z. Large-Scale Biochar Production from Crop Residue: A New Idea and the Biogas-Energy Pyrolysis System. Bioresources 2013, 8, 8–11. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Dai, J.J.; Liu, G.Q.; Zhang, H.D.; Gao, Z.P.; Fu, J.; He, Y.F.; Huang, Y. Biochar from microwave pyrolysis of biomass: A review. Biomass Bioenergy 2016, 94, 228–244. [Google Scholar] [CrossRef]
- Fernandez, Y.; Menendez, J.A. Influence of feed characteristics on the microwave-assisted pyrolysis used to produce syngas from biomass wastes. J. Anal. Appl. Pyrolysis 2011, 91, 316–322. [Google Scholar] [CrossRef]
- Roy, P.; Dias, G. Prospects for pyrolysis technologies in the bioenergy sector: A review. Renew. Sust. Energy Rev. 2017, 77, 59–69. [Google Scholar] [CrossRef]
- Bridgwater, A.V. Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 2012, 38, 68–94. [Google Scholar] [CrossRef]
- Meier, D.; Faix, O. State of the art of applied fast pyrolysis of lignocellulosic materials—A review. Bioresour. Technol. 1999, 68, 71–77. [Google Scholar] [CrossRef]
- Hagemann, N.; Joseph, S.; Schmidt, H.P.; Kammann, C.I.; Harter, J.; Borch, T.; Young, R.B.; Varga, K.; Taherymoosavi, S.; Elliott, K.W.; et al. Organic coating on biochar explains its nutrient retention and stimulation of soil fertility. Nat. Commun. 2017, 8. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Lee, S.S.; Dou, X.M.; Mohan, D.; Sung, J.K.; Yang, J.E.; Ok, Y.S. Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresour. Technol. 2012, 118, 536–544. [Google Scholar] [CrossRef]
- Suliman, W.; Harsh, J.B.; Abu-Lail, N.I.; Fortuna, A.M.; Dallmeyer, I.; Garcia-Perez, M. Influence of feedstock source and pyrolysis temperature on biochar bulk and surface properties. Biomass Bioenergy 2016, 84, 37–48. [Google Scholar] [CrossRef]
- Devi, P.; Saroha, A.K. Effect of pyrolysis temperature on polycyclic aromatic hydrocarbons toxicity and sorption behaviour of biochars prepared by pyrolysis of paper mill effluent treatment plant sludge. Bioresour. Technol. 2015, 192, 312–320. [Google Scholar] [CrossRef]
- Lian, F.; Sun, B.B.; Song, Z.G.; Zhu, L.Y.; Qi, X.H.; Xing, B.S. Physicochemical properties of herb-residue biochar and its sorption to ionizable antibiotic sulfamethoxazole. Chem. Eng. J. 2014, 248, 128–134. [Google Scholar] [CrossRef]
- Gai, X.P.; Wang, H.Y.; Liu, J.; Zhai, L.M.; Liu, S.; Ren, T.Z.; Liu, H.B. Effects of Feedstock and Pyrolysis Temperature on Biochar Adsorption of Ammonium and Nitrate. PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [Green Version]
- Claoston, N.; Samsuri, A.W.; Husni, M.H.A.; Amran, M.S.M. Effects of pyrolysis temperature on the physicochemical properties of empty fruit bunch and rice husk biochars. Waste Manag. Res. 2014, 32, 331–339. [Google Scholar] [CrossRef]
- Cao, X.D.; Ma, L.N.; Gao, B.; Harris, W. Dairy-Manure Derived Biochar Effectively Sorbs Lead and Atrazine. Environ. Sci. Technol. 2009, 43, 3285–3291. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.K.; Lian, F.; Liu, Z.Q.; Zhu, L.Y.; Song, Z.G. Biochars derived from various crop straws: Characterization and Cd(II) removal potential. Ecotoxicol. Environ. Safe 2014, 106, 226–231. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Kim, J.Y.; Cho, T.S.; Choi, J.W. Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida). Bioresour. Technol. 2012, 118, 158–162. [Google Scholar] [CrossRef] [PubMed]
- Laghari, M.; Mirjat, M.S.; Hu, Z.Q.; Fazal, S.; Xiao, B.; Hu, M.A.; Chen, Z.H.; Guo, D.B. Effects of biochar application rate on sandy desert soil properties and sorghum growth. Catena 2015, 135, 313–320. [Google Scholar] [CrossRef]
- Laghari, M.; Hu, Z.Q.; Mirjat, M.S.; Xiao, B.; Tagar, A.A.; Hu, M. Fast pyrolysis biochar from sawdust improves the quality of desert soils and enhances plant growth. J. Sci. Food Agric. 2016, 96, 199–206. [Google Scholar] [CrossRef]
- Essandoh, M.; Kunwar, B.; Pittman, C.U.; Mohan, D.; Mlsna, T. Sorptive removal of salicylic acid and ibuprofen from aqueous solutions using pine wood fast pyrolysis biochar. Chem. Eng. J. 2015, 265, 219–227. [Google Scholar] [CrossRef]
- Kim, P.; Johnson, A.M.; Essington, M.E.; Radosevich, M.; Kwon, W.T.; Lee, S.H.; Rials, T.G.; Labbe, N. Effect of pH on surface characteristics of switchgrass-derived biochars produced by fast pyrolysis. Chemosphere 2013, 90, 2623–2630. [Google Scholar] [CrossRef]
