Molecular Methods as Potential Tools in Ecohydrological Studies on Emerging Contaminants in Freshwater Ecosystems
Abstract
:1. Introduction
1.1. Contaminants of Emerging Concern—Definitions
- CECs are new compounds whose presence in nature has not been recorded before;
- CECs are contaminants that for a long time have not been considered as biohazards;
- CECs are old contaminants that are now becoming problematic [3].
1.2. Ecohydrological Approach for the Management and Removal of CECs
1.3. Molecular Tools in Freshwater Ecosystem Research
1.4. Aim of the Study
2. Genomic Methods in CEC Studies
2.1. Genomics in Monitoring of CECs Threats to Freshwater Ecosystems and Analysis of Cause-Effect Relationships—Assessment Approach
2.2. Genomics in Improvement and Evaluation of Ecological Biotechnologies Efficiency—Solution Approach
3. Transcriptomic Methods in CEC Studies
3.1. Transcriptomics in Monitoring of CEC Threats to Freshwater Ecosystems and Analysis of Cause-Effect Relationships—Assessment Approach
3.2. Transcriptomics in Improving and Evaluating the Efficiency of Ecological Biotechnologies—Solution Approach
4. Proteomic Methods in CEC Studies
4.1. Proteomics in the Monitoring of CEC Threats to Freshwater Ecosystems and Analysis of Cause-Effect Relationships—Assessment Approach
4.2. Proteomics in Improvement and Evaluation of Ecological Biotechnologies Efficiency—Solution Approach
5. Possibilities and Limitations—The Need for Further Research
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Smital, T. Acute and Chronic Effects of Emerging Contaminants. In Emerging Contaminants from Industrial and Municipal Waste; Springer: Berlin/Heidelberg, Germany, 2008; pp. 105–142. [Google Scholar]
- Rosenfeld, P.E.; Feng, L.G.H. Emerging Contaminants. In Risks of Hazardous Wastes; Elsevier: Amsterdam, The Netherlands, 2011; pp. 215–222. [Google Scholar]
- Sauvé, S.; Desrosiers, M. A review of what is an emerging contaminant. Chem. Cent. J. 2014, 8, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zalewski, M. Ecohydrology—The Scientific Background to use Ecosystem Properties as Management Tools Toward Sustainability of Water Resources. Ecol. Eng. 2000, 16, 1–8. [Google Scholar] [CrossRef]
- Zalewski, M. Ecohydrology and Hydrologic Engineering: Regulation of Hydrology-Biota Interactions for Sustainability. J. Hydrol. Eng. 2014, 20, A4014012. [Google Scholar] [CrossRef]
- Paszko, T.; Muszyński, P.; Materska, M.; Bojanowska, M.; Kostecka, M.; Jackowska, I. Adsorption and degradation of phenoxyalkanoic acid herbicides in soils: A review. Environ. Toxicol. Chem. 2016, 35, 271–286. [Google Scholar] [CrossRef] [Green Version]
- Rheinheimer dos Santos, D.; Monteiro de Castro Lima, J.A.; Paranhos Rosa de Vargas, J.; Camotti Bastos, M.; Santanna dos Santos, M.A.; Mondamert, L.; Labanowski, J. Pesticide bioaccumulation in epilithic biofilms as a biomarker of agricultural activities in a representative watershed. Environ. Monit. Assess. 2020, 192, 381. [Google Scholar] [CrossRef]
- Schiedek, D.; Sundelin, B.; Readman, J.W.; Macdonald, R.W. Interactions between climate change and contaminants. Mar. Pollut. Bull. 2007, 54, 1845–1856. [Google Scholar] [CrossRef]
- Pauls, S.; Alp, M.; Bálint, M.; Bernabò, P.; Čiampor, F., Jr.; Čiamporová-Zaťovičová, Z.; Finn, D.; Kohout, J.; Leese, F.; Lencioni, V.; et al. Integrating molecular tools into freshwater ecology: Developments and opportunities. Freshw. Biol. 2014, 59, 1559–1576. [Google Scholar] [CrossRef]
- Schwartz, D.A. Environmental genomics: A key to understanding biology, pathophysiology and disease. Hum. Mol. Genet. 2004, 13, R217–R224. [Google Scholar] [CrossRef] [Green Version]
- Bej, A.K.; Mahbubani, M.H. Applications of the polymerase chain reaction in environmental microbiology. Genome Res. 1992, 1, 151–159. [Google Scholar] [CrossRef] [Green Version]
- Bagchi Bhattacharjee, G.; Paul Khurana, S.M. In Vitro Reporter Assays for Screening of Chemicals That Disrupt Androgen Signaling. J. Toxicol. 2014, 2014, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Shi, W.; Zhang, F.; Cao, F.; Hu, G.; Hao, Y.; Wei, S.; Wang, X.; Yu, H. In vitro assessment of thyroid hormone disrupting activities in drinking water sources along the Yangtze River. Environ. Pollut. 2013, 173, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Green, S.J.; Leigh, M.B.; Neufeld, J.D. Denaturing Gradient Gel Electrophoresis (DGGE) for Microbial Community Analysis. In Handbook of Hydrocarbon and Lipid Microbiology; Springer: Berlin/Heidelberg, Germany, 2010; pp. 4137–4158. [Google Scholar]
