Structural Characterization of Dissolved Organic Matter in Permafrost Peatland Lakes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Sampling
2.3. Methods
2.3.1. Sample Filtration
2.3.2. Dissolved Organic Carbon Quantification
2.3.3. Excitation–Emission Matrix Fluorescence Spectroscopy
2.3.4. FTIR Spectroscopy
2.3.5. NMR Spectroscopy
2.3.6. Elemental Analysis
3. Results and Discussion
3.1. DOC Quantification
3.2. Physicochemical Profiles
3.3. Excitation–Emission Matrix Fluorescence Spectroscopy
3.4. FTIR-ATR Spectra of PPL-DOM Samples
3.5. Liquid-State 1H NMR Spectra of PPL-DOM Samples
3.6. Liquid-State 1H-13C HSQC NMR spectra of PPL-DOM Samples
3.7. Elemental Analysis of PPL-DOM Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gruber, S. Derivation and Analysis of a High-Resolution Estimate of Global Permafrost Zonation. Cryosphere 2012, 6, 221–233. [Google Scholar] [CrossRef] [Green Version]
- Hugelius, G.; Strauss, J.; Zubrzycki, S.; Harden, J.W.; Schuur, E.A.G.; Ping, C.L.; Schirrmeister, L.; Grosse, G.; Michaelson, G.J.; Koven, C.D.; et al. Estimated Stocks of Circumpolar Permafrost Carbon with Quantified Uncertainty Ranges and Identified Data Gaps. Biogeosciences 2014, 11, 6573–6593. [Google Scholar] [CrossRef] [Green Version]
- Vigneron, A.; Lovejoy, C.; Cruaud, P.; Kalenitchenko, D.; Culley, A.; Vincent, W.F. Contrasting Winter Versus Summer Microbial Communities and Metabolic Functions in a Permafrost Thaw Lake. Front. Microbiol. 2019, 10, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wauthy, M.; Rautio, M.; Christoffersen, K.S.; Forsstrom, L.; Laurion, I.; Mariash, H.L.; Peura, S.; Vincent, W.F. Increasing Dominance of Terrigenous Organic Matter in Circumpolar Freshwaters Due to Permafrost Thaw. Limnol. Oceanogr. 2018, 3, 186–198. [Google Scholar] [CrossRef] [Green Version]
- Zimov, S.A.; Voropaev, Y.V.; Semiletov, I.P.; Davidov, S.P.; Prosiannikov, S.F.; Chapin III, F.S.; Chapin, M.C.; Trumbore, S.; Tyler, S. North Siberian Lakes: A Methane Source Fueled by Pleistocene Carbon. Science 1997, 277, 800–802. [Google Scholar] [CrossRef] [Green Version]
- Schuur, E.A.G.; McGuire, A.D.; Schadel, C.; Grosse, G.; Harden, J.W.; Hayes, D.J.; Hugelius, G.; Koven, C.D.; Kuhry, P.; Lawrence, D.M.; et al. Climate Change and the Permafrost Carbon Feedback. Nature 2015, 520, 171–179. [Google Scholar] [CrossRef] [PubMed]
- St Pierre, K.A.; Zolkos, S.; Shakil, S.; Tank, S.E.; St Louis, V.L.; Kokelj, S.V. Unprecedented Increases in Total and Methyl Mercury Concentrations Downstream of Retrogressive Thaw Slumps in the Western Canadian Arctic. Environ. Sci. Technol. 2018, 52, 14099–14109. [Google Scholar] [CrossRef] [PubMed]
