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Abstract: Natural disturbances (windthrow, bark beetle, and fire) have reduced forest cover in
the Tatra National Park (Slovakia) by 50% since the year 2004. We analyzed carbon fluxes and
streamflow ten years after the forest destruction in three small catchments which differ in size, land
cover, disturbance type and post-disturbance management. Point-wise CO2 fluxes were estimated by
chamber methods for vegetation-dominated land-use types and extrapolated over the catchments
using the site-specific regressions with environmental variables. Streamflow characteristics in the pre-
and post-disturbance periods (water years of 1965–2004 and 2005–2014, respectively) were compared
to identify changes in hydrological cycle initiated by the disturbances. Mature Norway spruce forest
which was carbon neutral, turned to carbon source (330 ± 98 gC m−2 y−1) just one year after the wind
disturbance. After ten years most of the windthrow sites acted as carbon sinks (from −341 ± 92.1 up
to −463 ± 178 gC m−2 y−1). In contrast, forest stands strongly infested by bark beetles regenerated
much slowly and on average emitted 495 ± 176 gC m−2 year−1. Ten years after the forest destruction,
annual carbon balance in studied catchments was almost neutral in the least disturbed catchment.
Carbon uptake notably exceeded its release in the most severely disturbed catchment (by windthrow
and fire), where net ecosystem exchange (NEE) was −206 ± 115 gC m−2. The amount of sequestered
carbon in studied catchments was driven by the extent of fast-growing successional vegetation cover
(represented by the leaf area index LAI) rather than by the disturbance or vegetation types. Different
post-disturbance management has not influenced the carbon balance yet. Streamflow characteristics
did not indicate significant changes in the hydrological cycle. However, greater cumulative decadal
runoff, different median monthly flows and low flows and the greater number of flow reversals in the
in the first years after the windthrow in two severely affected catchments could be partially related to
the influence of the disturbances.
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1. Introduction

In addition to wood supply, forest ecosystems provide a multitude of benefits in terms of
climate and water regulations, carbon sequestration, freshwater quality, soil protection, nutrient
cycling, human health, recreation, biodiversity, wildlife habitats and many other. The ability of
forest ecosystems to provide these ecosystem services (ES) is very much dependent on their status,
structure and functioning [1]. In the last decades, forests have been globally affected by more frequent
disturbances [2] due to which many ES are supposed to be threatened [3]. This trend is believed to
continue in the future because of the ongoing climate changes [4–6]. Changes in the climate system
will change an overall redistribution of precipitation [7] and alter the partitioning of carbon uptake
and loss [8].

The role of forests in carbon sequestration has been acknowledged in many studies [9], forest
and landscape projects [10]. Forest disturbances change carbon fluxes resulting from the difference
between carbon uptake by vegetation (gross primary photosynthesis, GPP) and loss by ecosystem
respiration (RE). This difference, the net ecosystem exchange (NEE), indicates whether the ecosystem
is sequestering or emitting carbon to the atmosphere. Initially, most disturbances shift ecosystems to
being a carbon source, while recovery is usually associated with greater carbon storage [11–15]. The
duration and dynamics of these fluxes depend on the kind of disturbance and its intensity [16,17].
Recently, climate change-induced changes in carbon sequestration have been intensively studied
(e.g., [18–21]), and the results show the role of site-specific conditions and the influence of silvicultural
methods [22,23]. Less attention has been given to post-disturbance forest management impact on
carbon fluxes, although the role of reforestation in carbon sequestration is widely recognized [9].

The most commonly used method for ecosystem or landscape-scale estimation of carbon balance is
the eddy-covariance (EC) technique [24,25]. Despite recent technical and methodological advances [26]
this method has still some limitations, especially in complex terrains. An alternative approach,
particularly suitable in heterogeneous landscapes, is the chamber method which is low-cost and easy to
apply. Chamber measurements range from leaf to entire plant flux estimations. They were successfully
used for validation of the EC technique [27]. However, small spatial coverage of the chamber method
requires a large effort to collect sufficient data needed to develop simple empirical equations to scale
up the results to the entire ecosystem [28]. At the same time, the chamber-based flux estimation is
subject to uncertainties related to site (soil, microclimate) heterogeneity, that are further increased by
heterogeneous disturbance patterns.

Plant assimilation and evapotranspiration are regulated by canopy stomatal conductance. Plant
canopy in carbon-water coupling models is often abstracted as a big leaf. Such a simplification in some
implications is in conflict with the clumped canopy structure. A two-big-leaf scheme and two-leaf
scheme that stratify a canopy to sun-exposed and shaded leaves have been developed to make the big
leaf concept more applicable [29].

Forest disturbances do not affect only carbon fluxes. They have a direct effect on the main
components of catchment water balance, i.e., precipitation (interception) and evapotranspiration
(e.g., [30]). Consequently, runoff generation, snow accumulation and melt, groundwater recharge or
catchment runoff characteristics can be altered, e.g., [31–33]. Catchment runoff is an integrated result
of hydrological processes taking place in a catchment. Runoff data series are therefore often analyzed
to identify the effects of forest disturbances on catchment hydrology by comparing flow characteristics
before and after the disturbance. A number of studies analyzing the influence of deforestation concluded
that peakflow or low flow characteristics temporarily increased after deforestation, e.g., [34–36] and
that deforestation had to affect a larger area (e.g., at least 20% of the catchment) to show the effects in
runoff records [34,37]. These conclusions were often obtained by comparing flow characteristics in
paired catchments, in which one catchment was subjected to forest harvesting. Alila et al. [38] contend
that in paired catchments the effects of forest harvesting on floods should be evaluated considering
simultaneous changes in both magnitude and frequency of the floods. In their study, floods are
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understood as a subset of peakflow frequency distribution containing flows with the magnitude
exceeding channel capacity and return interval of 1–10 years or more.

In addition to peakflow, low flow or water yields traditionally used in the forest harvesting impact
studies, many indicators were developed in environmental flow studies to characterize impacts of
river regulations. The commonly used IHA tool (Indicators of Hydrologic Alteration) [39] calculates 67
characteristics based on data series of daily discharge. They characterize magnitude and duration of
monthly, annual and extreme water conditions. Olden and Poff [40] examined 171 indices describing
magnitude, frequency, duration and timing and rate of change in flow events (including those from
IHA) using long-term flow records from 420 sites across the continental USA. They found out that the
majority of indices were highly inter-correlated and proposed sets of selected indices that adequately
characterize flow regimes in a non-redundant manner for different stream types. Gao et al. [41]
concluded that metrics termed ecodeficit and ecosurplus [42] based on a flow duration curve can
provide a good overall representation of the degree of alteration of streamflow time series.