- Liu, P.; Liu, W.J.; Jiang, H.; Chen, J.J.; Li, W.W.; Yu, H.Q. Modification of bio-char derived from fast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution. Bioresour. Technol. 2012, 121, 235–240. [Google Scholar] [CrossRef]
- Masek, O.; Budarin, V.; Gronnow, M.; Crombie, K.; Brownsort, P.; Fitzpatrick, E.; Hurst, P. Microwave and slow pyrolysis biochar-Comparison of physical and functional properties. J. Anal. Appl. Pyrolysis 2013, 100, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Chintala, R.; Mollinedo, J.; Schumacher, T.E.; Papiernik, S.K.; Malo, D.D.; Clay, D.E.; Kumar, S.; Gulbrandson, D.W. Nitrate sorption and desorption in biochars from fast pyrolysis. Micropor. Mesopor. Mat. 2013, 179, 250–257. [Google Scholar] [CrossRef]
- Lam, S.S.; Yek, P.N.Y.; Ok, Y.S.; Chong, C.C.; Liew, R.K.; Tsang, D.C.W.; Park, Y.K.; Liu, Z.L.; Wong, C.S.; Peng, W.X. Engineering pyrolysis biochar via single-step microwave steam activation for hazardous landfill leachate treatment. J. Hazard. Mater. 2020, 390. [Google Scholar] [CrossRef] [PubMed]
- Chu, G.; Zhao, J.; Chen, F.Y.; Dong, X.D.; Zhou, D.D.; Liang, N.; Wu, M.; Pan, B.; Steinberg, C.E.W. Physi-chemical and sorption properties of biochars prepared from peanut shell using thermal pyrolysis and microwave irradiation. Environ. Pollut. 2017, 227, 372–379. [Google Scholar] [CrossRef] [PubMed]
- Woolcock, P.J.; Brown, R.C. A review of cleaning technologies for biomass-derived syngas. Biomass Bioenergy 2013, 52, 54–84. [Google Scholar] [CrossRef]
- Indrawan, N.; Thapa, S.; Bhoi, P.R.; Huhnke, R.L.; Kumar, A. Engine power generation and emission performance of syngas generated from low-density biomass. Energy Convers. Manag. 2017, 148, 593–603. [Google Scholar] [CrossRef]
- Hanemann, M. California’s New Greenhouse Gas Laws. Rev. Environ. Econ. Policy 2008, 2, 114–129. [Google Scholar] [CrossRef]
- Keske, C.; Godfrey, T.; Hoag, D.L.K.; Abedin, J. Economic feasibility of biochar and agriculture coproduction from Canadian black spruce forest. Food Energy Secur. 2020, 9. [Google Scholar] [CrossRef]
- Roberts, K.G.; Gloy, B.A.; Joseph, S.; Scott, N.R.; Lehmann, J. Life Cycle Assessment of Biochar Systems: Estimating the Energetic, Economic, and Climate Change Potential. Environ. Sci. Technol. 2010, 44, 827–833. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.R.; El Hanandeh, A. Life cycle perspective of bio-oil and biochar production from hardwood biomass; what is the optimum mix and what to do with it? J. Clean. Prod. 2019, 212, 173–189. [Google Scholar] [CrossRef]
- Li, S.M.; Harris, S.; Anandhi, A.; Chen, G. Predicting biochar properties and functions based on feedstock and pyrolysis temperature: A review and data syntheses. J. Clean. Prod. 2019, 215, 890–902. [Google Scholar] [CrossRef]
- Wang, B.; Gao, B.; Fang, J. Recent advances in engineered biochar productions and applications. Crit. Rev. Environ. Sci. Technol. 2017, 47, 2158–2207. [Google Scholar] [CrossRef]
- Kumar, M.; Xiong, X.N.; Wan, Z.H.; Sun, Y.Q.; Tsang, D.C.W.; Gupta, J.; Gao, B.; Cao, X.D.; Tang, J.C.; Ok, Y.S. Ball milling as a mechanochemical technology for fabrication of novel biochar nanomaterials. Bioresour. Technol. 2020, 312. [Google Scholar] [CrossRef] [PubMed]
- Lyu, H.H.; Gao, B.; He, F.; Zimmerman, A.R.; Ding, C.; Huang, H.; Tang, J.C. Effects of ball milling on the physicochemical and sorptive properties of biochar: Experimental observations and governing mechanisms. Environ. Pollut. 2018, 233, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.J.; Zhu, X.L.; Su, Q.; Anumah, A.; Gao, B.; Lyu, W.Q.; Zhou, X.; Xing, Y.; Wang, B. Enhanced removal of ammonium from water by ball-milled biochar. Environ. Geochem. Health 2020, 42, 1579–1587. [Google Scholar] [CrossRef] [PubMed]
- Rajapaksha, A.U.; Vithanage, M.; Ahmad, M.; Seo, D.C.; Cho, J.S.; Lee, S.E.; Lee, S.S.; Ok, Y.S. Enhanced sulfamethazine removal by steam-activated invasive plant-derived biochar. J. Hazard. Mater. 2015, 290, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Borchard, N.; Wolf, A.; Laabs, V.; Aeckersberg, R.; Scherer, H.W.; Moeller, A.; Amelung, W. Physical activation of biochar and its meaning for soil fertility and nutrient leaching—A greenhouse experiment. Soil. Use Manag. 2012, 28, 177–184. [Google Scholar] [CrossRef]
