Three-Dimensional Simulations of Wind Effects on Green Island Wake
Abstract
:1. Introduction
2. Materials and Methods
2.1. Numerical Model
2.2. Data
2.2.1. Bathymetry Data
2.2.2. Winds Data
2.2.3. HYCOM Data
2.2.4. Tidal-Force Data
3. Results
3.1. Model Validation
3.2. Input Wind Data
3.3. Cold Eddy and Wind Effect
4. Discussion
4.1. Real and No Wind Conditions
4.2. Constant Wind Fields
4.3. Characteristics of Vortex Streets
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yaremchuk, M.; Qu, T. Seasonal variability of the large-scale currents near the coast of the Philippines. J. Phys. Oceanogr. 2004, 34, 844–855. [Google Scholar] [CrossRef]
- Centurioni, L.R.; Niiler, P.P.; Lee, D.-K. Observations of inflow of Philippine Sea surface water into the South China Sea through the Luzon Strait. J. Phys. Oceanogr. 2004, 34, 113–121. [Google Scholar] [CrossRef]
- Nitani, H. Beginning of the Kuroshio, in Kuroshio. Phys. Asp. Jpn. Curr. 1972, 129–163. [Google Scholar]
- Hsin, Y.C.; Wu, C.R.; Shaw, P.T. Spatial and temporal variations of the Kuroshio east of Taiwan, 1982–2005: A numerical study. J. Geophys. Res. Ocean. 2008, 113, C04002. [Google Scholar] [CrossRef] [Green Version]
- Shen, H.-C.; Wang, Y.-H. Topography induced flow variations between Taitung-Lutao off Southeast Taiwan. Master‘s Thesis, National Sun Yat-sen University, Gaoxiong, Taiwan, 2012. [Google Scholar]
- Jan, S.; Wang, S.-H.; Yang, K.-C.; Yang, Y.J.; Chang, M.-H. Glider observations of interleaving layers beneath the Kuroshio primary velocity core east of Taiwan and analyses of underlying dynamics. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwon, Y.-O.; Alexander, M.A.; Bond, N.A.; Frankignoul, C.; Nakamura, H.; Qiu, B.; Thompson, L.A. Role of the Gulf Stream and Kuroshio–Oyashio systems in large-scale atmosphere–ocean interaction: A review. J. Clim. 2010, 23, 3249–3281. [Google Scholar] [CrossRef]
- Andres, M.; Park, J.-H.; Wimbush, M.; Zhu, X.-H.; Chang, K.-I.; Ichikawa, H. Study of the Kuroshio/Ryukyu Current system based on satellite-altimeter and in situ measurements. J. Oceanogr. 2008, 64, 937–950. [Google Scholar] [CrossRef]
- Chang, M.-H.; Jan, S.; Mensah, V.; Andres, M.; Rainville, L.; Yang, Y.J.; Cheng, Y.-H. Zonal migration and transport variations of the Kuroshio east of Taiwan induced by eddy impingements. Deep Sea Res. Part I Oceanogr. Res. Pap. 2018, 131, 1–15. [Google Scholar] [CrossRef]
- Jan, S.; Yang, Y.J.; Wang, J.; Mensah, V.; Kuo, T.H.; Chiou, M.D.; Chern, C.S.; Chang, M.H.; Chien, H. Large variability of the Kuroshio at 23.75 N east of Taiwan. J. Geophys. Res. Ocean. 2015, 120, 1825–1840. [Google Scholar] [CrossRef]
- Johns, W.E.; Lee, T.N.; Zhang, D.; Zantopp, R.; Liu, C.-T.; Yang, Y. The Kuroshio east of Taiwan: Moored transport observations from the WOCE PCM-1 array. J. Phys. Oceanogr. 2001, 31, 1031–1053. [Google Scholar] [CrossRef] [Green Version]
- Chang, M.-H.; Jan, S.; Liu, C.-L.; Cheng, Y.-H.; Mensah, V. Observations of island wakes at high Rossby numbers: Evolution of submesoscale vortices and free shear layers. J. Phys. Oceanogr. 2019, 49, 2997–3016. [Google Scholar] [CrossRef]
- Chen, F. The Kuroshio Power Plant; Springer: London, UK, 2013. [Google Scholar]
- Hsu, T.-W.; Liau, J.-M.; Liang, S.-J.; Tzang, S.-Y.; Doong, D.-J. Assessment of Kuroshio current power test site of Green Island, Taiwan. Renew. Energy 2015, 81, 853–863. [Google Scholar] [CrossRef]
- Tang, T.; He, C.; Wang, Y.; Jan, S.; Hsu, S.; Wen, L.; Yang, T.; Song, S.; Chen, H.; Song, G. Comprehensive Research on the Natural Resources of the East Waters of Taiwan: A Precisely Topographic, Geological, Hydrological, and Ecological Surveys of the Waters around Green Island; National Science Council: Taipei, Taiwan, 2008.