- Dubinenkov, I.; Flerus, R.; Schmitt-Kopplin, P.; Kattner, G.; Koch, B.P. Origin-Specific Molecular Signatures of Dissolved Organic Matter in the Lena Delta. Biogeochemistry 2015, 123, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Walker, B.D.; Beaupré, S.R.; Guilderson, T.P.; McCarthy, M.D.; Druffel, E.R.M. Pacific Carbon Cycling Constrained by Organic Matter Size, Age and Composition Relationships. Nat. Geosci. 2016, 9, 888–891. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Feng, W.; Song, F.; Li, T.; Guo, W.; Wang, B.; Wang, H.; Wu, F. Photodegradation of Algae and Macrophyte-Derived Dissolved Organic Matter: A Multi-Method Assessment of DOM Transformation. Limnologica 2019, 77, 125683. [Google Scholar] [CrossRef]
- Textor, S.R.; Wickland, K.P.; Podgorski, D.C.; Johnston, S.E.; Spencer, R.G.M. Dissolved Organic Carbon Turnover in Permafrost-Influenced Watersheds of Interior Alaska: Molecular Insights and the Priming Effect. Front. Earth Sci. 2019, 7, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Maizel, A.C.; Li, J.; Remucal, C.K. Relationships between Dissolved Organic Matter Composition and Photochemistry in Lakes of Diverse Trophic Status. Environ. Sci. Technol. 2017, 51, 9624–9632. [Google Scholar] [CrossRef] [PubMed]
- Kaal, J.; Cortizas, A.M.; Biester, H. Downstream Changes in Molecular Composition of DOM along a Headwater Stream in the Harz Mountains (Central Germany) as Determined by FTIR, Pyrolysis-GC–MS and THM-GC–MS. J. Anal. Appl. Pyrolysis 2017, 126, 50–61. [Google Scholar] [CrossRef]
- Park, M.; Snyder, S.A. Sample Handling and Data Processing for Fluorescent Excitation-Emission Matrix (EEM) of Dissolved Organic Matter (DOM). Chemosphere 2018, 193, 530–537. [Google Scholar] [CrossRef]
- Hertkorn, N.; Harir, M.; Cawley, K.M.; Schmitt-Kopplin, P.; Jaffé, R. Molecular Characterization of Dissolved Organic Matter from Subtropical Wetlands: A Comparative Study through the Analysis of Optical Properties, NMR and FTICR/MS. Biogeosciences Discuss. 2015, 12, 13711–13765. [Google Scholar] [CrossRef] [Green Version]
- Matveev, A.; Laurion, I.; Deshpande, B.N.; Bhiry, N.; Vincent, W.F. High Methane Emissions from Thermokarst Lakes in Subarctic Peatlands. Limnol. Oceanogr. 2016, 61, 150–164. [Google Scholar] [CrossRef] [Green Version]
- Vincent, W.F.; Lemay, M.; Allard, M. Arctic Permafrost Landscapes in Transition: Towards an Integrated Earth System Approach. Arct. Sci. 2017, 3, 39–64. [Google Scholar] [CrossRef] [Green Version]
- Bégin, P.N.; Vincent, W.F. Permafrost Thaw Lakes and Ponds as Habitats for Abundant Rotifer Populations. Arct. Sci. 2017, 3, 354–377. [Google Scholar] [CrossRef] [Green Version]
- Bhiry, N.; Delwaide, A.; Allard, M.; Bégin, Y.; Filion, L.; Lavoie, M.; Nozais, C.; Payette, S.; Pienitz, R.; Saulnier-Talbot, É.; et al. Environmental Change in the Great Whale River Region, Hudson Bay: Five Decades of Multidisciplinary Research by Centre d’études Nordiques (CEN). Écoscience 2011, 18, 182–203. [Google Scholar] [CrossRef]
- Matveev, A.; Laurion, I.; Vincent, W.F. Winter Accumulation of Methane and Its Variable Timing of Release from Thermokarst Lakes in Subarctic Peatlands. Biogeosciences 2019, 124, 3521–3535. [Google Scholar] [CrossRef]
- Leppäranta, M. Lake Water Body in the Ice Season. In Freezing of Lakes and the Evolution of Their Ice Cover; Springer: Berlin/Heidelberg, Germany, 2015; pp. 203–244. [Google Scholar] [CrossRef]