- Bell, T.H.; Joly, S.; Pitre, F.E.; Yergeau, E. Increasing phytoremediation efficiency and reliability using novel omics approaches. Trends Biotechnol. 2014, 32, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Hata, D.J. Molecular Methods for Identification and Characterization of Acinetobacter spp. In Molecular Diagnostics; Elsevier: Amsterdam, The Netherlands, 2010; pp. 313–326. [Google Scholar]
- Rusconi, M.; Marziali, L.; Stefani, F.; Valsecchi, S.; Bettinetti, R.; Mazzoni, M.; Rosignoli, F.; Polesello, S. Evaluating the impact of a fluoropolymer plant on a river macrobenthic community by a combined chemical, ecological and genetic approach. Sci. Total Environ. 2015, 538, 654–663. [Google Scholar] [CrossRef] [PubMed]
- Huber, D.; Voith von Voithenberg, L.; Kaigala, G.V. Fluorescence in situ hybridization (FISH): History, limitations and what to expect from micro-scale FISH? Micro Nano Eng. 2018, 1, 15–24. [Google Scholar] [CrossRef]
- Fisher, M.M.; Triplett, E.W. Automated approach for ribosomal intergenic spacer analysis of microbial diversity and its application to freshwater bacterial communities. Appl. Environ. Microbiol. 1999, 65, 4630–4636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chu, X.; Hu, J.; Ong, S.L. Application of proteomics in environmental science. Front. Environ. Sci. Eng. China 2009, 3, 393–403. [Google Scholar] [CrossRef]
- Clarivate Analytics Web of Science. Available online: www.webofknowledge.com (accessed on 30 April 2020).
- Kessler, J.; Dawley, D.; Crow, D.; Garmany, R.; Georgel, P.T. Potential Health Risks Linked to Emerging Contaminants in Major Rivers and Treated Waters. Water 2019, 11, 2615. [Google Scholar] [CrossRef] [Green Version]
- Guerrero-Estevez, S.M.; Lopez-Lopez, E. Effects of endocrine disruptors on reproduction in viviparous teleosts with intraluminal gestation. Rev. Fish Biol. Fish. 2016, 26, 563–587. [Google Scholar] [CrossRef]
- Kudlak, B.; Szczepanska, N.; Owczarek, K.; Mazerska, Z.; Namiesnik, J. Revision of Biological Methods for Determination of EDC Presence and Their Endocrine Potential. Crit. Rev. Anal. Chem. 2015, 45, 191–200. [Google Scholar] [CrossRef]
- Bahamonde, P.A.; Munkittrick, K.R.; Martyniuk, C.J. Intersex in teleost fish: Are we distinguishing endocrine disruption from natural phenomena? Gen. Comp. Endocrinol. 2013, 192, 25–35. [Google Scholar] [CrossRef]
- Shenoy, K.; Crowley, P.H. Endocrine disruption of male mating signals: Ecological and evolutionary implications. Funct. Ecol. 2011, 25, 433–448. [Google Scholar] [CrossRef]
- Liu, X.; Guo, X.; Liu, Y.; Lu, S.; Xi, B.; Zhang, J.; Wang, Z.; Bi, B. A review on removing antibiotics and antibiotic resistance genes from wastewater by constructed wetlands: Performance and microbial response. Environ. Pollut. 2019, 254. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Singh, A.P.; Kumar, S.; Giri, B.S.; Kim, K.-H. Antibiotic resistance in major rivers in the world: A systematic review on occurrence, emergence, and management strategies. J. Clean. Prod. 2019, 234, 1484–1505. [Google Scholar] [CrossRef]
- Edwards, S.J.; Kjellerup, B. V Applications of biofilms in bioremediation and biotransformation of persistent organic pollutants, pharmaceuticals/personal care products, and heavy metals. Appl. Microbiol. Biotechnol. 2013, 97, 9909–9921. [Google Scholar] [CrossRef] [PubMed]
- Fong, P.P.; Ford, A.T. The biological effects of antidepressants on the molluscs and crustaceans: A review. Aquat. Toxicol. 2014, 151, 4–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ncube, S.; Madikizela, L.M.; Chimuka, L.; Nindi, M.M. Environmental fate and ecotoxicological effects of antiretrovirals: A current global status and future perspectives. Water Res. 2018, 145, 231–247. [Google Scholar] [CrossRef]
- Zur, J.; Pinski, A.; Marchlewicz, A.; Hupert-Kocurek, K.; Wojcieszynska, D.; Guzik, U. Organic micropollutants paracetamol and ibuprofen-toxicity, biodegradation, and genetic background of their utilization by bacteria. Environ. Sci. Pollut. Res. 2018, 25, 21498–21524. [Google Scholar] [CrossRef] [Green Version]