Even though carbon and water balance are coupled processes, they are rarely compiled at a
catchment scale [8]. Such an analysis is missing also in the Tatra Mountains literature where intensive
research of multiple disturbing factors impact on the forests has resulted in numerous studies and
publications. Our work attempts to fill the gap in existing studies by evaluating spatially integrated
information on ecosystem dynamics at a landscape scale.

The main aim of this study is to evaluate carbon balance and to examine streamflow characteristics
in three small catchments in the Slovak part of the Tatra Mountains ten years after the extraordinary
wind disturbance that initiated vast forest destruction in the area. Secondary objectives of this study
are: (i) to estimate CO2 fluxes with chamber and biometric methods in different ecosystem (landscape)
types and under different post-disturbance management, (ii) to extrapolate C balance from point-wise
to the catchment scale, and iii) to evaluate changes in catchment runoff. We hypothesized that (a)
intact forest acts as a carbon sink, (b) forest disturbances stimulate immediate large carbon losses
from forests and subsequent gradual recovery of carbon balance, and (c) disturbances change certain
flow characteristics.

2. Material and Methods

2.1. Study Sites

Tatra Mountains is the highest mountain range of the Carpathians and a regional water tower of
northern Slovakia and southern Poland. The majority of the territory is protected within the Tatra
National Park, Slovakia (TANAP) and Tatrzański Park Narodowy, Poland. The TANAP protects also
natural and seminatural predominantly Norway spruce forest that covers approximately 40,000 ha.
Roughly 30% of the forests is strictly protected in the no management zone. A downslope wind locally
named “bora” sporadically hits forest stands on the lee side of the mountains [43] and causes large
destructions. In November 2004, more than 12,000 ha of mature forests was destroyed by such an
extremely strong windstorm. Smaller windstorms and bark beetle outbreaks initiated by the 2004
windthrow damaged additional 7000 ha of the forests in the following years. In total, 50% of mature
forest stands were damaged during the 2004–2014 period in the Tatra National Park (www.lesytanap.sk,
accessed on 1 July 2020).

Three small catchments with long streamflow records were selected for this study (Figure S1).
The catchments are located on the southern (lee) slopes of the Tatra mountains and differ in their
areas and proportion of ecosystem types (Figure 1). The 2004 windfall significantly reduced forest
cover in two catchments (the Velický and Slavkovský Creek catchments, hereafter denoted as VP and
SP), while forests in the third catchment remained almost unaffected by the windfall (the Mlynický
Creek catchment, hereafter MP). The catchments are built by crystalline rocks that are partially
covered by Quaternary sediments and by glaciofluvial sediments (moraines) at higher and lower
elevations, respectively. Soils are generally stony, well drained, mostly shallow, very acid and poor in
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nutrients [44,45]. Lithic Leptosols and Hypersceletic Regosol are dominant above tree line. Haplic
Podzols and Dystric Cambisols (WRB classification) are dominant forest soil types. Extremely rocky
soils (rankers) cover ca 30% of the forest area [45].
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VP 58.0 20.0 1031.7 13.3 10.0 0.3 14.1 16.8 7.3 8.1 27.5 0.0 1.7 0.01
SP 43.0 32.0 612.1 5.6 15.1 0.1 16.0 18.7 6.3 1.4 7.9 27.7 0.9 0.01

Vegetation at the highest elevations (above 1700 m a.s.l.) is sparse and dominated by Agrostis
pyreneica, Juncus trifidus, Avenella flexuosa, Avenula versicolor, Luzula sudetica. Mountain pine (Pinus
mugo) forms a continuous belt above the tree line (1550 m a.s.l.) and grows up to 1700 m a.s.l. with
Avenella flexuosa and Calamagrostis villosa under the canopy. The area between 900 and 1500 m a.s.l.
was almost completely covered by mature forests (Lariceto-Piceetum and Sorbeto-Piceetum communities)
before the disturbances. Norway spruce (Picea abies) was the dominant tree species (covering 70–90%),
while European larch (Larix decidua) covered 10–30% of the forest in the studied catchments [44].

The long-term annual average temperature ranges from 5.3 ◦C (850 m a.s.l.) to 1.7 ◦C (1750 m a.s.l.)
Annual precipitation total ranges from 800 mm up to 1350 mm with maximum in summer months [45].
Study catchments are shown in Supplement, Figure S1. For carbon study, only the upper parts (micro
catchments) of the entire catchments were chosen, as presented in Figure 1.
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The carbon study areas feature typical land cover types that are hereafter termed as types of
ecosystems. They are represented by tarns and streams, alpine meadows, dwarf mountain pine
stands, undisturbed mature Norway spruce forests, managed 10-year-old windthrow, unmanaged
10-year-old windthrow, managed 1-year-old windthrow, standing/lying trees killed by bark beetle,
burnt windthrow and non-vegetation types (rocks, roads, buildings, etc.) Ecosystem types were
classified by ArcGIS from the aerial orthophoto maps created in 2015. The areas of ecosystem types in
the catchments used in the carbon balance evaluation are given in Table 1.

Vegetation (ALM, DWP, mature intact REF forest, and disturbed IPS, EXT and NEX ecosystem
types) together covered 72% of the catchment area in MP, 76% in VP and 79% in SP. Pre-disturbance
forest cover was 160.7 ha in MP, 461.1 in VP and 270.2 ha in SP. Until 2014 forest cover decreased from
21% to 14% in MP, from 45% to 8% in VP and from 44% to 1% in SP. Thus, the most heavily affected
forest stands were in the SP catchment, where total forest cover was reduced by 98%.

Most of the forests affected by disturbances were managed. Post-disturbance forestry operations
focused on slash harvest and reforestation. Only small patches remained unmanaged, namely 1 ha in
MP, 9 ha in VP and 7.2 ha in SP catchment. These numbers include also forests killed by consequent
bark beetle attack in the no management zone of TANAP. In 2014, strong winds damaged forest edges
of the 2004 windthrow. This event offered an opportunity to study carbon dynamics immediately after
the disturbance. We use the abbreviation REX to refer to this type of ecosystem, which is not shown in
Figure 1 due to the limited size of patches and spatially distributed occurrence of this ecosystem type.