- Dittmar, T.; Koch, B.; Hertkorn, N.; Kattner, G. A Simple and Efficient Method for the Solid-Phase Extraction of Dissolved Organic Matter (SPE-DOM) from Seawater. Limnol. Oceanogr. Methods 2008, 6, 230–235. [Google Scholar] [CrossRef]
- Lopes, C.B.; Abreu, S.; Válega, M.; Duarte, R.M.B.O.; Pereira, M.E.; Duarte, A.C. The Assembling and Application of an Automated Segmented Flow Analyzer for the Determination of Dissolved Organic Carbon Based on UV-Persulphate Oxidation. Anal. Lett. 2006, 39, 1979–1992. [Google Scholar] [CrossRef]
- Zepp, R.G.; Sheldon, W.M.; Ann, M. Dissolved Organic Fluorophores in Southeastern US Coastal Waters: Correction Method for Eliminating Rayleigh and Raman Scattering Peaks in Excitation—Emission Matrices. Mar. Chem. 2004, 89, 15–36. [Google Scholar] [CrossRef]
- Zsolnay, A.; Baigar, E.; Jimenez, M.; Steinweg, B.; Saccomandi, F. Differentiating with Fluorescence Spectroscopy the Sources of Dissolved Organic Matter in Soils Subjected to Drying. Chemosphere 1999, 38, 45–50. [Google Scholar] [CrossRef]
- Cox, L.; Celis, R.; Hermosin, M.C.; Cornejo, J.; Zsolnay, A.; Zeller, K. Effect of Organic Amendments on Herbicide Sorption as Related to the Nature of the Dissolved Organic Matter. Environ. Sci. Technol. 2000, 34, 4600–4605. [Google Scholar] [CrossRef] [Green Version]
- Coble, P.G. Characterization of Marine and Terrestrial DOM in Seawater Using Excitation-Emission Matrix Spectroscopy. Mar. Chem. 1996, 51, 325–346. [Google Scholar] [CrossRef]
- Stedmon, C.A.; Markager, S.; Bro, R. Tracing Dissolved Organic Matter in Aquatic Environments Using a New Approach to Fluorescence Spectroscopy. Mar. Chem. 2003, 82, 239–254. [Google Scholar] [CrossRef]
- Hansen, A.M.; Kraus, T.E.C.; Pellerin, B.A.; Fleck, J.A.; Downing, B.D.; Bergamaschi, B.A. Optical Properties of Dissolved Organic Matter (DOM): Effects of Biological and Photolytic Degradation. Limnol. Oceanogr. 2016, 61, 1015–1032. [Google Scholar] [CrossRef] [Green Version]
- McKnight, D.M.; Boyer, E.W.; Westerhoff, P.K.; Doran, P.T.; Kulbe, T.; Andersen, D.T. Spectroflourometric Characterization of Dissolved Organic Matter for Indication of Precursor Organic Material and Aromaticity. Limnol. Oceanogr. 2001, 46, 38–48. [Google Scholar] [CrossRef]
- Zhang, Z.; Guo, L.; Wang, Y.; Li, F. Degradation and Transformation of Extracellular Polymeric Substances (EPS) and Dissolved Organic Matters (DOM) during Two-Stage Anaerobic Digestion with Waste Sludge. Int. J. Hydrogen Energy 2017, 42, 9619–9629. [Google Scholar] [CrossRef]
- Kamjunke, N.; Hertkorn, N.; Harir, M.; Schmitt-kopplin, P.; Griebler, C.; Brauns, M.; Von Tümpling, W.; Weitere, M.; Herzsprung, P. Molecular Change of Dissolved Organic Matter and Patterns of Bacterial Activity in a Stream along a Land-Use Gradient. Water Res. 2019, 164, 114919. [Google Scholar] [CrossRef] [PubMed]