- Mel, R.; Sterl, A.; Lionello, P. High resolution climate projection of storm surge at the Venetian coast. Nat. Hazards Earth Syst. Sci. 2013, 13, 1135–1142. [Google Scholar] [CrossRef] [Green Version]
- Mel, R.; Lionello, P. Probabilistic Dressing of a Storm Surge Prediction in the Adriatic Sea. Adv. Meteorol. 2016, 2016, 3764519. [Google Scholar] [CrossRef] [Green Version]
- Flowerdew, J.; Horsburgh, K.; Wilson, C.; Mylne, K. Development and evaluation of an ensemble forecasting system for coastal storm surges. Q. J. R. Meteorol. Soc. 2010, 136, 1444–1456. [Google Scholar] [CrossRef] [Green Version]
- Von Kármán, T. Aerodynamics; McGraw-Hill: New York, NY, USA, 1954; p. 203. [Google Scholar]
- Jiménez, B.; Sangra, P.; Mason, E. A numerical study of the relative importance of wind and topographic forcing on oceanic eddy shedding by tall, deep water islands. Ocean Model. 2008, 22, 146–157. [Google Scholar] [CrossRef]
- Hsu, T.-W.; Doong, D.-J.; Hsieh, K.-J.; Liang, S.-J. Numerical Study of Monsoon Effect on Green Island Wake. J. Coast. Res. 2015, 31, 1141–1150. [Google Scholar] [CrossRef]
- Tritton, D.J. Physical Fluid Dynamics; Van Nostrand Reinhold Company: New York, NY, USA, 1977. [Google Scholar]
- Chang, M.H.; Tang, T.Y.; Ho, C.R.; Chao, S.Y. Kuroshio-induced wake in the lee of Green Island off Taiwan. J. Geophys. Res. Ocean 2013, 118, 1508–1519. [Google Scholar] [CrossRef]
- Hsu, P.-C.; Chang, M.-H.; Lin, C.-C.; Huang, S.-J.; Ho, C.-R. Investigation of the island-induced ocean vortex train of the Kuroshio Current using satellite imagery. Remote Sens. Environ. 2017, 193, 54–64. [Google Scholar] [CrossRef]
- Hsu, P.-C.; Cheng, K.-H.; Jan, S.; Lee, H.-J.; Ho, C.-R. Vertical structure and surface patterns of Green Island wakes induced by the Kuroshio. Deep Sea Res. Part I Oceanogr. Res. Pap. 2019, 143, 1–16. [Google Scholar] [CrossRef]
- Huang, S.-J.; Ho, C.-R.; Lin, S.-L.; Liang, S.-J. Spatial-temporal scales of Green Island wake due to passing of the Kuroshio current. Int. J. Remote Sens. 2014, 35, 4484–4495. [Google Scholar] [CrossRef]
- Mel, R.; Carniello, L.; D’Alpaos, L. Addressing the effect of the Mo.S.E. barriers closure on wind setup within the Venice lagoon. Estuar. Coast. Shelf Sci. 2019, 225, 106249. [Google Scholar] [CrossRef]
- Ekman, V.W. On the Influence of the Earth’s Rotation on Ocean-Currents; ProQuest: Ann Arbor, MI, USA, 1905. [Google Scholar]
- Chao, S.-Y. Circulation of the East China Sea, a numerical study. J. Oceanogr. 1990, 46, 273–295. [Google Scholar] [CrossRef]
- Su, J.; Guan, B.; Jiang, J. The kuroshio. Part i. Physical. Oceanogr. Mar. Biol. 1990, 28, 11–71. [Google Scholar]
- Tung, Y.-S.; Wang, S.-Y.S.; Chu, J.-L.; Wu, C.-H.; Chen, Y.-M.; Cheng, C.-T.; Lin, L.-Y. Projected increase of the East Asian summer monsoon (Meiyu) in Taiwan by climate models with variable performance. Meteorol. Appl. 2020, 27, e1886. [Google Scholar] [CrossRef] [Green Version]