The conditions in our study differ from studies devoted to impacts of forest harvesting on
streamflow. In our case the primary forest disturbance was natural and instantaneous (it occurred
within a few hours on 19 November 2004), and was followed by subsequent disturbances (bark
beetle outbreak, local fires and other smaller windthrows). The urbanization of the disturbed area
is low, and there is no flow regulation. As it is quantified above, the windthrow damaged a large
forested area. Due to the timing of the disturbance and the beginning of winter, most of the wood
windthrown wood remained on the ground until spring 2005. Thus, the highest potential flood
hazard related to forest removal was approximately in the period between autumn 2005 and winter
2006. The flood hazard declined in the following years due to vegetation regrowth (both natural
and managed). Holko et al. [46] compared water balance, minimum and maximum runoff, runoff

thresholds, number of runoff events and their selected characteristics, runoff coefficients, and flashiness
indices before (starting with the water year 1962) and after the windfall (until the water year 2007) in
eight catchments of the disturbed area. The impact of deforestation was not clearly manifested in the
analyzed hydrological data. Analysis of baseflow variability [47], runoff response to heavy rainfall [45]
and flow duration curves [48] resulted in the same conclusions although [48] concluded that discharges
with the highest probability of exceedance (Q90% and Q80%) in the decade following the windfall
(2005–2014) occurred more frequently than in period 1965–2004. Most of the above analyses were based
on a shorter time series of data after the first disturbance (windthrow). In this article we used additional
indices that were not used in the previous studies. Longer data series also allowed additional analysis
of the occurrence of peakflows with different return periods.

Evaluation of carbon balance was based on manual CO2 fluxes measurement by chamber
methods during the growing season 1 April–31 August 2014. Meteorological and phenological
data were recorded all year round. Changes in catchment streamflow were evaluated using daily
discharge data from water years 1965–2014 measured in the national network operated by the Slovak
Hydrometeorological Institute.

2.2. Meteorological and Hydrological Data

Climatic data are commonly used as a proxy for estimation of carbon fluxes. Hourly measurements
of air temperature and humidity at a standard height of 2 m above the terrain (Hygroclip, Switzerland),
soil temperature at 2 cm and 10 cm depths (107 Campbell, UK), soil moisture at 10 cm (theta Ml2x,
Delta UK), photo synthetically active radiation (PAR Quantum Skye, Ireland) and precipitation (Davis,
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CA, USA) were recorded by the Campbell data loggers (Campbell, UK). Mobile meteorological stations
were located at 1150 m a.s.l. in all studied catchments. Additionally, instant soil temperatures (at 2
cm and 10 cm depths), soil moisture (0–6 cm) and PAR were recorded concurrently with CO2 flux
measurements. Daily discharges measured at catchment outlets in period 1965–2014 were provided by
the Slovak Hydrometeorological Institute.

2.3. Vegetation and Phenology

Qualitative (species composition) and quantitative (biomass, coverage) vegetation parameters are
the most important predictors of plant assimilation. Species composition in relevant ecosystem types
was derived as a species-specific contribution to total leaf area index (LAI). Species-specific and total
LAI were used for a big leaf model construction. In this study the big leaf model is three-dimensional
with distinct vertical distribution of LAI and available PAR.

Plots for vegetation sampling were established along 21 transects, each 540 m long, located in
the DWP, IPS, REF, EXT, FIR, NEX and REX ecosystem types. The plots were set up every ten meters
and each plot consisted of three squares of different size: 0.04 m2 for grass and herbs, 0.25 m2 for
shrubs and 25 m2 for trees. During the peak of the growing season (mid-June–end of July), grasses,
herbs and shrubs were clipped, scanned, dried at 60 ◦C for 48 h and weighted in the laboratory. First,
we estimated species-specific leaf area (SLA) from a regression between the foliage biomass and the
foliage area. Plant leaf area of scanned leaves (40–50 samples for each species, each sample contained
10–50 leaves) was calculated by the ImageJ software [49]. Species-specific leaf area index (LAI) was
derived by multiplying foliage biomass and SLA. Sum of species-specific LAI gave total site LAI. Tree
diameters near the ground surface and height of each tree were measured with digital clipper and
telescopic sticks, respectively. Tree foliage biomass was derived from biomass regressions proposed
by [50–53]. Vertical distribution of LAI on dominant plant species was measured with Licor 2200 Plant
Canopy Analyser in 10 cm vertical categories from the top of the canopy to the ground. Licor 2200 was
also used for the estimation of temporal changes along established vegetation transects (on 5 × 5 m
squares) and verification of total LAI.

The dates of bud break, first and full leaves development were recorded and kindly provided
by the phenology observation stations of the Slovak Hydro Meteorological Institute located in the
MP catchment.

2.4. Carbon Balance

Carbon balance (net ecosystem exchange, NEE) refers to the amount of carbon captured by
plants. We estimated NEE as a difference between assimilation (GPP) and ecosystem respiration (RE).
Assimilation was estimated during growing season (1 April–31 August). Respiration was measured all
year round, except for the snow cover period (mid December–early March). Negative sign in NEE
represented carbon uptake, while positive sign for carbon efflux. Spatial extrapolations of leaf, plant
and point-wise carbon flux data to the catchment scale were based on regressions with actual vegetation.
Temporal extrapolation of instant carbon fluxes was based on their regression with meteorological
data and plant phenological development [54].

2.4.1. Assimilation—GPP

GPP was estimated as a sum of net exchange (NEE) and respiration (RE) directly measured by the
chambers. We used leaf or whole plant gas measurement for dominant plant species accordingly to the
plant size and shape. GPP refers to the amount of CO2 captured by leaves (µmol C m−2 s−1) which is
usually mainly controlled by available PAR [µmol photons m−2 s−1]. This response is expressed by the
light response curves which were constructed for dominant plant species. The light response curve
defines light saturated assimilation (GPPmax) and quantum yield (α) which naturally change during
season. For this purpose, we repeated field measurements of GPPmax and α of most plant species on
a 2-week basis, and once a month for conifer trees. GPPmax was derived from plotted light curves
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and α was calculated using the nonlinear regression (Statistica 12). The Michelis – Menten type of
regression [54] was used for calculation:

GPP =
GPPmax × α× PAR
GPPmax + α× PAR

× LAI (1)

GPP was calculated on an hourly basis. As incoming PAR changes continuously, we used 60 min
averages to calculate hourly and consequently daily and total (seasonal) GPP. As the shaded leaves
inside the canopy receives only portion of incoming PAR, we divided the canopy into 10 cm vertical
sections and measured incoming PAR from the canopy top to the ground (100 measurements per
species) by Quantum sensor. Similarly, LAI vertical distribution across the canopy was measured by
Licor 2200. Empirical models of vertical LAI distribution and PAR dissipation for dominant species
were applied to correct GPP derived from leaf measurements.