- Kamjunke, N.; Herzsprung, P.; Neu, T.R. Quality of dissolved organic matter affects planktonic but not biofilm bacterial production in streams. Sci. Total Environ. 2015, 506–507, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhou, L.; Zhang, Y.; Garcia, J.; Souza, D.; Podgorski, D.C.; Spencer, R.G.M.; Jeppesen, E.; Davidson, T.A. Autochthonous Dissolved Organic Matter Potentially Fuels Methane Ebullition from Experimental Lakes. Water Res. 2019, 166, 115048. [Google Scholar] [CrossRef] [PubMed]
- Huguet, A.; Vacher, L.; Relexans, S.; Saubusse, S.; Froidefond, J.M.; Parlanti, E. Properties of Fluorescent Dissolved Organic Matter in the Gironde Estuary. Org. Geochem. 2009, 40, 706–719. [Google Scholar] [CrossRef]
- Shatilla, N.J.; Carey, S.K. Assessing Inter-Annual and Seasonal Patterns of DOC and DOM Quality across a Complex Alpine Watershed Underlain by Discontinuous Permafrost in Yukon, Canada. Hydrol. Earth Syst. Sci. 2019, 23, 3571–3591. [Google Scholar] [CrossRef] [Green Version]
- Deshpande, B.N.; Maps, F.; Matveev, A.; Vincent, W.F. Oxygen Depletion in Subarctic Peatland Thaw Lakes. Arct. Sci. 2017, 3, 406–428. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, J.A.; Simpson, M.A.; Bockheim, J.G.; Kumar, K. Characterization of Soil Organic Carbon in Drained Thaw-Lake Basins of Arctic Alaska Using NMR and FTIR Photoacoustic Spectroscopy. Org. Geochem. 2011, 42, 947–954. [Google Scholar] [CrossRef]
- Daoud, A.B.A.; Tremblay, L. HPLC-SEC-FTIR Characterization of the Dissolved Organic Matter Produced by the Microbial Carbon Pump. Mar. Chem. 2019, 215, 103668. [Google Scholar] [CrossRef]
- Santos, E.B.H.; Duarte, A.C. The Influence of Pulp and Paper Mill Effluents on the Composition of the Humic Fraction of Aquatic Organic Matter. Water Res. 1998, 32, 597–608. [Google Scholar] [CrossRef]
- Rodríguez, F.J.; Núñez, L.A. Characterization of Aquatic Humic Substances. Water Environ. J. 2011, 25, 163–170. [Google Scholar] [CrossRef]
- Santos, E.B.H.; Duarte, R.M.B.O.; Filipe, O.S.; Duarte, A.C. Structural Characterisation of the Coloured Organic Matter from an Eucalyptus Pleached Kraft Pulp Mill Effluent. Int. J. Environ. Anal. Chem. 2000, 78, 333–342. [Google Scholar] [CrossRef]
- Duarte, R.M.B.O.; Santos, E.B.H.; Duarte, A.C. Spectroscopic Characteristics of Ultrafiltration Fractions of Fulvic and Humic Acids Isolated from an Eucalyptus Bleached Kraft Pulp Mill Effluent. Water Res. 2003, 37, 4073–4080. [Google Scholar] [CrossRef]
- Lopes, S.P.; Matos, J.T.V.; Silva, A.M.S.; Duarte, A.C.; Duarte, R.M.B.O. 1H NMR Studies of Water- and Alkaline-Soluble Organic Matter from Fine Urban Atmospheric Aerosols. Atmos. Environ. 2015, 119, 374–380. [Google Scholar] [CrossRef]
- Duarte, R.M.B.O.; Matos, J.T.V.; Paula, A.S.; Lopes, S.P.; Pereira, G.; Vasconcellos, P.; Gioda, A.; Carreira, R.; Silva, A.M.S.; Duarte, A.C.; et al. Structural Signatures of Water-Soluble Organic Aerosols in Contrasting Environments in South America and Western Europe. Environ. Pollut. 2017, 227, 513–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duarte, R.M.B.O.; Duarte, A.C. NMR Studies of Organic Aerosols. In NMR Studies of Organic Aerosols. Annual Reports on NMR Spectroscopy, 1st ed.; Webb, G.A., Ed.; Elsevier: London, UK, 2017; Volume 92, pp. 83–135. [Google Scholar] [CrossRef]