- Fungo, B.; Guerena, D.; Thiongo, M.; Lehmann, J.; Neufeldt, H.; Kalbitz, K. N2O and CH4 emission from soil amended with steam-activated biochar. J. Plant Nutr. Soil Sci. 2014, 177, 34–38. [Google Scholar] [CrossRef]
- Reddy, D.H.K.; Lee, S.M. Magnetic biochar composite: Facile synthesis, characterization, and application for heavy metal removal. Colloids Surf. A 2014, 454, 96–103. [Google Scholar] [CrossRef]
- Yi, Y.Q.; Huang, Z.X.; Lu, B.Z.; Xian, J.Y.; Tsang, E.P.; Cheng, W.; Fang, J.Z.; Fang, Z.Q. Magnetic biochar for environmental remediation: A review. Bioresour. Technol. 2020, 298. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.Y.; Tang, Y.K.; Li, K.; Mo, Y.Y.; Li, H.F.; Gu, Z.Q. Combined performance of biochar sorption and magnetic separation processes for treatment of chromium-contained electroplating wastewater. Bioresour. Technol. 2014, 174, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, M.; Yang, T.; Yang, K.; Wang, H.Y. A novel magnetic biochar from sewage sludge: Synthesis and its application for the removal of malachite green from wastewater. Water Sci. Technol. 2016, 74, 1971–1979. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Cho, W.C.; Poo, K.M.; Choi, S.; Kim, T.N.; Son, E.B.; Choi, Y.J.; Kim, Y.M.; Chae, K.J. Refractory oil wastewater treatment by dissolved air flotation, electrochemical advanced oxidation process, and magnetic biochar integrated system. J. Water Process. Eng. 2020, 36. [Google Scholar] [CrossRef]
- Chen, Y.D.; Bai, S.W.; Li, R.X.; Su, G.Y.; Duan, X.G.; Wang, S.B.; Ren, N.Q.; Ho, S.H. Magnetic biochar catalysts from anaerobic digested sludge: Production, application and environment impact. Environ. Int. 2019, 126, 302–308. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Lai, C.; Huang, F.L.; Cheng, M.; Zeng, G.M.; Huang, D.L.; Li, B.S.; Liu, S.Y.; Zhang, M.M.; Qin, L.; et al. Degradation of naphthalene with magnetic bio-char activate hydrogen peroxide: Synergism of bio-char and Fe-Mn binary oxides. Water Res. 2019, 160, 238–248. [Google Scholar] [CrossRef] [PubMed]
- Rong, X.; Xie, M.; Kong, L.S.; Natarajan, V.; Ma, L.; Zhan, J.H. The magnetic biochar derived from banana peels as a persulfate activator for organic contaminants degradation. Chem. Eng. J. 2019, 372, 294–303. [Google Scholar] [CrossRef]
- Mubarak, N.M.; Kundu, A.; Sahu, J.N.; Abdullah, E.C.; Jayakumar, N.S. Synthesis of palm oil empty fruit bunch magnetic pyrolytic char impregnating with FeCl3 by microwave heating technique. Biomass Bioenergy 2014, 61, 265–275. [Google Scholar] [CrossRef]
- Shang, J.G.; Pi, J.C.; Zong, M.Z.; Wang, Y.R.; Li, W.H.; Liao, Q.H. Chromium removal using magnetic biochar derived from herb-residue. J. Taiwan Inst. Chem. Eng. 2016, 68, 289–294. [Google Scholar] [CrossRef]
- Wang, L.; Wang, J.Y.; Wang, Z.X.; He, C.; Lyu, W.; Yan, W.; Yang, L. Enhanced antimonate (Sb(V)) removal from aqueous solution by La-doped magnetic biochars. Chem. Eng. J. 2018, 354, 623–632. [Google Scholar] [CrossRef]
- Zhang, H.; Xue, G.; Chen, H.; Li, X. Magnetic biochar catalyst derived from biological sludge and ferric sludge using hydrothermal carbonization: Preparation, characterization and its circulation in Fenton process for dyeing wastewater treatment. Chemosphere 2018, 191, 64–71. [Google Scholar] [CrossRef]
- Zheng, Y.; Zimmerman, A.R.; Gao, B. Comparative investigation of characterstics and phosphate removal by engineered biochars with different loadings of magnesium, aluminum, or iron. Sci. Total Environ. 2020, 747, 141277. [Google Scholar] [CrossRef]
- Cai, X.X.; Li, J.; Liu, Y.G.; Hu, X.J.; Tan, X.F.; Liu, S.B.; Wang, H.; Gu, Y.L.; Luo, L.R. Design and Preparation of Chitosan-Crosslinked Bismuth Ferrite/Biochar Coupled Magnetic Material for Methylene Blue Removal. Int. J. Environ. Res. Public Health 2020, 17. [Google Scholar] [CrossRef] [Green Version]
- Yap, M.W.; Mubarak, N.M.; Sahu, J.N.; Abdullah, E.C. Microwave induced synthesis of magnetic biochar from agricultural biomass for removal of lead and cadmium from wastewater. J. Ind. Eng. Chem. 2017, 45, 287–295. [Google Scholar] [CrossRef]
- Angin, D.; Altintig, E.; Kose, T.E. Influence of process parameters on the surface and chemical properties of activated carbon obtained from biochar by chemical activation. Bioresour. Technol. 2013, 148, 542–549. [Google Scholar] [CrossRef] [PubMed]