- Capela, R.; Garric, J.; Costa Castro, L.F.; Santos, M.M. Embryo bioassays with aquatic animals for toxicity testing and hazard assessment of emerging pollutants: A review. Sci. Total Environ. 2020, 705. [Google Scholar] [CrossRef]
- Blanton, M.L.; Specker, J.L. The hypothalamic-pituitary-thyroid (HPT) axis in fish and its role in fish development and reproduction. Crit. Rev. Toxicol. 2007, 37, 97–115. [Google Scholar] [CrossRef]
- Xiong, J.-Q.; Kurade, M.B.; Jeon, B.-H. Can Microalgae Remove Pharmaceutical Contaminants from Water? Trends Biotechnol. 2018, 36, 30–44. [Google Scholar] [CrossRef]
- Mankiewicz-Boczek, J. Application of molecular tools in Ecohydrology. Ecohydrol. Hydrobiol. 2012, 12, 165–170. [Google Scholar] [CrossRef] [Green Version]
- Klein, A.H.; Ballard, K.R.; Storey, K.B.; Motti, C.A.; Zhao, M.; Cummins, S.F. Multi-omics investigations within the Phylum Mollusca, Class Gastropoda: From ecological application to breakthrough phylogenomic studies. Brief. Funct. Genom. 2019, 18, 377–394. [Google Scholar] [CrossRef]
- De Maio, A.; Trocchia, S.; Guerriero, G. The amphibian Pelophylax bergeri (Gunther, 1986) testis poly(ADP-ribose) Polymerases: Relationship to endocrine disruptors during spermatogenesis. Ital. J. Zool. 2014, 81, 256–263. [Google Scholar] [CrossRef] [Green Version]
- Collins, A.R. The Comet Assay for DNA Damage and Repair: Principles, Applications, and Limitations. Mol. Biotechnol. 2004, 26, 249–261. [Google Scholar] [CrossRef]
- Yan, Z.; Lu, G.; Liu, J.; Jin, S. An integrated assessment of estrogenic contamination and feminization risk in fish in Taihu Lake, China. Ecotoxicol. Environ. Saf. 2012, 84, 334–340. [Google Scholar] [CrossRef]
- Yu, H.; Cao, W. Assessment of pharmaceutical and personal care products (PPCPs) of Dalong Lake in Xuzhou by concentration monitoring and bio-effects monitoring process. Environ. Toxicol. Pharmacol. 2016, 43, 209–215. [Google Scholar] [CrossRef]
- International Organization for Standardization. Water Quality—Determination of the Genotoxicity of Water and Waste Water Using the Umu-Test; ISO 13829:2000; ISO: Geneva, Switzerland, 2000. [Google Scholar]
- Zegura, B.; Heath, E.; Cernosa, A.; Filipic, M. Combination of in vitro bioassays for the determination of cytotoxic and genotoxic potential of wastewater, surface water and drinking water samples. Chemosphere 2009, 75, 1453–1460. [Google Scholar] [CrossRef]
- Luis Rodriguez-Gil, J.; Sebastian Sauto, J.S.; Gonzalez-Alonso, S.; Sanchez Sanchez, P.; Valcarcel, Y.; Catala, M. Development of cost-effective strategies for environmental monitoring of irrigated areas in Mediterranean regions: Traditional and new approaches in a changing world. Agric. Ecosyst. Environ. 2013, 181, 41–49. [Google Scholar] [CrossRef]
- Koniuszewska, I.; Korzeniewska, E.; Harnisz, M.; Kiedrzyńska, E.; Kiedrzyński, M.; Czatzkowska, M.; Jarosiewicz, P.; Zalewski, M. The occurrence of antibiotic-resistance genes in the Pilica River, Poland. Ecohydrol. Hydrobiol. 2020, 20, 1–11. [Google Scholar] [CrossRef]
- Czatzkowska, M.; Harnisz, M.; Kiedrzyńska, E.; Kiedrzyński, M.; Koniuszewska, I.; Korzeniewska, E.; Szklarek, S.; Zalewski, M. Catchment scale analysis of occurrence of antibiotic resistance genes in treated wastewater. Ecohydrol. Hydrobiol. 2020, 20, 12–20. [Google Scholar] [CrossRef]
- Son, D.; Aleta, P.; Park, M.; Yoon, H.; Cho, K.H.; Kim, Y.M.; Kim, S. Seasonal Changes in Antibiotic Resistance Genes in Rivers and Reservoirs in South Korea. J. Environ. Qual. 2018, 47, 1079–1085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voigt, A.M.; Ciorba, P.; Döhla, M.; Exner, M.; Felder, C.; Lenz-Plet, F.; Sib, E.; Skutlarek, D.; Schmithausen, R.M.; Faerber, H.A. The investigation of antibiotic residues, antibiotic resistance genes and antibiotic-resistant organisms in a drinking water reservoir system in Germany. Int. J. Hyg. Environ. Health 2020, 224, 113449. [Google Scholar] [CrossRef] [PubMed]
- Jugan, M.L.; Oziol, L.; Bimbot, M.; Huteau, V.; Tamisier-Karolak, S.; Blondeau, J.P.; Lévi, Y. In vitro assessment of thyroid and estrogenic endocrine disruptors in wastewater treatment plants, rivers and drinking water supplies in the greater Paris area (France). Sci. Total Environ. 2009, 407, 3579–3587. [Google Scholar] [CrossRef] [PubMed]