- Sheu, W.-J.; Wu, C.-R.; Oey, L.-Y. Blocking and westward passage of eddies in the Luzon Strait. Deep Sea Res. Part II Top. Stud. Oceanogr. 2010, 57, 1783–1791. [Google Scholar] [CrossRef]
- Hsin, Y.-C.; Qiu, B.; Chiang, T.-L.; Wu, C.-R. Seasonal to interannual variations in the intensity and central position of the surface Kuroshio east of Taiwan. J. Geophys. Res. Oceans 2013, 118, 4305–4316. [Google Scholar] [CrossRef]
- Hsu, T.-W.; Chou, M.-H.; Hou, T.-H.; Liang, S.-J. Typhoon effect on Kuroshio and Green Island wake: A modelling study. Ocean Sci. Discuss. 2015, 12, 3199–3233. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Z.-W.; Zheng, Q. Variability of island-induced ocean vortex trains, in the Kuroshio region southeast of Taiwan Island. Cont. Shelf Res. 2014, 81, 1–6. [Google Scholar] [CrossRef]
- Liu, C.L.; Chang, M.H. Numerical Studies of Submesoscale Island Wakes in the Kuroshio. J. Geophys. Res. Ocean 2018, 123, 5669–5687. [Google Scholar] [CrossRef]
- Blumberg, A.F.; Mellor, G.L. Whole Basin Model of the Gulf of Mexico; Dynalysis of Princeton: Princeton, NJ, USA, 1979. [Google Scholar]
- Blumberg, A.F.; Mellor, G.L. A coastal ocean numerical model. In Mathematical Modelling of Estuarine Physics; Springer: Berlin, Germany, 1980; pp. 203–219. [Google Scholar]
- Blumberg, A.F.; Mellor, G.L. A Numerical Calculation of the Circulation in the Gulf of Mexico; Dynalysis of Princeton: Princeton, NJ, USA, 1981. [Google Scholar]
- Mellor, G.L.; Yamada, T. A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci. 1974, 31, 1791–1806. [Google Scholar] [CrossRef] [Green Version]
- Mellor, G.L.; Yamada, T. Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. 1982, 20, 851–875. [Google Scholar] [CrossRef] [Green Version]
- Blumberg, A.F.; Mellor, G.L. A description of a three-dimensional coastal ocean circulation model. Three-Dimens. Coast. Ocean Models 1987, 4, 1–16. [Google Scholar]
- Mellor, G.L. Analytic Prediction of the Properties of Stratified Planetary Surface Layers. J. Atmos. Sci. 1973, 30, 1061–1069. [Google Scholar] [CrossRef]
- Madala, R.V.; Piacseki, S.A. A semi-implicit numerical model for baroclinic oceans. J. Comput. Phys. 1977, 23, 167–178. [Google Scholar] [CrossRef]
- Simons, T.J. Verification of numerical models of Lake Ontario: Part I. Circulation in spring and early summer. J. Phys. Oceanogr. 1974, 4, 507–523. [Google Scholar] [CrossRef] [Green Version]
- Mellor, G.L. Users Guide for a Three Dimensional, Primitive Equation, Numerical Ocean Model; Princeton University: Princeton, NJ, USA, 1998. [Google Scholar]