Leaf measurements: Licor 6400XT device was used for the gas exchange measurement on wide leaf
plants. The samples (20 leaves per species, equally at both sunny and shaded sides) were exposed to
different intensities of PAR (0, 50, 100, 200, 400, 800, 1200, 2000 µmol photons m−2 s−1) to construct the
light response curves. The leaf CO2 net exchange was measured biweekly on dominant species; the
parameters are shown in Table S1.

Plant measurements: Customs built plexiglass chambers of 16 and 60 dm3 were used to measure
the whole plant gas exchange on narrow leaf plants (grasses). The chambers were equipped with
GMP 343 CO2 sensor (Vaisala, Finland), PAR, temperature and air humidity probes and a small fan.
Incoming radiation was modified with a variable combination of shading nets. Each measurement
lasted two minutes. Only the linear part of the CO2 concentration change was used for the calculation
of CO2 flux following the ideal gas law [55].

Mature forest estimation: The GPP in mature spruce forest was calculated with annual wood stock
increment (m3 ha−1). Average annual wood stock increment was derived from permanent research
plots located in studied catchments [56]. Allometric and biomass expansion factors were used to
transform wood stock increment to net primary productivity (NPP) according to [7] and [57]:

NPP = V×D×BEF× k × c (2)

where V—annual wood stock increment, D—wood density, BEF—expansion factor for above-ground
biomass, k—coefficient for below-ground biomass, and c—portion of C in wood.

The GPP is equal to NPP divided by carbon use efficiency coefficient (CUE), GPP = NPP/CUE. We
used the CUE value for Norway spruce according to [58].

2.4.2. Ecosystem Respiration—RE

Ecosystem respiration (RE) is the sum of soil and aboveground plant respiration. Soil respiration
(SR) was measured on fixed collars with a PVC custom-built dark closed chamber (diameter 30 cm,
height 10 cm) equipped with Vaisala GMP 343 CO2 probe and a small fan. The CO2 concentration was
measured every five seconds for five minutes and corrected for air pressure, temperature and humidity.
Soil temperature and soil moisture were recorded along with the SR measurement. SR was measured
every two weeks along fixed transects (for details see [54]). For this study we used the location and the
number of sampling points (collars) as shown in Table 2.

Measured SR values were fitted with an exponential function based on soil temperature [59]:

SR = k × ea X T (3)

SR was calculated for each individual sampling point (collar), where T is soil temperature in 10
cm, k and a are regression parameters of the function derived by nonlinear regression using Statistica
12. Only statistically significant parameters (p < 0.05) were employed for SR modelling. The annual SR
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model was based on extrapolation of instant SR values using continuously measured soil temperature in
10 cm depth. Each ecosystem type was represented by an average calculated from all measured points.

Table 2. Numbers of sampling points for estimation of soil respiration in different ecosystems.

Ecosystem Type Abbreviation Number of Points Altitude (m a.s.l.)

Alpine meadow ALM 3 1730
Dwarf pine DWP 5 1550

Bark beetle attacked forest IPS 10 1180
Mature undisturbed forest REF 20 1200

Windthrow extracted EXT 24 1100
Burnt windthrow FIR 8 1100

Windthrow non-extracted NEX 8 1100
1-year-old windthrow REX 8 1100

Leaf respiration was measured with Licor6400 XT as species-specific leaf net CO2 exchange under
dark conditions (PAR set to 0). Stem (wood) respiration was measured on collars permanently fixed
to the trunks (n = 5) on trees with average height and diameter. The measurements were realized
on a 2-week basis. Arithmetic means of measured values were used to derive regressions with air
temperature similarly as for soil respiration and to calculate component (leaves, stem) and annual
ecosystem respiration.

2.4.3. Flux Data Validation

Confidence intervals for estimated CO2 fluxes were calculated with the Monte Carlo method as
proposed by Knohl [60]. First, we calculated the regressions in Equation (3) for all components of
ER (soil, stem, leaf) and their standard deviations (SD). Second, we calculated 5000 seasonal sums of
respiration based on measured temperatures and 5000 combinations of k and a parameters sampled
by the replacement from bivariate normal distribution defined by the values and SD of k and a. A
similar approach was applied to estimate GPP uncertainty. The GPPmax and α parameters in Equation
(1) were estimated using nonlinear regression. The seasonal sum of GPP based on hourly PAR for
different plant species was calculated with 5000 combinations of GPPmax and α parameters sampled
using the same method as described above. The overall catchment scale confidence intervals for NEE
were calculated as a square root of the weighted sums of partial ecosystem level CIs.

2.5. Streamflow Characteristics

Daily discharge data from the water years 1965–2014 were analyzed. The MP catchment
represented a small mountain headwater catchment that was unaffected by the 2004 windthrow while
the VP and SP represent catchments that were significantly affected by the windthrow and consecutive
bark beetle outbreak and fire disturbances. Having data from ten water years after the windthrow, we
first examined decadal cumulative runoff from 1965 to 2014 and compared it to cumulative precipitation
from the only two precipitation stations existing in the study area that provide representative data
from higher elevations (Skalnaté Pleso and Kasprowy wierch).

The IHA indicators were also examined visually (magnitudes, ranges, temporal trends and
abrupt changes) with the aim to identify the influence of the disturbances on the low and high flow
characteristics (annual minima: 1-day, 3-day, 7-day and 30-day annual minima, 1-day, 3-day and 7-day
annual maxima), baseflow index, environmental flow components (frequency and duration of high
and low flow pulses), rate and frequency of flow changes (rise, fall, number of reversals). High flows
were defined as flows that exceeded 75% of all daily flows. Low flows were flows equal to or less than
50% of all daily flows. The number of reversals represents the number of flow changes from falling to
rising and vice versa per year. Median values of all characteristics in the decades of 1965–2014 were
compared as well.
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Characteristics recommended by Olden and Poff [40] for perennial streams with snow and rain
regime (Table 3) were then calculated and analyzed as well. Except for the number of flow reversals,
those characteristics were not used in the study area in our earlier studies.

Table 3. Selected indicators of flow regime changes proposed for the evaluation of perennial streams
with snow and rain regime by [40].