- Trakal, L.; Sigut, R.; Sillerova, H.; Faturikova, D.; Komarek, M. Copper removal from aqueous solution using biochar: Effect of chemical activation. Arab. J. Chem. 2014, 7, 43–52. [Google Scholar] [CrossRef] [Green Version]
- Zubrik, A.; Matik, M.; Hredzak, S.; Lovas, M.; Dankova, Z.; Kovacova, M.; Briancin, J. Preparation of chemically activated carbon from waste biomass by single-stage and two-stage pyrolysis. J. Clean. Prod. 2017, 143, 643–653. [Google Scholar] [CrossRef]
- Sajjadi, B.; Zubatiuk, T.; Leszczynska, D.; Leszczynski, J.; Chen, W.Y. Chemical activation of biochar for energy and environmental applications: A comprehensive review. Rev. Chem. Eng. 2019, 35, 777–815. [Google Scholar] [CrossRef]
- Gupta, R.K.; Dubey, M.; Kharel, P.; Gu, Z.R.; Fan, Q.H. Biochar activated by oxygen plasma for supercapacitors. J. Power Sources 2015, 274, 1300–1305. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Xia, K.; Waigi, M.G.; Gao, Y.Z.; Odinga, E.S.; Ling, W.T.; Liu, J. Application of biochar to soils may result in plant contamination and human cancer risk due to exposure of polycyclic aromatic hydrocarbons. Environ. Int. 2018, 121, 169–177. [Google Scholar] [CrossRef]
- Xiao, R.; Wang, J.J.; Gaston, L.A.; Zhou, B.Y.; Park, J.H.; Li, R.H.; Dodla, S.K.; Zhan, Z.Q. Biochar produced from mineral salt-impregnated chicken manure: Fertility properties and potential for carbon sequestration. Waste Manag. 2018, 78, 802–810. [Google Scholar] [CrossRef]
- Ucar, S.; Erdem, M.; Tay, T.; Karagoz, S. Preparation and characterization of activated carbon produced from pomegranate seeds by ZnCl2 activation. Appl. Surf. Sci. 2009, 255, 8890–8896. [Google Scholar] [CrossRef]
- Liu, Q.Y.; Fan, H.X.; Qi, J.; Zhang, S.M.; Li, G. Catalytic hydrolysis of corncob cellulosic polysaccharide into saccharides using SnO2-Co3O4/C biochar catalyst. Iran. Polym. J. 2020, 29, 383–392. [Google Scholar] [CrossRef]
- Yao, Y.; Gao, B.; Chen, J.J.; Zhang, M.; Inyang, M.; Li, Y.C.; Alva, A.; Yang, L.Y. Engineered carbon (biochar) prepared by direct pyrolysis of Mg-accumulated tomato tissues: Characterization and phosphate removal potential. Bioresour. Technol. 2013, 138, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.Z.; Sheng, C.D. Influences of the Heat-Treatment Temperature and Inorganic Matter on Combustion Characteristics of Cornstalk Biochars. Energy Fuel 2012, 26, 209–218. [Google Scholar] [CrossRef]
- Hu, X.; Ding, Z.H.; Zimmerman, A.R.; Wang, S.S.; Gao, B. Batch and column sorption of arsenic onto iron-impregnated biochar synthesized through hydrolysis. Water Res. 2015, 68, 206–216. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.F.; Liu, Y.G.; Gu, Y.L.; Xu, Y.; Zeng, G.M.; Hu, X.J.; Liu, S.B.; Wang, X.; Liu, S.M.; Li, J. Biochar-based nano-composites for the decontamination of wastewater: A review. Bioresour. Technol. 2016, 212, 318–333. [Google Scholar] [CrossRef]
- Sizmur, T.; Fresno, T.; Akgul, G.; Frost, H.; Moreno-Jimenez, E. Biochar modification to enhance sorption of inorganics from water. Bioresour. Technol. 2017, 246, 34–47. [Google Scholar] [CrossRef]
- Frankel, M.L.; Bhuiyan, T.I.; Veksha, A.; Demeter, M.A.; Layzell, D.B.; Helleur, R.J.; Hill, J.M.; Turner, R.J. Removal and biodegradation of naphthenic acids by biochar and attached environmental biofilms in the presence of co-contaminating metals. Bioresour. Technol. 2016, 216, 352–361. [Google Scholar] [CrossRef] [Green Version]
- Dalahmeh, S.; Ahrens, L.; Gros, M.; Wiberg, K.; Pell, M. Potential of biochar filters for onsite sewage treatment: Adsorption and biological degradation of pharmaceuticals in laboratory filters with active, inactive and no biofilm. Sci. Total Environ. 2018, 612, 192–201. [Google Scholar] [CrossRef]
- Youngwilai, A.; Kidkhunthod, P.; Jearanaikoon, N.; Chaiprapa, J.; Supanchaiyamat, N.; Hunt, A.J.; Ngernyen, Y.; Ratpukdi, T.; Khan, E.; Siripattanakul-Ratpukdi, S. Simultaneous manganese adsorption and biotransformation by Streptomyces violarus strain SBP1 cell-immobilized biochar. Sci. Total Environ. 2020, 713. [Google Scholar] [CrossRef]
- Zhang, L.X.; Tang, S.Y.; He, F.X.; Liu, Y.; Mao, W.; Guan, Y.T. Highly efficient and selective capture of heavy metals by poly(acrylic acid) grafted chitosan and biochar composite for wastewater treatment. Chem. Eng. J. 2019, 378. [Google Scholar] [CrossRef]