- Einsiedl, F.; Hertkorn, N.; Wolf, M.; Frommberger, M.; Schmitt-kopplin, P.; Koch, B.P. Rapid Biotic Molecular Transformation of Fulvic Acids in a Karst Aquifer. Geochim. Cosmochim. Acta 2007, 71, 5474–5482. [Google Scholar] [CrossRef] [Green Version]
- Woods, G.C.; Simpson, M.J.; Simpson, A.J. Oxidized Sterols as a Significant Component of Dissolved Organic Matter: Evidence from 2D HPLC in Combination with 2D and 3D NMR Spectroscopy. Water Res. 2012, 46, 3398–3408. [Google Scholar] [CrossRef] [PubMed]
- Majumdar, R.D.; Bliumkin, L.; Lane, D.; Soong, R.; Simpson, J.; Simpson, M. Analysis of DOM Phototransformation Using a Looped NMR System Integrated with a Sunlight Simulator. Water Res. 2017, 120, 64–76. [Google Scholar] [CrossRef]
- Duarte, R.M.B.O.; Silva, A.M.S.; Duarte, A.C. Two-Dimensional NMR Studies of Water-Soluble Organic Matter in Atmospheric Aerosols. Environ. Sci. Technol. 2008, 42, 8224–8230. [Google Scholar] [CrossRef]
- Duarte, R.M.B.O.; Piñeiro-Iglesias, M.; López-Mahía, P.; Muniategui-Lorenzo, S.; Moreda-Piñeiro, J.; Silva, A.M.S.; Duarte, A.C. Comparative Study of Atmospheric Water-Soluble Organic Aerosols Composition in Contrasting Suburban Environments in the Iberian Peninsula Coast. Sci. Total Environ. 2019, 648, 430–441. [Google Scholar] [CrossRef]
- Matos, J.T.V.; Duarte, R.M.B.O.; Lopes, S.P.; Silva, A.M.S.; Duarte, A.C. Persistence of Urban Organic Aerosols Composition: Decoding Their Structural Complexity and Seasonal Variability. Environ. Pollut. 2017, 231, 281–290. [Google Scholar] [CrossRef]
- Simpson, A. Multidimensional Solution State NMR of Humic Substances: A Practical Guide and Review. Soil Sci. 2001, 166, 795–809. [Google Scholar] [CrossRef]
- Hertkorn, N.; Permin, A.; Perminova, I.; Kovalevskii, D.; Yudov, M.; Petrosyan, V.; Kettrup, A. Comparative Analysis of Partial Structures of a Peat Humic and Fulvic Acid Using One- and Two-Dimensional Nuclear Magnetic Resonance Spectroscopy. J. Environ. Qual. 2002, 31, 375–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simpson, A.J.; Song, G.; Smith, E.; Novotny, E.H.; Hayes, M.H.B. Unraveling the Structural Components of Soil Humin by Use of Solution-State Nuclear Magnetic Resonance Spectroscopy. Environ. Sci. Technol. 2007, 41, 876–883. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Harir, M.; Moritz, F.; Zhang, J.; Witting, M.; Wu, Y.; Schmitt-kopplin, P.; Fekete, A.; Gaspar, A.; Hertkorn, N. Molecular and Structural Characterization of Dissolved Organic Matter during and Post Cyanobacterial Bloom in Taihu by Combination of NMR Spectroscopy and FTICR Mass Spectrometry. Water Res. 2014, 57, 280–294. [Google Scholar] [CrossRef]
- Hertkorn, N.; Harir, M.; Koch, B.P.; Michalke, B. High-Field NMR Spectroscopy and FTICR Mass Spectrometry: Powerful Discovery Tools for the Molecular Level Characterization of Marine Dissolved Organic Matter. Biogeosciences 2013, 10, 1583–1624. [Google Scholar] [CrossRef] [Green Version]