- Miller, L.M.; Bartell, S.E.; Schoenfuss, H.L. Assessing the Effects of Historical Exposure to Endocrine-Active Compounds on Reproductive Health and Genetic Diversity in Walleye, a Native Apex Predator, in a Large Riverine System. Arch. Environ. Contam. Toxicol. 2012, 62, 657–671. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, J.R.; Zhu, B.; Swerhone, G.D.W.; Roy, J.; Tumber, V.; Waiser, M.J.; Topp, E.; Korber, D.R. Molecular and microscopic assessment of the effects of caffeine, acetaminophen, diclofenac, and their mixtures on river biofilm communities. Environ. Toxicol. Chem. 2012, 31, 508–517. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, W.; Liang, Y. Bacterial community in a freshwater pond responding to the presence of perfluorooctanoic acid (PFOA). Environ. Technol. 2019, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Weigand, M.R.; Oh, S.; Hatt, J.K.; Krishnan, R.; Tezel, U.; Pavlostathis, S.G.; Konstantinidis, K.T. Widely Used Benzalkonium Chloride Disinfectants Can Promote Antibiotic Resistance. Appl. Environ. Microbiol. 2018, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuller, N.; Ford, A.T.; Lerebours, A.; Gudkov, D.I.; Nagorskaya, L.L.; Smith, J.T. Chronic radiation exposure at Chernobyl shows no effect on genetic diversity in the freshwater crustacean, Asellus aquaticus thirty years on. Ecol. Evol. 2019, 9, 10135–10144. [Google Scholar] [CrossRef] [Green Version]
- Eckert, E.M.; Di Cesare, A.; Kettner, M.T.; Arias-Andres, M.; Fontaneto, D.; Grossart, H.-P.; Corno, G. Microplastics increase impact of treated wastewater on freshwater microbial community. Environ. Pollut. 2018, 234, 495–502. [Google Scholar] [CrossRef]
- Rodríguez-Gil, J.L.; Catalá, M.; Alonso, S.G.; Maroto, R.R.; Valcárcel, Y.; Segura, Y.; Molina, R.; Melero, J.A.; Martínez, F. Heterogeneous photo-Fenton treatment for the reduction of pharmaceutical contamination in Madrid rivers and ecotoxicological evaluation by a miniaturized fern spores bioassay. Chemosphere 2010, 80, 381–388. [Google Scholar] [CrossRef]
- Nowrotek, M.; Kotlarska, E.; Łuczkiewicz, A.; Felis, E.; Sochacki, A.; Miksch, K. The treatment of wastewater containing pharmaceuticals in microcosm constructed wetlands: The occurrence of integrons (int1–2) and associated resistance genes (sul1–3, qacEΔ1). Environ. Sci. Pollut. Res. 2017, 24, 15055–15066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, P.; Wu, Y.; He, Y.; Zhang, B.; Huang, Y.; Yuan, Q.; Chen, Y. Occurrence and fate of antibiotic residues and antibiotic resistance genes in a reservoir with ecological purification facilities for drinking water sources. Sci. Total Environ. 2020, 707, 135276. [Google Scholar] [CrossRef] [PubMed]
- Tappin, A.D.; Loughnane, J.P.; McCarthy, A.J.; Fitzsimons, M.F. Unexpected removal of the most neutral cationic pharmaceutical in river waters. Environ. Chem. Lett. 2016, 14, 455–465. [Google Scholar] [CrossRef]
- Weber, K.P.; Mitzel, M.R.; Slawson, R.M.; Legge, R.L. Effect of ciprofloxacin on microbiological development in wetland mesocosms. Water Res. 2011, 45, 3185–3196. [Google Scholar] [CrossRef] [PubMed]
- Krauter, P.; Daily, B.; Dibley, V.; Pinkart, H.; Legler, T. Perchlorate and Nitrate Remediation Efficiency and Microbial Diversity in a Containerized Wetland Bioreactor. Int. J. Phytoremediat. 2005, 7, 113–128. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.; Ma, M.; Liu, X.; Ma, W.; Li, M.; Yan, L. Effect of biochar on anaerobic degradation of pentabromodiphenyl ether (BDE-99) by archaea during natural groundwater recharge with treated municipal wastewater. Int. Biodeterior. Biodegrad. 2017, 124, 119–127. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, S.; Li, L.; Ren, Y.; Feng, C.; Wei, C.; Li, Y.; Huang, Z. Anaerobic Dechlorination of Tetrachlorobisphenol A in River Sediment and Associated Changes in Bacterial Communities. Water Air Soil Pollut. 2017, 228, 78. [Google Scholar] [CrossRef]
- Shan, A.; Wang, W.; Kang, K.J.; Hou, D.; Luo, J.; Wang, G.; Pan, M.; Feng, Y.; He, Z.; Yang, X. The Removal of Antibiotics in Relation to a Microbial Community in an Integrated Constructed Wetland for Tail Water Decontamination. Wetlands 2020, 40. [Google Scholar] [CrossRef]