- Zhang, Y.C.; Luo, W.S. Adsorptive Removal of Heavy Metal from Acidic Wastewater with Biochar Produced from Anaerobically Digested Residues: Kinetics and Surface Complexation Modeling. Bioresources 2014, 9, 2484–2499. [Google Scholar] [CrossRef] [Green Version]
- Inyang, M.; Dickenson, E. The potential role of biochar in the removal of organic and microbial contaminants from potable and reuse water: A review. Chemosphere 2015, 134, 232–240. [Google Scholar] [CrossRef] [PubMed]
- Dai, S.J.; Zhao, Y.C.; Niu, D.J.; Li, Q.; Chen, Y. Preparation and reactivation of magnetic biochar by molten salt method: Relevant performance for chlorine-containing pesticides abatement. J. Air Waste Manag. 2019, 69, 58–70. [Google Scholar] [CrossRef] [PubMed]
- Ho, S.H.; Chen, Y.D.; Yang, Z.K.; Nagarajan, D.; Chang, J.S.; Ren, N.Q. High-efficiency removal of lead from wastewater by biochar derived from anaerobic digestion sludge. Bioresour. Technol. 2017, 246, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.H.; Mao, S.Y.; Chen, H.; Huang, L.; Qiu, R.L. Pb(II) and Cr(VI) sorption by biochars pyrolyzed from the municipal wastewater sludge under different heating conditions. Bioresour. Technol. 2013, 147, 545–552. [Google Scholar] [CrossRef]
- Li, H.S.; Xiong, J.F.; Xiao, T.F.; Long, J.Y.; Wang, Q.M.; Li, K.K.; Liu, X.M.; Zhang, G.S.; Zhang, H.G. Biochar derived from watermelon rinds as regenerable adsorbent for efficient removal of thallium(I) from wastewater. Process. Saf. Environ. 2019, 127, 257–266. [Google Scholar] [CrossRef]
- Gao, M.L.; Zhang, Y.; Gong, X.L.; Song, Z.G.; Guo, Z.Y. Removal mechanism of di-n-butyl phthalate and oxytetracycline from aqueous solutions by nano-manganese dioxide modified biochar. Environ. Sci. Pollut. Res. 2018, 25, 7796–7807. [Google Scholar] [CrossRef]
- Zheng, Y.L.; Wang, B.; Wester, A.E.; Chen, J.J.; He, F.; Chen, H.; Gao, B. Reclaiming phosphorus from secondary treated municipal wastewater with engineered biochar. Chem. Eng. J. 2019, 362, 460–468. [Google Scholar] [CrossRef]
- Jiang, Y.H.; Li, A.Y.; Deng, H.; Ye, C.H.; Wu, Y.Q.; Linmu, Y.D.; Hang, H.L. Characteristics of nitrogen and phosphorus adsorption by Mg-loaded biochar from different feedstocks. Bioresour. Technol. 2019, 276, 183–189. [Google Scholar] [CrossRef]
- Sun, Y.F.; Qi, S.Y.; Zheng, F.P.; Huang, L.L.; Pan, J.; Jiang, Y.Y.; Hou, W.Y.; Xiao, L. Organics removal, nitrogen removal and N2O emission in subsurface wastewater infiltration systems amended with/without biochar and sludge. Bioresour. Technol. 2018, 249, 57–61. [Google Scholar] [CrossRef]
- Kasozi, G.N.; Zimmerman, A.R.; Nkedi-Kizza, P.; Gao, B. Catechol and Humic Acid Sorption onto a Range of Laboratory-Produced Black Carbons (Biochars). Environ. Sci. Technol. 2010, 44, 6189–6195. [Google Scholar] [CrossRef]
- Vithanage, M.; Mayakaduwa, S.S.; Herath, I.; Ok, Y.S.; Mohan, D. Kinetics, thermodynamics and mechanistic studies of carbofuran removal using biochars from tea waste and rice husks. Chemosphere 2016, 150, 781–789. [Google Scholar] [CrossRef] [PubMed]
- Suo, F.Y.; You, X.W.; Ma, Y.Q.; Li, Y.Q. Rapid removal of triazine pesticides by P doped biochar and the adsorption mechanism. Chemosphere 2019, 235, 918–925. [Google Scholar] [CrossRef]
- Essandoh, M.; Wolgemuth, D.; Pittman, C.U.; Mohan, D.; Mlsna, T. Phenoxy herbicide removal from aqueous solutions using fast pyrolysis switchgrass biochar. Chemosphere 2017, 174, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.K.; He, L.Z.; Sarmah, A.K.; Lin, K.D.; Liu, Y.K.; Li, J.W.; Wang, H.L. Retention and release of diethyl phthalate in biochar-amended vegetable garden soils. J. Soils Sediments 2014, 14, 1790–1799. [Google Scholar] [CrossRef]
- Nautiyal, P.; Subramanian, K.A.; Dastidar, M.G. Adsorptive removal of dye using biochar derived from residual algae after in-situ transesterification: Alternate use of waste of biodiesel industry. J. Environ. Manag. 2016, 182, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Wan, S.G.; Luo, W.S. Biochars prepared from anaerobic digestion residue, palm bark, and eucalyptus for adsorption of cationic methylene blue dye: Characterization, equilibrium, and kinetic studies. Bioresour. Technol. 2013, 140, 406–413. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.D.; Lin, Y.C.; Ho, S.H.; Zhou, Y.; Ren, N.Q. Highly efficient adsorption of dyes by biochar derived from pigments-extracted macroalgae pyrolyzed at different temperature. Bioresour. Technol. 2018, 259, 104–110. [Google Scholar] [CrossRef]