- Chassignet, E.P.; Hurlburt, H.E.; Smedstad, O.M.; Halliwell, G.R.; Hogan, P.J.; Wallcraft, A.J.; Baraille, R.; Bleck, R. The HYCOM (hybrid coordinate ocean model) data assimilative system. J. Mar. Syst. 2007, 65, 60–83. [Google Scholar] [CrossRef]
- Egbert, G.D.; Bennett, A.F.; Foreman, M.G. TOPEX/POSEIDON tides estimated using a global inverse model. J. Geophys. Res. Ocean 1994, 99, 24821–24852. [Google Scholar] [CrossRef] [Green Version]
- Egbert, G.D.; Erofeeva, S.Y. Efficient inverse modeling of barotropic ocean tides. J. Atmos. Ocean. Technol. 2002, 19, 183–204. [Google Scholar] [CrossRef] [Green Version]
- Anthes, R.A. Data assimilation and initialization of hurricane prediction models. J. Atmos. Sci. 1974, 31, 702–719. [Google Scholar] [CrossRef] [Green Version]
- Hoke, J.E.; Anthes, R.A. The initialization of numerical models by a dynamic-initialization technique. Mon. Weather Rev. 1976, 104, 1551–1556. [Google Scholar] [CrossRef] [Green Version]
- Amante, C.; Eakins, B.W. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis; US Department of Commerce, National Oceanic and Atmospheric Administration, National Environmental Satellite, Data, and Information Service, National Geophysical Data Center, Marine Geology and Geophysics Division Colorado: Washington, DC, USA, 2009.
- MOST. Ocean Data Bank of the Ministry of Science and Technology. Available online: http://www.odb.ntu.edu.tw (accessed on 10 August 2019).
- Liou, C.-S.; Chen, J.-H.; Terng, C.-T.; Wang, F.-J.; Fong, C.-T.; Rosmond, T.E.; Kuo, H.-C.; Shiao, C.-H.; Cheng, M.-D. The second-generation global forecast system at the Central Weather Bureau in Taiwan. Weather Forecast. 1997, 12, 653–663. [Google Scholar] [CrossRef] [Green Version]
- Knoben, W.J.M.; Freer, J.E.; Woods, R.A. Technical note: Inherent benchmark or not? Comparing Nash–Sutcliffe and Kling–Gupta efficiency scores. Hydrol. Earth Syst. Sci. 2019, 23, 4323–4331. [Google Scholar] [CrossRef] [Green Version]
- Roemmich, D.; Johnson, G.C.; Riser, S.; Davis, R.; Gilson, J.; Owens, W.B.; Garzoli, S.L.; Schmid, C.; Ignaszewski, M.J.O. The Argo Program: Observing the global ocean with profiling floats. Oceanography 2009, 22, 34–43. [Google Scholar] [CrossRef] [Green Version]
- Li, C.C.; Chang, M.H.; Chen, Y.C. Oceanic typhoon rainfall estimation using Advanced Microwave Sounding Unit-A data. Int. J. Remote Sens. 2006, 27, 1477–1490. [Google Scholar] [CrossRef]
- Bentamy, A.; Croize-Fillon, D.J.I.T.R. Daily ASCAT Surface Wind Fields; IFREMER Technology Report; Laboratoire d‘Oceanographie Spatiale: Paris, France, 2015. [Google Scholar]
- Saldías, G.S.; Largier, J.L.; Mendes, R.; Pérez-Santos, I.; Vargas, C.A.; Sobarzo, M. Satellite-measured interannual variability of turbid river plumes off central-southern Chile: Spatial patterns and the influence of climate variability. Prog. Oceanogr. 2016, 146, 212–222. [Google Scholar] [CrossRef]