- Wang, Y.F.; Zhu, H.W.; Wang, Y.; Zhang, X.L.; Tam, N.F.Y. Diversity and Dynamics of Microbial Community Structure in Different Mangrove, Marine and Freshwater Sediments During Anaerobic Debromination of PBDEs. Front. Microbiol. 2018, 9. [Google Scholar] [CrossRef]
- Nájera, A.F.; Serwecińska, L.E.; Gągała-Borowska, I.; Jurczak, T.E.; Mankiewicz-Boczek, J.D. The characterization of a novel bacterial strain capable of microcystin degradation from the Jeziorsko reservoir, Poland: A preliminary study. Biologia 2017, 72. [Google Scholar] [CrossRef]
- Snell, T.; Edge, S.; Morgan, M. Gene expression profiling in ecotoxicology. Ecotoxicology 2003, 12, 475–483. [Google Scholar] [CrossRef] [PubMed]
- Xuereb, B.; Bezin, L.; Chaumot, A.; Budzinski, H.; Augagneur, S.; Tutundjian, R.; Garric, J.; Geffard, O. Vitellogenin-like gene expression in freshwater amphipod Gammarus fossarum (Koch, 1835): Functional characterization in females and potential for use as an endocrine disruption biomarker in males. Ecotoxicology 2011, 20, 1286–1299. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhu, Z.; He, J.; Yue, X.; Pan, J.; Wang, Z. Steroidal and phenolic endocrine disrupting chemicals (EDCs) in surface water of Bahe River, China: Distribution, bioaccumulation, risk assessment and estrogenic effect on Hemiculter leucisculus. Environ. Pollut. 2018, 243, 103–114. [Google Scholar] [CrossRef] [PubMed]
- Quesada-Garcia, A.; Valdehita, A.; Torrent, F.; Villarroel, M.; Dolores Hernando, M.; Navas, J.M. Use of fish farms to assess river contamination: Combining biomarker responses, active biomonitoring, and chemical analysisd. Aquat. Toxicol. 2013, 140, 439–448. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Nie, X.; Wang, Z.; Cheng, Z.; Li, K.; Li, G.; Wong, M.H.; Liang, X.; Tsui, M.T.K. Assessment of typical pollutants in waterborne by combining active biomonitoring and integrated biomarkers response. Chemosphere 2011, 84, 1422–1431. [Google Scholar] [CrossRef]
- Bahamonde, P.A.; Tetreault, G.R.; McMaster, M.E.; Servos, M.R.; Martyniuk, C.J.; Munkittrick, K.R. Molecular signatures in rainbow darter (Etheostoma caeruleum) inhabiting an urbanized river reach receiving wastewater effluents. Aquat. Toxicol. 2014, 148, 211–220. [Google Scholar] [CrossRef]
- Casatta, N.; Stefani, F.; Vigano, L. Hepatic gene expression profiles of a non-model cyprinid (Barbus plebejus) chronically exposed to river sediments. Comp. Biochem. Physiol. C-Toxicol. Pharmacol. 2017, 196, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Herrero, O.; Planello, R.; Morcillo, G. The plasticizer benzyl butyl phthalate (BBP) alters the ecdysone hormone pathway, the cellular response to stress, the energy metabolism, and several detoxication mechanisms in Chironomus riparius larvae. Chemosphere 2015, 128, 266–277. [Google Scholar] [CrossRef]
- Planello, R.; Servia, M.J.; Gomez-Sande, P.; Herrero, O.; Cobo, F.; Morcillo, G. Transcriptional Responses, Metabolic Activity and Mouthpart Deformities in Natural Populations of Chironomus riparius Larvae Exposed to Environmental Pollutants. Environ. Toxicol. 2015, 30, 383–395. [Google Scholar] [CrossRef]
- Gągała, I.; Izydorczyk, K.; Jurczak, T.; Pawełczyk, J.; Dziadek, J.; Wojtal-Frankiewicz, A.; Jóźwik, A.; Jaskulska, A.; Mankiewicz-Boczek, J. Role of Environmental Factors and Toxic Genotypes in the Regulation of Microcystins-Producing Cyanobacterial Blooms. Microb. Ecol. 2014, 67, 465–479. [Google Scholar] [CrossRef]
- Bourioug, M.; Mazzitelli, J.-Y.; Marty, P.; Budzinski, H.; Aleya, L.; Bonnafé, E.; Geret, F. Assessment of Lemna minor (duckweed) and Corbicula fluminea (freshwater clam) as potential indicators of contaminated aquatic ecosystems: Responses to presence of psychoactive drug mixtures. Environ. Sci. Pollut. Res. 2018, 25, 11192–11204. [Google Scholar] [CrossRef] [PubMed]