- Shan, D.N.; Deng, S.B.; Zhao, T.N.; Wang, B.; Wang, Y.J.; Huang, J.; Yu, G.; Winglee, J.; Wiesner, M.R. Preparation of ultrafine magnetic biochar and activated carbon for pharmaceutical adsorption and subsequent degradation by ball milling. J. Hazard. Mater. 2016, 305, 156–163. [Google Scholar] [CrossRef] [Green Version]
- Oh, S.Y.; Seo, Y.D. Sorption of halogenated phenols and pharmaceuticals to biochar: Affecting factors and mechanisms. Environ. Sci. Pollut. Res. 2016, 23, 951–961. [Google Scholar] [CrossRef]
- Anfar, Z.; Zbair, M.; Ahsiane, H.A.; Jada, A.; El Alem, N. Microwave assisted green synthesis of Fe2O3/biochar for ultrasonic removal of nonsteroidal anti-inflammatory pharmaceuticals. RSC Adv. 2020, 10, 11371–11380. [Google Scholar] [CrossRef] [Green Version]
- Lau, A.Y.T.; Tsang, D.C.W.; Graham, N.J.D.; Ok, Y.S.; Yang, X.; Li, X.D. Surface-modified biochar in a bioretention system for Escherichia coli removal from stormwater. Chemosphere 2017, 169, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Stasinakis, A.S.; Gatidou, G.; Mamais, D.; Thomaidis, N.S.; Lekkas, T.D. Occurrence and fate of endocrine disrupters in Greek sewage treatment plants. Water Res. 2008, 42, 1796–1804. [Google Scholar] [CrossRef] [PubMed]
- Emmanouil, C.; Bekyrou, M.; Psomopoulos, C.; Kungolos, A. An Insight into Ingredients of Toxicological Interest in Personal Care Products and A Small-Scale Sampling Survey of the Greek Market: Delineating a Potential Contamination Source for Water Resources. Water 2019, 11. [Google Scholar] [CrossRef] [Green Version]
- Chaukura, N.; Chiworeso, R.; Gwenzi, W.; Motsa, M.M.; Munzeiwa, W.; Moyo, W.; Chikurunhe, I.; Nkambule, T.T.I. A new generation low-cost biochar-clay composite ‘biscuit’ ceramic filter for point-of-use water treatment. Appl. Clay Sci. 2020, 185. [Google Scholar] [CrossRef]
- Pressman, J.G.; Richardson, S.D.; Speth, T.F.; Miltner, R.J.; Narotsky, M.G.; Hunter, E.S.; Rice, G.E.; Teuschler, L.K.; McDonald, A.; Parvez, S.; et al. Concentration, Chlorination, and Chemical Analysis of Drinking Water for Disinfection Byproduct Mixtures Health Effects Research: US EPA’s Four Lab Study. Environ. Sci. Technol. 2010, 44, 7184–7192. [Google Scholar] [CrossRef]
- Agegnehu, G.; Bass, A.M.; Nelson, P.N.; Bird, M.I. Benefits of biochar, compost and biochar-compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil. Sci. Total Environ. 2016, 543, 295–306. [Google Scholar] [CrossRef]
- Crane-Droesch, A.; Abiven, S.; Jeffery, S.; Torn, M.S. Heterogeneous global crop yield response to biochar: A meta-regression analysis. Environ. Res. Lett. 2013, 8. [Google Scholar] [CrossRef]
- Major, J.; Rondon, M.; Molina, D.; Riha, S.J.; Lehmann, J. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant Soil 2010, 333, 117–128. [Google Scholar] [CrossRef]
- Cornelissen, G.; Jubaedah; Nurida, N.L.; Hale, S.E.; Martinsen, V.; Silvani, L.; Mulder, J. Fading positive effect of biochar on crop yield and soil acidity during five growth seasons in an Indonesian Ultisol. Sci. Total Environ. 2018, 634, 561–568. [Google Scholar] [CrossRef]
- Wu, D.; Senbayram, M.; Zang, H.D.; Ugurlar, F.; Aydemir, S.; Bruggemann, N.; Kuzyakov, Y.; Bol, R.; Blagodatskaya, E. Effect of biochar origin and soil pH on greenhouse gas emissions from sandy and clay soils. Appl. Soil Ecol. 2018, 129, 121–127. [Google Scholar] [CrossRef]
- Mukherjee, A.; Lal, R. Biochar Impacts on Soil Physical Properties and Greenhouse Gas Emissions. Agronomy (Basel) 2013, 3, 313–339. [Google Scholar] [CrossRef] [Green Version]
- Troy, S.M.; Lawlor, P.G.; O’Flynn, C.J.; Healy, M.G. Impact of biochar addition to soil on greenhouse gas emissions following pig manure application. Soil Biol. Biochem. 2013, 60, 173–181. [Google Scholar] [CrossRef] [Green Version]
- Fischer, B.M.C.; Manzoni, S.; Morillas, L.; Garcia, M.; Johnson, M.S.; Lyon, S.W. Improving agricultural water use efficiency with biochar—A synthesis of biochar effects on water storage and fluxes across scales. Sci. Total Environ. 2019, 657, 853–862. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.X.; Tang, S.Y.; Jiang, C.J.; Jiang, X.Q.; Guan, Y.T. Simultaneous and Efficient Capture of Inorganic Nitrogen and Heavy Metals by Polyporous Layered Double Hydroxide and Biochar Composite for Agricultural Nonpoint Pollution Control. ACS Appl. Mater. Interfaces 2018, 10, 43013–43030. [Google Scholar] [CrossRef]