Code Definition

MA3 coefficient of variation in daily flows

MA44 variability in annual flows divided by median annual flows; the variability is calculated
as 90th minus the 10th percentile

ML13 coefficient of variation in minimum monthly flows
ML22 mean annual minimum flows divided by catchment area

MH17 mean of the 25th percentile from the flow duration curve divided be median daily flow
across all years

MH20 mean annual maximum flow divided by catchment area

FL3 total number of low flow spells (threshold equal to 5% of men daily flow) divided by the
record length in years

FL2 coefficient of variation in the low flow pulse count (below 25th percentile)
FH3 high flow pulse count (high flow pulse is 7 times the median daily flow)
FH5 mean of high flow events per year (high flow is 1 times the median flow)
DL6 coefficient of variation in annual minima (1-day annual minima)

DL13 mean annual 30 day minimum divided by median flow
DH12 mean annual 7-day maximum divided by median flow
TL1 mean Julian date of the 1-day annual minimum flow over all years
RA9 coefficient of variation in number of reversals

RA8 number of positive and negative changes in water conditions from one day to another
(flow reversals)

Our final group of streamflow analyses focused on the occurrence of flows with specified
probability of exceedance estimated from the flow duration curves. A flow duration curve is a
cumulative frequency curve that characterizes probability of exceedance of specified discharges during
a given period [61]. First, decadal median flow duration curves in the period 1965–2014 were calculated
and compared between decades. Partial duration peakflow series comprising peak discharges of the
four greatest runoff events in each hydrological year provided the flow duration curves for the study
period 1965–2004 (i.e., before the windthrow disturbance). Then, the occurrence of peakflows with 10,
50 and 90% probability of exceedance was examined over the entire study period 1965–2014. It should
be noted that our maximum peakflows may not inevitably represent floods as understood by [38]
above because we did not have records about the events that exceeded the capacity of study channels.

3. Results

3.1. Weather, Vegetation and Phenology

In 2014, air temperature in the study region was exceptionally high compared to the long-term
observations at nearby meteorological stations. The annual average temperature at 850 m a.s.l. was
7.5 ◦C (2.1 ◦C above the 1930–1960 average). Mean annual air temperature on the Lomnický štít peak
(2633 m a.s.l) which is the highest meteorological station in the Tatra Mountains was 2.2 ◦C above the
norm. The annual precipitation total of that year (963 mm) was 14% above the long-term norm at
lower altitudes (850 m a.s.l.), while at higher altitudes it was equal to the long-term norm (1257 mm).
The difference in annual mean soil temperature between the lowest (1150 m a.s.l.) and the highest
(1750 m a.s.l.) locations was only 0.4 ◦C. Soil moisture (θvol %) exceeded 30% throughout the year
except for the second half of August.

Species share in studied ecosystems was derived from their relative leaf coverage. The average
LAI of alpine meadows dominated by Avenella flexuosa (50%) and Luzula sudetica (25%) was 1.6 (±0.4).
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Average LAI of Pinus mugo was 3.4 (±0.6). Sparse grasses beneath dwarf pine canopy were neglected.
Canopy LAI of the undisturbed mature forest (REF) was 3.6 (±0.9) and forest floor vegetation LAI was
1.0 (SD ± 0.3). Species shares in disturbed ecosystems are presented in Figure 2.
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Figure 2. Total leaf area index (LAI) (m2 m−2) and species share [%] for ecosystem types on disturbed
sites, where NEX—non-extracted windthrow, FIR—burnt windthrow, EXT—extracted windthrow,
IPS—forest killed by bark beetle, REX—one-year-old extracted windthrow.

The values represent the maximum of measured LAI in mid-June. Species with a share below
4% are not shown. Ground vegetation started to develop in late April. Leaf area increased rapidly
until mid-June, after which it remained relatively stable. The earliest senescence was observed on
Chamaerion angustifolium in mid-August. Near timberline vegetation started to develop after snow
melt in the middle of May. First leaves on broadleaved tree species (Betula verucosa, Salix caprea, Sorbus
aucuparia, Populus tremulae) growing at 1200 m a.s.l. occurred in early May (5–10) and fully developed
leaves in early June (5–15)). At 1400 m a.s.l., the dates were postponed by 7–10 days. Needles on Larix
decidua fully developed in early May.

The greatest vegetation cover was found on NEX and FIR (LAI 4.4) followed by EXT (3.8). The
difference between them was insignificant (p = 0.054). As expected, lower LAI was found on IPS and
REX sites (1.7 and 1.2, respectively, p = 0.14). Generally, grasses dominated on all disturbed sites.
Contribution of trees to total LAI was relatively low. It was zero on REX, 11% on FIR, and 26% on EXT
and NEX sites. The broadleaved species slightly prevailed among trees (60%). LAI notably varied
during the season. The average seasonal course of LAI in the EXT ecosystem is shown in Figure 3.
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Figure 3. Seasonal changes of LAI on ten-year-old windthrow, between May and August 2014; the dots
represent means from 25 plots, and the whiskers show SD.

As the site conditions and species composition in the studied catchments were rather similar, we
expected the same temporal changes of LAI in all ecosystem types. For GPP modelling purposes, the
LAI values between two subsequent measuring dates were linearly interpolated to obtain a time series
with 60 min time step.
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Vertical distribution of LAI and reduction of PAR along a canopy yielded very similar results for
dominant plant species. Average courses of relative LAI distribution and PAR availability along canopy
(0% = top of canopy, 100% = ground) are presented in Figure 4a,b.
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3.2. Carbon Fluxes

3.2.1. Assimilation (GPP)

Light response curves (LRC) for selected species are shown in Figure S2. Early successional stages
species (Calamagrostis villosa, Chamaerion angustifolium, Calamagrostis arundinacea, Salix caprea, Rubus
ideaus) showed significantly higher (p < 0.01) values of light saturated GPP (PAR 1500 µmol photons
m−2 s−1 PAR) than shade-tolerant species typical for spruce forests (Picea abies, Vaccinium myrtillus,
Avenella flexuosa). The maximum rate of GPP for grasses, herbs and broadleaved trees culminated in
late May, while conifers culminated in late June.

GPPmax and α derived from the LRC for seasonal modelling of photosynthesis according to
Equation (1) are given in Supplement Table S1. The GPP derived from species-specific LRC was further
summarized in 10 cm layers reduced by available PAR and LAI fractions as shown in Figure 4 and
calculated for ecosystem types according to vegetation characteristics (LAI and species).

The highest seasonal GPP was fixed in FIR ecosystem type (1,420 ± 33.0 gC m−2). Both managed
(EXT) and unmanaged (NEX) types assimilated similar amount of C equal to 1198 ± 24.5 and 1250 ±
29.1 gC m−2 respectively. Dwarf pine fixed 886 ± 17.6 gC m−2, and spruce forest damaged by bark
beetle (IPS) assimilated 605 ± 19.4 gC m−2. GPP on one-year-old windthrow (REX) and on alpine
meadows was 425 ± 16.5 and 230 ± 8.2 g C m−2, respectively, as presented in Figure 5.
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According to the State Forest of TANAP records, the average annual wood stock increment
(2012–2013) in Lariceto-Piceetum, prevailing forest community in studied catchments, was 8.0 m3 ha−1

y−1. Using BEF for aboveground (1.3) and belowground spruce biomass (1.2) and CUE (0.35), the
estimated GPP was 892 gC m−2 y−1. If ground vegetation assimilation (330.6 ± 97.8 gC m−2 y−1) was
added, total GPP in undisturbed REF forest was 1222.6 gC m−2 y−1.