- Paruch, L.; Paruch, A.M.; Blankenberg, A.-G.B.; Haarstad, K.; Mæhlum, T. Norwegian study on microbial source tracking for water quality control and pollution removal in constructed wetland treating catchment run-off. Water Sci. Technol. 2017, 76, 1158–1166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berglund, B.; Khan, G.A.; Weisner, S.E.B.; Ehde, P.M.; Fick, J.; Lindgren, P.-E. Efficient removal of antibiotics in surface-flow constructed wetlands, with no observed impact on antibiotic resistance genes. Sci. Total Environ. 2014, 476–477, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Koerner, O.; Kohno, S.; Schoenenberger, R.; Suter, M.J.-F.; Knauer, K.; Guillette, L.J., Jr.; Burkhardt-Holm, P. Water temperature and concomitant waterborne ethinylestradiol exposure affects the vitellogenin expression in juvenile brown trout (Salmo trutta). Aquat. Toxicol. 2008, 90, 188–196. [Google Scholar] [CrossRef]
- Giroux, M.; Gan, J.; Schlenk, D. The effects of bifenthrin and temperature on the endocrinology of juvenile Chinook salmon. Environ. Toxicol. Chem. 2019, 38, 852–861. [Google Scholar] [CrossRef]
- Muniz-Gonzalez, A.-B.; Martinez-Guitarte, J.-L. Combined effects of benzophenone-3 and temperature on gene expression and enzymatic activity in the aquatic larvae Chironomus riparius. Sci. Total Environ. 2020, 698. [Google Scholar] [CrossRef]
- Hahn, C.M.; Iwanowicz, L.R.; Cornman, R.S.; Mazik, P.M.; Blazer, V.S. Transcriptome discovery in non-model wild fish species for the development of quantitative transcript abundance assays. Comp. Biochem. Physiol. Part D Genom. Proteom. 2016, 20, 27–40. [Google Scholar] [CrossRef]
- Blazer, V.S.; Walsh, H.L.; Shaw, C.H.; Iwanowicz, L.R.; Braham, R.P.; Mazik, P.M. Indicators of exposure to estrogenic compounds at Great Lakes Areas of Concern: Species and site comparisons. Environ. Monit. Assess. 2018, 190. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Liu, W.; Qu, Y.; Quan, X.; Zeng, P.; He, M.; Zhou, Y.; Liu, R. Transcriptomic Profiles in Zebrafish Liver Permit the Discrimination of Surface Water with Pollution Gradient and Different Discharges. Int. J. Environ. Res. Public Health 2018, 15, 1648. [Google Scholar] [CrossRef] [Green Version]
- Bebianno, M.J.; Sroda, S.; Gomes, T.; Chan, P.; Bonnafe, E.; Budzinski, H.; Geret, F. Proteomic changes in Corbicula fluminea exposed to wastewater from a psychiatric hospital. Environ. Sci. Pollut. Res. 2016, 23, 5046–5055. [Google Scholar] [CrossRef]
- Riva, C.; Cristoni, S.; Binelli, A. Effects of triclosan in the freshwater mussel Dreissena polymorpha: A proteomic investigation. Aquat. Toxicol. 2012, 118–119, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Simmons, D.B.D.; Miller, J.; Clarence, S.; McCallum, E.S.; Balshine, S.; Chandramouli, B.; Cosgrove, J.; Sherry, J.P. Altered expression of metabolites and proteins in wild and caged fish exposed to wastewater effluents in situ. Sci. Rep. 2017, 7, 17000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, Q.; Gao, X.; Guo, J.; Zhu, Z.; Feng, G. Insights into the molecular mechanism of the responses for Cyperus alternifolius to PhACs stress in constructed wetlands. Chemosphere 2016, 164, 278–289. [Google Scholar] [CrossRef]
- Chen, E.Y.; Liu, W.F.; Megido, L.; Díez, P.; Fuentes, M.; Fager, C.; Olsson, E.; Gessner, I.; Mathur, S. Understanding and utilizing the biomolecule/nanosystems interface. In Nanotechnologies in Preventive and Regenerative Medicine; Elsevier: Amsterdam, The Netherlands, 2018; pp. 207–297. [Google Scholar]
- Zhou, N.A.; Kjeldal, H.; Gough, H.L.; Nielsen, J.L. Identification of Putative Genes Involved in Bisphenol A Degradation Using Differential Protein Abundance Analysis of Sphingobium sp. BiD. Environ. Sci. Technol. 2015, 49, 12232–12241. [Google Scholar] [CrossRef] [PubMed]
- Kohler, R. Landscapes and Labscapes: Exploring the Lab.-Field Border in Biology; University of Chicago Press: Chicago, IL, USA, 2002; ISBN 9780226450100. [Google Scholar]
Level | Studied CEC | Aim of the Study | Molecular Approach | Source |
---|---|---|---|---|
DNA | mixed pollutants (water from irrigation drainage) | improvement of ecotoxicological assessment using a battery of bioassays | total DNA quantification using fluorimetry | [44] |
pharmaceuticals (water form Madrid community rivers) | evaluation of photo-Fenton treatment for the removal of pharmaceuticals | total DNA quantification using fluorimetry | [56] | |
mixed pollutants (samples from wastewater, surface waters, potable water) | monitoring of water sources toxicity using sensitive molecular tools | comet assay | [43] | |