- Duarte, R.M.B.O.; Santos, E.B.H.; Pio, C.A.; Duarte, A.C. Comparison of Structural Features of Water-Soluble Organic Matter from Atmospheric Aerosols with Those of Aquatic Humic Substances. Atmos. Environ. 2007, 41, 8100–8113. [Google Scholar] [CrossRef]
- Cory, R.M.; McKnight, D.M.; Chin, Y.P.; Miller, P.; Jaros, C.L. Chemical Characteristics of Fulvic Acids from Arctic Surface Waters: Microbial Contributions and Photochemical Transformations. J. Geophys. Res. Biogeosci. 2007, 112, 1–14. [Google Scholar] [CrossRef]
SAS 1A | SAS 2A | SAS 1B | |
---|---|---|---|
Snow depth | 0.5 m | 0.5 m | 0.5 m |
Ice thickness | 1.0 m | 1.0 m | 0.5 m |
Surface lake depth | just below the ice | just below the ice | - |
Medium lake depth | - | - | 0.3 m |
Bottom lake depth | 1.3 m | 2.5 m | - |
Lake Sample | Depth (m) | Average C Content (mg C L−1) |
---|---|---|
SAS 1A S | Just below the ice | 18.8 ± 0.9 |
SAS 1A B | 1.3 m | 18.0 ± 0.4 |
SAS 2A S | Just below the ice | 22.6 ± 0.9 |
SAS 2A B | 2.5 m | 31.5 ± 0.5 |
SAS 1B M | 0.3 m | 36.4 ± 0.5 |
Parameter | SAS 1A S | SAS 1A B | SAS 2A S | SAS 2A B | SAS 1B M |
---|---|---|---|---|---|
C:A ratio | 0.88 | 0.89 | 0.87 | 0.94 | 0.90 |
C:T ratio | 0.74 | 5.7 | 9.7 | 7.0 | 13 |
A:T ratio | 0.83 | 3.7 | 11 | 7.4 | 14 |
HIX | 1.8 | 7.2 | 19 | 11 | 18 |
FI | 1.6 | 1.7 | 1.4 | 1.6 | 1.5 |
BIX | 0.55 | 0.52 | 0.35 | 0.49 | 0.39 |
β:α | 0.55 | 0.52 | 0.34 | 0.48 | 0.38 |
Sample | C (%) | H (%) | N (%) | H:C | N:C |
---|---|---|---|---|---|
SAS 1A S | 47.0 ± 0.2 | 4.98 ± 0.21 | 1.41 ± 0.10 | 1.26 | 0.0257 |
SAS 1A B | 48.4 ± 0.5 | 4.92 ± 0.059 | 1.30 ± 0.02 | 1.21 | 0.0230 |
SAS 2A S | 44.3 ± 0.3 | 4.15 ± 0.22 | 1.19 ± 0.01 | 1.11 | 0.0230 |
SAS 2A B | 46.4 ± 0.5 | 4.20 ± 0.19 | 1.40 ± 0.01 | 1.08 | 0.0258 |
SAS 1B M | 48.3 ± 0.6 | 3.92 ± 0.09 | 1.35 ± 0.01 | 0.966 | 0.0241 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Folhas, D.; Duarte, A.C.; Pilote, M.; Vincent, W.F.; Freitas, P.; Vieira, G.; Silva, A.M.S.; Duarte, R.M.B.O.; Canário, J. Structural Characterization of Dissolved Organic Matter in Permafrost Peatland Lakes. Water 2020, 12, 3059. https://doi.org/10.3390/w12113059
Folhas D, Duarte AC, Pilote M, Vincent WF, Freitas P, Vieira G, Silva AMS, Duarte RMBO, Canário J. Structural Characterization of Dissolved Organic Matter in Permafrost Peatland Lakes. Water. 2020; 12(11):3059. https://doi.org/10.3390/w12113059
Chicago/Turabian StyleFolhas, Diogo, Armando C. Duarte, Martin Pilote, Warwick F. Vincent, Pedro Freitas, Gonçalo Vieira, Artur M. S. Silva, Regina M. B. O. Duarte, and João Canário. 2020. "Structural Characterization of Dissolved Organic Matter in Permafrost Peatland Lakes" Water 12, no. 11: 3059. https://doi.org/10.3390/w12113059
APA StyleFolhas, D., Duarte, A. C., Pilote, M., Vincent, W. F., Freitas, P., Vieira, G., Silva, A. M. S., Duarte, R. M. B. O., & Canário, J. (2020). Structural Characterization of Dissolved Organic Matter in Permafrost Peatland Lakes. Water, 12(11), 3059. https://doi.org/10.3390/w12113059