3.2.2. Ecosystem (RE) and Component Respiration

The highest ER was on REF (1148 ± 120.1 gC m−2 y−1) and IPS (1100 ± 175.0 gC m−2 y−1), followed
by FIR (957 ± 175.0 gC m−2 y−1) and NEX (909 ± 87.4 gC m−2) sites. Soil carbon efflux was the largest
component of ecosystem respiration. From all the ecosystem types, the largest annual soil carbon
efflux equal to 953 gC m−2 was in the REF ecosystem. The second largest flux (905 gC m−2 y−1) was
emitted from the IPS type. Soil on the FIR site respired 617 gC m−2 y−1 and from managed windthrow
(EXT) 596 gC m−2 y−1. Soil respiration from Pinus mugo stands and alpine meadows was equal to 508
and 250 gC m−2 y−1, respectively.

The average proportion of soil respiration to total ER in studied ecosystems was 74% and ranged
from 67% (NEX) to 82% (IPS). Soil respiration showed the highest correlation (avg R2 = 0.64) with
temperature measured at 10 cm soil depth. The correlation between air temperature and leaf respiration
was of similar magnitude (R2 = 0.61), while the correlation of air temperature to wood respiration was
the lowest (R2 = 0.38).

3.2.3. Carbon Balance (NEE)

NEE as a difference between seasonal GPP and annual RE indicates whether the ecosystem or
watershed sequesters or emits C to the atmosphere. The GPP, RE and NEE fluxes in the studied
ecosystems are presented in Table 4.

Table 4. Average annual carbon fluxes (gC m−2 y −1) and CI (95%) for different ecosystem types.

Flux/Ecosystem ALM DWP IPS REF EXT FIR NEX REX

GPP −230 ±
8.2

−886 ±
17.6

−605 ±
19.4 −1223 * −1198 ±

24.5
−1420 ±

33.0
−1250 ±

29.1
−425 ±

16.5

ER 220 ±
43.7

695 ±
90.3

1100 ±
175.0

1148 ±
120.1

846 ±
77.4

957 ±
175.0

909 ±
87.4

755 ±
96.4

NEE −10 ±
44.5

−191 ±
91.9

495 ±
176.0

−75 ±
120.1

−352 ±
81.2

−463 ±
178.1

−341 ±
92.1

330.0 ±
97.8

* indicates that confidence intervals for the REF were not calculated as a different method was used for GPP estimation.

Most of the ecosystems were carbon sink. The largest sink was vegetation on FIR (−463 ± 178.1 gC
m−2 year−1), followed by the EXT and NEX ecosystems. The differences among wind disturbed sites
were low mostly due to large variation of SR. Undisturbed mature REF type was carbon neutral (−75 ±
120.1 gC m−2 year−1, an asterisk indicates that confidence intervals for the REF were not calculated as
a different method was used for GPP estimation). IPS was the largest carbon source (495 ± 176 gC m−2

year−1) followed by one-year-old windthrow REX (330 ± 97.8 gC m−2 year−1). NEE in IPS and REX
remarkably differed from all other ecosystems.

GPP, RE and NEE fluxes (tC ha−1 year−1) in three catchments are presented in Figure 6.
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Figure 6. Annual carbon fluxes (tC ha−1 y−1) on a catchment scale where MP—Mlynický Creek
catchment, VP—Velický Creek catchment, SP—Slavkovský Creek catchment, green bars—GPP, black
bars—RE and red bars—NEE. Negative values of NEE indicate carbon sink.

As the GPP and RE increased in order SP > VP > MP, the same order applied for NEE. NEE
in MP catchment (−80 ± 73 gC m−2 y−1) indicates that carbon balance was almost neutral. The VP
(−136 ± 84 gC m−2 y−1) and SP (−206 ± 115 gC m−2 y−1) acted in 2014 as mild and strong carbon
sinks, respectively.

3.3. Streamflow Characteristics

Decadal cumulative precipitation and runoff (Figure 7) revealed greater cumulative runoff in the
VP and SP catchments in the decade after the windthrow (2005–2014). Similar increase is not visible in
the MP catchment which was very little affected by the windthrow.
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Figure 7. Cumulative runoff and precipitation in decades from 1965–1974 to 2004–2014; precipitation
data adopted from Holko et al., 2020.

Median monthly flows and low flows in the period 2005–2014 increased in almost all months of
a year in the SP catchment (Figure 8), while the opposite was observed in the MP catchment in the
warm period of a year (May–October), except for August. The smallest changes were found in the VP
catchment where they were more pronounced in monthly low flows. Figure 8 also documents seasonal
variability of flows in the studied catchments that is probably not related to windthrow. For example,
annual maxima in the MP catchment in the 1965–1974 and 2005–2014 decades were clearly related to
the snowmelt period (April), while in other decades and other two catchments they occurred later
in spring (May, June). A shift in the occurrence of seasonal flow maxima to the summer period (July
or even August) is observed in the last two decades (from 1995) of the study period in the VP and
SP catchments.
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Figure 8. Medians of monthly flow characteristics observed in the decades from 1965–1974 to 2005–2014.

The indicators listed in Table 3 except for the number of flow reversals did not reveal the influence
of the disturbances. In water years 2005 and 2006, the number of flow reversals increased in the VP
and SP catchments (Figure 9).
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Figure 9. Number of flow reversals per year in the study catchments; the windthrow occurred at the
beginning of the water year 2005.

Strong increase occurred in the MP catchment in 2007 (interestingly, the number of flow reversals
decreased in 2007 in the VP catchment). Variability of this indicator after 2007 became similar in all
studied catchments.

In the 2005–2014 decade, flow duration curves (FDCs) in the VP and SP catchments were shifted
in the opposite direction compared to the FDC calculated for the MP catchment (Figure 10).
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Figure 10. Median decadal flow duration curves.

Partial duration peakflow data did not indicate more frequent occurrence of higher discharges.
Peakflows of the greatest annual runoff events in the VP and SP creek catchments became better
correlated after the disturbance, i.e., in the 2005–2014 decade (Figure 11).
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Figure 11. Relationships between peakflow discharges (four greatest runoff events in each year) in the
VP (horizontal axis) and SP (vertical axis) catchments in the decades from 1965–1974 to 2005–2014.