EDCs i.e., estrone, estradiol, EE2, BPA and diethylstilbestrol | evaluation of possible exposure to EDCs and their effects on endocrine system of male C. auratus using an integrated approach | comet assay | [40] | |
EDCs i.e., EE2, sulfamethoxazole, atenolol, ibuprofen; BPA and caffeine (Dalong Lake in Xuzhou) | biomonitoring and ecotoxicological assessment of the selected compounds on C. carassius | comet assay | [41] | |
ARGs | determination of ARGs occurrence along the studied section of Pilica river | PCR | [45] | |
ARGs | determination of ARGs occurrence in wastewater effluent | PCR | [46] | |
ARGs | determination of ARGs occurrence in a microcosm of constructed wetlands | PCR | [57] | |
antibiotics (sulfonamides, β-lactam antibiotics, tetracycline) | determination of seasonal changes of the abundance of ARG in freshwater reservoirs | qPCR | [47] | |
ARGs | determination of the occurrence of ARs, and ARGs in a surface water system subjected to the discharge of treated WWTPs | qPCR | [48] | |
ARGs | determination of the performance of an ecological reservoir on mitigating antibiotics and ARGs | qPCR | [58] | |
PFOA | determination of the impact of the discharge of a fluoropolymer plant on the macrobenthic community | AFLP | [17] | |
mixed pollutants (water from Yangtze River, China) | determination of the effect of drinking water sources on thyroid-disrupting activities based on African green monkey kidney fibroblast | reporter gene assay | [13] | |
EDCs (samples from WWTPs, drinking water treatment plant and river in the area of Paris) | determination of thyroidal and estrogenic activity of EDCs in different water supplies | reporter gene assay | [49] | |
EDCs (samples from Upper Mississippi River in Minnesota, USA) | determination of genetic diversity of under exposure of EDCs | microsatellites | [50] | |
EDCs i.e., caffeine, acetaminophenon, diclofenac | determination of the effect of selected EDCs on the biodiversity of river biofilm and selection of archaeal communities as significant organisms for ecotoxicological assessment | DGGE | [51] | |
pharmaceuticals | determination of the persistence of pharmaceuticals in incubations containing riverine bacterio-plankton | DGGE | [59] | |
ciprofloxacine | determination of the effect of ciprofloxacine on bacterial wetland communities | DGGE | [60] | |
perchlorate | determination of wetland bioreactor performance and abundance of autochthonous perchlorate-reducing bacteria | DGGE and sequencing | [61] | |
radionuclides | determination of the impact of radiation exposure on the genetic diversity of the freshwater crustacean A. aquaticus | HTS | [54] | |
PFOA | assessment of the changes in microbial community composition and structure upon PFOA exposure | HTS | [52] | |
BDE-99 | determination of the effect of biochar on the anaerobic degradation of BDE-99 by archaea | HTS, FISH | [62] | |
disinfectants | determination of the influence of benzalkonium chlorides on the proliferation of antibiotic resistant bacteria in the environment | HTS | [53] | |
TCBPA (E-waste processing facility) | analysis of the microbial communities in river sediments for anaerobic digestion of TCBPA | HTS | [63] | |
antibiotics (quinolones, sulfonamides, macrolides) | determination of the relationship between the removal efficiency of CECs and bacterial community structure | HTS | [64] | |
polybrominated diphenyl ether | determination of anaerobic degradation of polybrominated diphenyl ether in marine and freshwater sediments | T-RFLP, HTS, qPCR | [65] | |
microcystins | identification of bacterial strains capable of microcystin degradation | HTS | [66] | |
microplastics | evaluation of the role of microplastic particles in bacterial abundance and the presence of int1 gene, | ARISA, qPCR | [55] | |
RNA | EDCs | determination of the effect of EDCs on vitellogenin synthesis in freshwater amphipod G. fossarum | RT-PCR | [68] |
EDCs i.e., 4-t-octylphenol, nonylphenol, BPA, estradiol, EE2 | determination of the effect of selected steroidal and phenolic EDCs on H. leucisculus | RT-qPCR | [69] | |
mixed pollutants (Guangzhou River, China) | evaluation of ABM and molecular tools for estimating effects of mixed pollutants on M. abei | semi-quantitative RT-PCR | [71] | |