- Nanda, S.; Mohanty, P.; Pant, K.K.; Naik, S.; Kozinski, J.A.; Dalai, A.K. Characterization of North American Lignocellulosic Biomass and Biochars in Terms of their Candidacy for Alternate Renewable Fuels. Bioenergy Res. 2013, 6, 663–677. [Google Scholar] [CrossRef]
- Idris, J.; Shirai, Y.; Anduo, Y.; Ali, A.A.M.; Othman, M.R.; Ibrahim, I.; Husen, R.; Hassan, M.A. Improved yield and higher heating value of biochar from oil palm biomass at low retention time under self-sustained carbonization. J. Clean. Prod. 2015, 104, 475–479. [Google Scholar] [CrossRef] [Green Version]
- Aller, D.; Rathke, S.; Laird, D.; Cruse, R.; Hatfield, J. Impacts of fresh and aged biochars on plant available water and water use efficiency. Geoderma 2017, 307, 114–121. [Google Scholar] [CrossRef]
- Wrobel-Tobiszewska, A.; Boersma, M.; Sargison, J.; Adams, P.; Jarick, S. An economic analysis of biochar production using residues from Eucalypt plantations. Biomass Bioenergy 2015, 81, 177–182. [Google Scholar] [CrossRef]
- Zhang, T.; Liang, F.; Hu, W.H.; Yang, X.M.; Xiang, H.Z.; Wang, G.; Fei, B.H.; Liu, Z.J. Economic analysis of a hypothetical bamboo-biochar plant in Zhejiang province, China. Waste Manag. Res. 2017, 35, 1220–1225. [Google Scholar] [CrossRef]
- Blackwell, P.; Krull, E.; Butler, G.; Herbert, A.; Solaiman, Z. Effect of banded biochar on dryland wheat production and fertiliser use in south-western Australia: An agronomic and economic perspective. Aust. J. Soil Res. 2010, 48, 531–545. [Google Scholar] [CrossRef]
- Field, J.L.; Keske, C.M.H.; Birch, G.L.; Defoort, M.W.; Cotrufo, M.F. Distributed biochar and bioenergy coproduction: A regionally specific case study of environmental benefits and economic impacts. Gcb Bioenergy 2013, 5, 177–191. [Google Scholar] [CrossRef]
- Galinato, S.P.; Yoder, J.K.; Granatstein, D. The economic value of biochar in crop production and carbon sequestration. Energy Policy 2011, 39, 6344–6350. [Google Scholar] [CrossRef]
- Kuppusamy, S.; Thavamani, P.; Megharaj, M.; Venkateswarlu, K.; Naidu, R. Agronomic and remedial benefits and risks of applying biochar to soil: Current knowledge and future research directions. Environ. Int. 2016, 87, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Kookana, R.S.; Sarmah, A.K.; Van Zwieten, L.; Krull, E.; Singh, B. Biochar Application to Soil: Agronomic and Environmental Benefits and Unintended Consequences. Adv. Agron. 2011, 112, 103–143. [Google Scholar] [CrossRef]
- Wang, D.J.; Zhang, W.; Hao, X.Z.; Zhou, D.M. Transport of Biochar Particles in Saturated Granular Media: Effects of Pyrolysis Temperature and Particle Size. Environ. Sci. Technol. 2013, 47, 821–828. [Google Scholar] [CrossRef]
Feedstock | Pyrolysis Method (Residence Time) | Temperature (°C) | PH | Surface Area (m2/g) | Pore Volume (cm3/g) | Ref. |
---|---|---|---|---|---|---|
Soybean stover | Slow pyrolysis (3 h) | 300 | 7.27 | 5.61 | - | [38] |
Peanut shell | Slow pyrolysis (3 h) | 300 | 7.76 | 3.14 | - | [38] |
Pine wood | Slow pyrolysis (0.5 h) | 400 | 8.5 | 140 | 0.06 | [39] |
Paper mill sludge | Slow pyrolysis (2 h) | 400 | 8.23 | 33.56 | 0.051 | [40] |
Herb residue | Slow pyrolysis (3 h) | 400 | 10.2 | 49.2 | 0.042 | [41] |
Pine wood | Slow pyrolysis (0.5 h) | 500 | 8.7 | 380 | 0.15 | [39] |
Wood bark | Slow pyrolysis (0.5 h) | 500 | 9.8 | 350 | 0.14 | [39] |
Wood bark | Slow pyrolysis (2 h) | 500 | 10.9 | 67.5 | 0.054 | [42] |
Rice husk | Slow pyrolysis (2 h) | 500 | 7.99 | 230.91 | - | [43] |
Paper mill sludge | Slow pyrolysis (2 h) | 500 | 8.78 | 47.42 | 0.063 | [40] |
Dairy manure | Slow pyrolysis (4 h) | 500 | 10.5 | 13.0 | - | [44] |
Paper mill sludge | Slow pyrolysis (2 h) | 600 | 9.17 | 50.44 | 0.074 | [40] |
Rice straw | Slow pyrolysis (3 h) | 600 | 9.7 | 156.2 | 0.084 | [45] |
Wheat straw | Slow pyrolysis (3 h) | 600 | 9.1 | 183.3 | 0.091 | [45] |
Herb residue | Slow pyrolysis (3 h) | 600 | 10.1 | 51.3 | 0.051 | [41] |
Soybean stover | Slow pyrolysis (3 h) | 700 | 11.32 | 420.3 | 0.19 | [38] |
Peanut shell | Slow pyrolysis (3 h) | 700 | 10.57 | 448.2 | 0.20 | [38] |
Pine wood | Fast pyrolysis (2 s) | 400 | - | 4.8 | - | [46] |
Pine sawdust | Fast pyrolysis (3 s) | 400 | 4.2 | 6.2 | 0.011 | [47] |
Sawdust | Fast pyrolysis (3 s) | 400 | 6.35 | 83.90 | 0.012 | [48] |