- Miller, S.D.; Hawkins, J.D.; Kent, J.; Turk, F.J.; Lee, T.F.; Kuciauskas, A.P.; Richardson, K.; Wade, R.; Hoffman, C. NexSat: Previewing NPOESS/VIIRS imagery capabilities. Bull. Am. Meteorol. Soc. 2006, 87, 433–446. [Google Scholar] [CrossRef]
- Hillger, D.; Kopp, T.; Lee, T.; Lindsey, D.; Seaman, C.; Miller, S.; Solbrig, J.; Kidder, S.; Bachmeier, S.; Jasmin, T.J. First-light imagery from Suomi NPP VIIRS. Bull. Am. Meteorol. Soc. 2013, 94, 1019–1029. [Google Scholar] [CrossRef]
- Liu, C.-M.; Lin, S.-H.; Schneider, S.H.; Root, T.L.; Lee, K.-T.; Lu, H.-J.; Lee, P.-F.; Ko, C.-Y.; Chiou, C.-R.; Lin, H.-J. Climate Change Impact Assessment in Taiwan; National Taiwan University: Taipei, Taiwan, 2010. [Google Scholar]
- Mel, R.; Lionello, P. Storm Surge Ensemble Prediction for the City of Venice. Weather Forecast. 2014, 29, 1044–1057. [Google Scholar] [CrossRef]
Model | Range | Grid Size | Resolution (Degree) | DTE (Sec) | DTI (Sec) | Lower-Resolution Model |
---|---|---|---|---|---|---|
TW | 117° E–124.5° E 18° N–26.5° N | 376 × 426 × 33 | 1/50 | 5 | 150 | HYCOM |
GI | 120.88° E–122.5° E 22.06° N–24.25° N | 324 × 438 × 31 | 1/200 | 1 | 30 | TW |
Real Wind | No Wind | Constant SW Wind | Constant NE Wind | |
---|---|---|---|---|
Wind Conditions | CWB-WRF datasets | None | 10m/s SW wind | 10m/s NE wind |
Time | SW (4:00, 11 September 2010) NE (20:00, 20 September 2010) | 1–30 September 2010 |
L ≈ 7 km | a (km) | b (km) | Ar | Br | Note |
---|---|---|---|---|---|
Real and No Wind Conditions (SW) | |||||
No wind | 40.32 | 18.73 | 2.15 | 2.70 | Figure 13b |
SW | 45.95 | 15.30 | 3.00 | 2.19 | Figure 13a |
Real and No Wind Conditions (NE) | |||||
NE | 32.53 | 17.70 | 1.84 | 2.53 | Figure 14a |
No wind | 36.52 | 18.06 | 2.02 | 2.58 | Figure 14b |
Constant Wind Fields | |||||
NE | 37.08 | 19.93 | 1.86 | 2.85 | Figure 16b |
SW | 43.05 | 12.16 | 3.54 | 1.74 | Figure 16a |
Satellite Images from Hsu et al. [24] | |||||
North wind | - | - | 1.78 | 2.88 | |
South wind | - | - | 2.77 | 1.59 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, T.-H.; Chang, J.-Y.; Tsai, C.-C.; Hsu, T.-W. Three-Dimensional Simulations of Wind Effects on Green Island Wake. Water 2020, 12, 3039. https://doi.org/10.3390/w12113039
Hou T-H, Chang J-Y, Tsai C-C, Hsu T-W. Three-Dimensional Simulations of Wind Effects on Green Island Wake. Water. 2020; 12(11):3039. https://doi.org/10.3390/w12113039
Chicago/Turabian StyleHou, Tien-Hung, Jen-Yi Chang, Chia-Cheng Tsai, and Tai-Wen Hsu. 2020. "Three-Dimensional Simulations of Wind Effects on Green Island Wake" Water 12, no. 11: 3039. https://doi.org/10.3390/w12113039
APA StyleHou, T. -H., Chang, J. -Y., Tsai, C. -C., & Hsu, T. -W. (2020). Three-Dimensional Simulations of Wind Effects on Green Island Wake. Water, 12(11), 3039. https://doi.org/10.3390/w12113039