4. Discussion

Forest potential to sequester carbon in biomass and soil and thus to mitigate climate change is of
high interest. In reality, a forest, as well as any other vegetation, concurrently fixes and releases carbon.
The strength of carbon sink depends on many factors, e.g., species composition, soil properties, age
of vegetation, local climate, etc. [62,63]. Disturbances influence forest growth dynamics, mortality
and decomposition processes and therefore carbon cycling [64]. Disturbed forests usually become a
carbon source, at least temporarily [26,65,66] while disturbed biomass decomposes and productivity
decreases. One of the key questions is how long after a disturbance it takes until forest ecosystems
recover and become carbon neutral and eventually begin to act as carbon sinks.
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Our chamber-based measurements confirmed our expectation that forest ecosystems acted as a
carbon source after the disturbance. NEE in the one-year-old windthrow (REX) was 330 gC m−2 y−1.
The 2014 windthrow destroyed dense mature stands with sparse forest floor vegetation which led to
strong decline of GPP. Due to canopy destruction also the autotrophic component of ER declined but
the impact on NEE was much less pronounced than that on GPP reduction. These data coincide with
the EC tower measurements in 2006–2007 [67]. The authors reported strong carbon efflux 2–3 years
after the 2004 forest destruction from the same wind-disturbed sites that we analyzed in this paper.
Direct measurements of carbon fluxes on windthrown sites are rare, but the impact is often compared
to that of logging impact. Rebane et al. [64] in a review of post disturbance carbon balance stated that
one year after harvesting the annual efflux usually ranged from 520 to 1000 gC m−2 y−1 and three years
after the disturbance forests emitted 120 gC m−2 y−1.

Dramatic post disturbance NEE changes were also revealed by our data. We found that ten
years after the disturbance the ecosystems affected by the windthrow were either carbon neutral or
already became a substantial carbon sink. Niu et al. [14] analyzed the time needed for carbon recovery
following different disturbances and pointed out that recovery time was related to disturbance severity
with more severe impact requiring longer recovery times. They stated that relatively fast turnover
from carbon source to carbon sink was assigned with windthrow (23.5 ± 5 years). The longest recovery
time (101 ± 28 years) was needed after wildfires. In our study the burnt site recovered the fastest. The
carbon balance estimates at managed, unmanaged and burnt windthrown sites indicate that carbon
neutrality was already exceeded in previous years as the NEE values reached −352, −341 and −463 gC
m−2, respectively. Changes in NEE in the years after the disturbance are expected, while their direction
and magnitude depend upon the balance between the source effects of the load of decomposing
wood [60,68] and the sink effects of the recovering vegetation. Recovery of carbon fluxes after such
an extreme windthrow that occurred in the Tatra Mountains, which almost completely destroyed
thousands of hectares, was surprisingly fast. Vigorous vegetation recovery on disturbed sites was
already reported in our earlier papers [54]. According to Zhu et al. [69], if forest recovery is a dominant
mechanism, then the current carbon sink is expected to saturate as forests age and vegetation reaches
its late successional stage. This is the very likely future of carbon fate in our study catchments.

The expected difference in carbon balance between the forest that was managed and unmanaged
after the disturbance was proven. Despite the fact that EXT exhibited greater species diversity as a
consequence of replanting and NEX had more trees [70], the LAI values at the two sites were similar.
Removal of undesirable plant species on the EXT site during weed control regularly reduced plant
canopy and thus reduced potential carbon sequestration. On the other hand, greater plant diversity,
especially of trees on the EXT site, supports forest resilience and future climate change mitigation
potential. Dead wood intentionally left on the NEX site has not contributed to ecosystem respiration
yet due to still weak decomposition rate of fallen logs. This is the likely reason why our data are in
contrast with [71] or [72] who reported higher CO2 efflux from unmanaged sites than from sites where
dead wood was removed.

Contrary to wind disturbed sites, the IPS site acted as a large carbon source in 2015 (NEE =

495 gC m−2 y−1). Besides reduced assimilation, increased soil respiration was the main factor. Total
respiration was the highest at the IPS site from all disturbed sites (1100 gC m−2 y−1). We attribute this
result to elevated heterotrophic respiration. This is in agreement with [73] who reported increased soil
respiration after bark beetle outbreak due to elevated microorganism activity stimulated by increased
radiation trough open canopy and thus higher soil temperature. According to [64], carbon recovery
in a forest disturbed by insects (bark beetles) should be less than 10 years, which is probably not
our case. We see the reason for the large carbon efflux in our study in the fact that the studied IPS
ecosystems are located outside the reach of downslope winds. Due to less frequent disturbances, the
soil is covered with thicker humus horizons and thus contains more carbon. More light, elevated
temperature and moisture stimulate more intensive decomposition and carbon efflux. Higher content
of organic compounds in soil as well as less evident pit and mound microtopography indicate that
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the forest that is currently attacked by the bark beetles was rarely affected by the disturbances in the
past [74]. On the other hand, [75] reported respiration decline after a bark beetle attack. They found
decreasing carbon input from assimilation more important for forest carbon balance than increasing
respiration of dead material. Regardless, large stock of labile carbon poses a risk of carbon release to the
atmosphere under climatic warming [13,76]. Soil temperature was identified as a key environmental
factor for respiration on wind-disturbed sites. The highest correlation was with soil respiration, the
weakest with stem respiration. Don et al. [77] reported increased soil temperature by 4 ◦C and higher
decomposition rates on the bare soil just after the disturbance in the Tatra Mountains compared to
the intact forest. Fast decaying fine material (needles, bark) after the bark beetle attack probably also
supported the increase of heterotrophic respiration, as stated by [11]. Heterotrophic respiration could
also profit from increased soil moisture because of suppressed tree transpiration. Although ten years
after the disturbance soil moisture did not notably differ between the disturbed and intact forest stands,
it played only a marginal role in soil respiration rate. We suppose that sufficient soil moisture (around
30% Θvol) during the entire study period has not limited respiration.