mixed pollutants (i.e., PPCPs and pharmaceticals) | evaluation of the use of an ABM for an early detection of trace contaminants | RT-qPCR | [70] | |
mixed pollutants (urbanized river rich receiving wastewater effluents) | determination of the environmental monitoring programs and characterization of the response of E. caerulum to contaminants | RT-qPCR | [72] | |
mixed pollutants (exposure to contaminated sediments from river Po, Italy) | determination of the use of selected gene expression profiles of B. plebejus for an indicator of long-term sediment exposure | RT-qPCR | [73] | |
benzyl butyl phthalate | determination of the toxicity of benzyl butyl phthalate on C. riparius aquatic larvae | RT-PCR | [74] | |
psychoactive drugs mixture | determination of selected parameters of L. minor and C. fluminea for sensible and early indicators of exposure to drugs | RT-qPCR | [77] | |
pharmaceuticals, PPCPs | determination of NBS (CW) performance for removal of different contaminants from catchment run-off | RT-qPCR | [78] | |
EE2 | analysis of the potential interaction between ambient water temperature and the Vtg production induced by EE2 | RT-qPCR | [80] | |
bifenthrin | determination of the potential interaction between temperature and pesticide exposure on salmonid development | RT-qPCR | [81] | |
benzophenone | evaluation of the response and adaptation of larvae C. riparius to the contamination and different temperatures | RT-qPCR | [82] | |
mixed pollutants (sample from HunRiver, China) | determination of the use of transcriptomic profiles of D. rerio as an indicator for contaminated surface water | microarray RNA analysis | [85] | |
mixed pollutants (three rivers in Galicia, Spain) | improvement of ecotoxicological bioassays using a battery of bioassays and comparative studies in natural populations of the benthic larvae of C. riparius | hsp70 gene expression | [75] | |
mixed pollutants (emphasis on EDCs (samples from Great Lakes Basin, USA) | seasonal biomonitoring of transcriptomic profiles changes in C. comersonii, M. salmonides and M. dolomieu and comparison of relative sensitivity of chosen organisms and biomarkers | quantitative transcript abundance assay [83] | [84] | |
DNA and RNA | microcystins | determination of the influence of biotic and abiotic factors on cyanobacterial blooms | RT-qPCR and HTS | [76] |
antibiotics | determination of CW performance for removal of antibiotics and their influence on ARG spread in the environment | RT-qPCR, DGGE and HTS | [79] | |
protein | EDCs (effluent from psychiatric hospital) | ecotoxicological characterization and selection of suitable bioindicator C. fluminea for hospital effluents | 2-DE LC MS/MS | [86] |
TCS | determination of the effect of TCS on the metabolism of D. polymorpha | 2-DE and de novo sequencing | [87] | |
pharmaceuticals | determination of stress-related molecular mechanisms in C. alternifolius in constructed wetlands | 2-DE-MALDI TOF/TOF MS | [89] | |
BPA | identification of novel markers for BPA degradation in the environment | label-free quantitation proteomics | [91] | |
PPCPs | assessment of the impact of PPCPs on wild fish | shotgun proteomic approach | [88] | |
DNA and protein | EDCs (Sarno River and Matese Lake) | biomonitoring of seasonal variations of molecular DNA damage markers in P. bergeri | DNA profiling and PARP enzymes activity evaluation | [38] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mierzejewska, E.; Urbaniak, M. Molecular Methods as Potential Tools in Ecohydrological Studies on Emerging Contaminants in Freshwater Ecosystems. Water 2020, 12, 2962. https://doi.org/10.3390/w12112962
Mierzejewska E, Urbaniak M. Molecular Methods as Potential Tools in Ecohydrological Studies on Emerging Contaminants in Freshwater Ecosystems. Water. 2020; 12(11):2962. https://doi.org/10.3390/w12112962
Chicago/Turabian StyleMierzejewska, Elzbieta, and Magdalena Urbaniak. 2020. "Molecular Methods as Potential Tools in Ecohydrological Studies on Emerging Contaminants in Freshwater Ecosystems" Water 12, no. 11: 2962. https://doi.org/10.3390/w12112962
APA StyleMierzejewska, E., & Urbaniak, M. (2020). Molecular Methods as Potential Tools in Ecohydrological Studies on Emerging Contaminants in Freshwater Ecosystems. Water, 12(11), 2962. https://doi.org/10.3390/w12112962