Pine wood | Fast pyrolysis (2 s) | 425 | - | 1.35 | - | [49] |
Switchgrass | Fast pyrolysis (30 s) | 450 | 9.1 | 1.4 | 0.012 | [50] |
Pine wood | Fast pyrolysis (2 s) | 500 | - | 175.4 | - | [46] |
Sawdust | Fast pyrolysis (3 s) | 500 | 6.42 | 36.60 | 0.015 | [48] |
Rice husk | Fast pyrolysis (acid) | 500 | - | 46.8 | 0.033 | [51] |
Sawdust | Fast pyrolysis (3 s) | 600 | 7.00 | 30.20 | 0.010 | [48] |
Switchgrass | Fast pyrolysis (30 s) | 600 | 10.6 | 2.1 | 0.023 | [50] |
Rice husk | Fast pyrolysis (alkali) | 500 | - | 117.8 | 0.073 | [51] |
Sawdust | Fast pyrolysis (3 s) | 700 | 9.08 | 65.20 | 0.016 | [48] |
Sawdust | Fast pyrolysis (3 s) | 800 | 9.31 | 330.00 | 0.048 | [48] |
Switchgrass | Fast pyrolysis (30 s) | 800 | 11.2 | 17.2 | 0.032 | [50] |
Straw pellet | Microwave (-) | 200 | - | 1.14 | 0.37 | [52] |
Willow chips | Microwave (-) | 170 | - | 3.87 | 2.07 | [52] |
Corn stover | Microwave (15 min) | 650 | 10.5 | 43.4 | - | [53] |
Pine wood | Microwave (15 min) | 650 | 7.85 | 52.1 | - | [53] |
Switchgrass | Microwave (15 min) | 650 | 9.73 | 48.0 | - | [53] |
Sludge | Microwave (10 min) | 700 | - | 110.80 | 0.07 | [54] |
Peanut shell | Microwave (-) | 200 | 6.40 | 4.93 | 0.018 | [55] |
Peanut shell | Microwave (-) | 400 | 6.76 | 20.8 | 0.034 | [55] |
Peanut shell | Microwave (-) | 600 | 7.78 | 587 | 0.289 | [55] |
Contaminants | Feedstock | Pyrolysis Temperature (Time) | Maximum Adsorption Capacity | Ref. |
---|---|---|---|---|
Heavy metals | ||||
Cu2+ | anaerobic digestion sludge | 400 °C (0.5 h) | 11.65 mg/g | [103] |
Pb2+ | anaerobic digestion sludge | 600 °C (2 h) | 51.20 mg/g | [106] |
Cr6+ | anaerobic digestion sludge | 300 °C (2 h) | 208 mg/g | [107] |
Cr3+ | rice straw, chitosan | 600 °C (2 h) | 312.50 mg/g | [102] |
Tl+ | watermelon rinds | 500 °C (1 h) | 178.4 mg/g | [108] |
Cu2+ | kelp, FeCl3·6H2O | 500 °C (2 h) | 69.37 mg/g | [109] |
Plant nutrients | ||||
Total P | hickory wood chips, AlCl3·6H2O | 600 °C (1 h) | 8346 mg/g | [110] |
Total P | banana straw, MgCl2 | 430 °C (4 h) | 31.15 mg/g | [111] |
Total N | corn straw | 500 °C (15 h) | 86.4 ± 0.5% removal | [112] |
NH4+-N | corn straw | 500 °C (15 h) | 96.2 ± 0.6% removal | [112] |
NH4+-N | cassava straw, MgCl2 | 430 °C (4 h) | 24.04 mg/g | [111] |
Pesticides & herbicides | ||||
Catechol | oak wood chips | 400 °C (3 h) | 20 mg/g | [113] |
Carbofuran | rice husk | 700 °C (3 h) | 25.2 mg/g | [114] |
Triazine | corn straw (P doped biochar) | 300 °C (2 h) | 79.6 mg/g | [115] |
2,4-D | switchgrass | 425 °C (60 s) | 134 mg/g | [116] |
Plasticizers | ||||
Diethyl phthalate | bamboo | 650 °C (3 h) | 31.43 mg/g | [117] |
Oxytetracycline | corn stalk, MnSO4·6H2O | 600 °C (2 h) | 40.33 mg/g | [109] |
Dyes | ||||
Congo red | residual algae | 450 °C (2 h) | 82.6% removal | [118] |
Methylene blue | anaerobic digestion sludge | 400 °C (0.5 h) | 99.5% removal | [119] |
Malachite green | residual algae | 800 °C (1.5 h) | 99.9% removal | [120] |
Pharmaceutical and personal care products | ||||
Carbamazepine | coconut shells (ball milled) | 500 °C (1.5 h)-microwave | 135.1 mg/g | [121] |
Triclosan | biosolids | 400 °C (4 h) | 277 mg/g | [122] |
Ibuprofen | biosolids | 400 °C (4 h) | 10.7 mg/g | [122] |
salicylic acid | walnut shell, FeCl3·6H2O | 600 °C (2 h)-microwave | 683 mg/g | [123] |
Pathogens | ||||
Escherichia coli | forestry wood waste | 700 °C (15 h) | 98% removal | [124] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Chan, C.Y.; Sharbatmaleki, M.; Trejo, H.; Delagah, S. Engineered Biochar Production and Its Potential Benefits in a Closed-Loop Water-Reuse Agriculture System. Water 2020, 12, 2847. https://doi.org/10.3390/w12102847
Li S, Chan CY, Sharbatmaleki M, Trejo H, Delagah S. Engineered Biochar Production and Its Potential Benefits in a Closed-Loop Water-Reuse Agriculture System. Water. 2020; 12(10):2847. https://doi.org/10.3390/w12102847
Chicago/Turabian StyleLi, Simeng, Celeste Y. Chan, Mohamadali Sharbatmaleki, Helen Trejo, and Saied Delagah. 2020. "Engineered Biochar Production and Its Potential Benefits in a Closed-Loop Water-Reuse Agriculture System" Water 12, no. 10: 2847. https://doi.org/10.3390/w12102847
APA StyleLi, S., Chan, C. Y., Sharbatmaleki, M., Trejo, H., & Delagah, S. (2020). Engineered Biochar Production and Its Potential Benefits in a Closed-Loop Water-Reuse Agriculture System. Water, 12(10), 2847. https://doi.org/10.3390/w12102847