Carbon sequestration on wind-disturbed sites massively exceeded the performance of the intact
mature Norway spruce forest (−75 ± 120 gC m−2 y−1). Higher carbon sequestration in post-disturbance
forests is rather common. For example, [14] showed primary productivity higher by 35% than the
pre-disturbance values. In our study, the post-disturbance carbon sequestration was three times
higher than before forest destruction. Nevertheless, intact forest NEE values must be interpreted
with caution. The NPP and consequently the GPP flux were estimated by the biometric method,
while in other ecosystem types they were estimated by gasometrical methods. Calculated NEE values
were much lower than those reported for comparable temperate forests. Intact forests in central
Europe are generally expected to act as a carbon sink [78,79]. According to [10], European forests
potentially sequester carbon from −115 to −410 gC m−2. Etzold et al. [80] reported −153 gC m−2 y−1

from comparable Norway spruce stands in the Alps. Thus, the performance of mature forests in our
study can be classified as carbon neutral, rather than a small sink. One of the possible explanations for
low NPP production in our study might be less intense growth of mature trees. Mean annual increment
of spruce forests in central Europe is 14 m3 ha−1 [10]. At our study sites it reached only 8 m3 ha−1 per
year. It is obvious that NEE declines with age [81]. Direct measurements using eddy covariance method
showed that middle age stands are stronger carbon sinks than very old stands [64,82]. However, forest
age is not the case in our study as observed trees are 80−120 years old and the explanation of small
GPP and NEE requires further analysis.

Upscaling of CO2 fluxes from leaf to ecosystem/landscape scales is always challenging. However,
it is necessary because quantification of source and sink relationships at a landscape level is inevitable to
understand the relationships between NEE and the global carbon cycle [83]. Cleary et al. [27] compared
leaf versus ecosystem fluxes in a grass-dominated ecosystem and found higher NEE with a leaf
measurement. NEE declined in whole plant chambers reported [84] as a consequence of self-shading.
Occasionally, the authors found twofold greater GPPmax in sparse than in dense populations. In our
study we found similar differences between GPP measured by Licor XT6400 at a leaf scale versus
whole plant in the closed chamber. Leaf-scale measurement yielded on average 50% higher GPP values
unless empirical models for vertical LAI distribution and PAR dissipation were applied. After the
correction, the difference declined below 12%. We applied this correction in GPP calculation when the
LAI exceeded 2.5 m2 m−2 and the shading effect became evident.

The analysis of streamflow characteristics did not unambiguously indicate the influence of forest
disturbances. Only a few characteristics exhibited different behavior after the disturbances. Greater
cumulative runoff in the most severely affected VP and SP catchments in 2005–2014 decade could be
related to the disturbances. Górnik et al. [85] documented an increase in the number of days with
precipitation of 40–60 mm in the warm period of the year (May–October) since 2001 and the unusually
wet year 2010 was observed in the Tatra Mountains. Greater cumulative decadal runoff compared to
the 1975–1984 and 1985–1994 decades occurred also before the windthrow, i.e., in the decade 1995–2004.
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However, the values calculated for the VP and SP catchments at the end of 2005–2014 decade exceeded
analogical values from all previous decades. This was not observed in the MP catchment with forest
cover almost unaffected by the windthrow. Cumulative point precipitation at the end of the decade
2005–2014 is not greater than in the previous four decades. These data indicate the influence of forest
disturbances. On the other hand, Figure 7 shows that the greatest increase in cumulative runoff

occurred approximately between April and December 2010 and another significant increase was
observed since April 2014, i.e., about five and nine years after the windthrow. The winters of 2010 and
2014 were both exceptionally snow-poor [86] and summer 2010 was very wet. It is therefore possible
that the increased runoff after the snow-poor winters was related more to the snowmelt-precipitation
regime in springs 2010 and 2014 than to the effects of forest disturbances.

The number of flow reversals is another indicator that increased in the VP and SP catchments in
the years following the windthrow while it remained stable in the MP catchment in 2005 and 2006.
Although the MP catchment was very little affected by the windthrow, a strong increase in the number
of flow reversals was observed in 2007 (Figure 9). This could be related to massive forest dieback and
following cutting. It is worth noting that greater numbers of flow reversals occurred also in the 1960s
although some values after the windthrow were greater. The highest values that occurred in the SP
catchment in 2013 and 2014 are probably not related to the windthrow. Because the variability of the
indicator is similar in all studied catchment has been similar since 2008, we assume that the high values
in 2012–2014 were caused by meteorological causes rather than by forest disturbances.

Although median decadal flow duration curves in the VP and SP catchments after the windthrow
are slightly shifted to greater discharges at almost all probabilities of occurrence, our earlier analysis
of the annual FDCs indicated that the shift was probably not caused solely by the disturbances, but
also by meteorological conditions in the years 2005, 2010 and 2014 [48]. Similarly, higher correlations
among peakflow discharges in the VP and SP catchments in the 2005–2014 period (Figure 11) were
more influenced by meteorological conditions than by the effects of forest disturbances. Greater ranges
of measured peak discharges given by higher precipitation (e.g., in June 2010) resulted in higher
coefficients of determination between the discharges in the neighboring catchments of the Velický and
Slavkovský Creek.

5. Conclusions

Our study revealed that ten years after extremely severe disturbances, the carbon balance at a
catchment scale was neutral or even positive. Highest carbon sequestration occurred at the most heavily
disturbed sites. Positive carbon balance reflects very intensive growth of successional vegetation in
recent warm and sufficiently moist climate. Only small patches of the forest killed by bark beetle acted
as a carbon source. Both managed and unmanaged sites in our study catchments acted as carbon
sinks. Nevertheless, greater species diversity on the managed sites could potentially guarantee higher
forest resilience and climate change mitigation effect under future, hardly predictable, conditions. The
findings that the intact mature forest was carbon neutral requires further and more detailed study to
identify the reasons.

Possible reasons for unclear effects of the disturbances on catchment hydrology were suggested
by [45]. Most of the forest damage, while quite extensive, occurred in the middle sections of the
catchments. The headwater areas, where most of the runoff is formed and where little forest existed
before anyway, were not damaged by the windthrow. Windthrow deforested areas were built by
moraines with high infiltration capacity. This disturbance affected relatively smaller percentages of
catchment areas since it hit the catchments in the east-western direction, while the catchments are
generally north-south oriented. Thus, not all the forests were damaged by the windthrow (although
the subsequent disturbances in the SP catchment destroyed 98% of the original forests). Additional
analyses conducted in this article confirm our previous conclusion about the lack of suitable indicators
of changes in catchment hydrology in headwater mountain catchments with areas of several tens of
square kilometers in which the forest disturbances affected up to 20–32% of the catchment area.
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Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/12/10/2917/s1,
Figure S1: The entire study catchments (black line) and carbon study parts (MP—Mlynický potok Creek catchment
red cross-hatched, VP—Velický potok Creek catchment blue cross-hatched, SP—Slavkovský potok Creek catchment
green cross-hatched), Figure S2: Light response curves for selected (a) grass, herb and shrub species; (b) tree
species. Table S1: Average 2-week GPPmax [µmol C m−2 s−1] and α parameters estimated from light response
curves for the key species in studied catchments.
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