Comparison between Periodic Tracer Tests and Time-Series Analysis to Assess Mid- and Long-Term Recharge Model Changes Due to Multiple Strong Seismic Events in Carbonate Aquifers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.3. Tracer Test Features and Analysis
2.4. Transient Time-Series Analysis
3. Results and Discussion
3.1. Data Description and Basic Statistics
3.2. Tracer Tests Analysis
3.3. Seismically Induced Mid- and Long-Term Changes to Inflow-Outflow Relationships
3.4. Conceptual Model
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Manga, M.; Wang, C.-Y. Earthquake Hydrology. In Treatise on Geophysics; Elsevier BV: Oxford, UK, 2015; Volume 4, pp. 305–328. [Google Scholar]
- Charmoille, A.; Fabbri, O.; Mudry, J.; Guglielmi, Y.; Bertrand, C. Post-seismic permeability change in a shallow fractured aquifer following a ML5.1 earthquake (Fourbanne karst aquifer, Jura outermost thrust unit, eastern France). Geophys. Res. Lett. 2005, 32, 32. [Google Scholar] [CrossRef]
- Esposito, E.; Pece, R.; Porfido, S.; Tranfaglia, G. Ground effects and hydrological changes in the Southern Apennines (Italy) in response to the 23 July 1930 earthquake (MS=6.7). Nat. Hazards Earth Syst. Sci. 2009, 9, 539–550. [Google Scholar] [CrossRef] [Green Version]
- De Luca, G.; Di Carlo, G.; Tallini, M. A record of changes in the Gran Sasso groundwater before, during and after the 2016 Amatrice earthquake, central Italy. Sci. Rep. 2018, 8, 15982. [Google Scholar] [CrossRef] [PubMed]
- De Luca, G.; Di Carlo, G.; Tallini, M. Signals from groundwater in Gran Sasso underground laboratory during Amatrice earthquake of August 24th, 2016. Ann. Geophys. 2016, 59. [Google Scholar] [CrossRef]
- Lai, W.-C.; Koizumi, N.; Matsumoto, N.; Kitagawa, Y.; Lin, C.-W.; Shieh, C.-L.; Lee, Y.-P. Effects of seismic ground motion and geological setting on the coseismic groundwater level changes caused by the 1999 Chi-Chi earthquake, Taiwan. Earth Planets Space 2004, 56, 873–880. [Google Scholar] [CrossRef] [Green Version]
- Manga, M.; Rowland, J.C. Response of Alum Rock springs to the October 30, 2007 Alum Rock earthquake and implications for the origin of increased discharge after earthquakes. Geofluids 2009, 9, 237–250. [Google Scholar] [CrossRef]
- Montgomery, D.R. Streamflow and Water Well Responses to Earthquakes. Science 2003, 300, 2047–2049. [Google Scholar] [CrossRef] [Green Version]
- Adinolfi Falcone, R.; Carucci, V.; Falgiani, A.; Manetta, M.; Parisse, B.; Petitta, M.; Rusi, S.; Spizzico, M.; Tallini, M. Changes on groundwater flow and hydrochemistry of the Gran Sasso carbonate aquifer after 2009 L’Aquila earthquake. Ital. J. Geosci. 2012, 131, 459–474. [Google Scholar] [CrossRef]
- Koizumi, N.; Minote, S.; Tanaka, T.; Mori, A.; Ajiki, T.; Sato, T.; Takahashi, H.A.; Matsumoto, N. Hydrological changes after the 2016 Kumamoto earthquake, Japan. Earth Planets Space 2019, 71, 1–10. [Google Scholar] [CrossRef]
- Amoruso, A.; Crescentini, L.; Petitta, M.; Rusi, S.; Tallini, M. Impact of the 6 April 2009 L’Aquila earthquake on groundwater flow in the Gran Sasso carbonate aquifer, Central Italy. Hydrol. Process. 2010, 25, 1754–1764. [Google Scholar] [CrossRef]
- Valigi, D.; Fronzi, D.; Cambi, C.; Beddini, G.; Cardellini, C.; Checcucci, R.; Mastrorillo, L.; Mirabella, F.; Tazioli, A. Earthquake-Induced Spring Discharge Modifications: The Pescara di Arquata Spring Reaction to the August–October 2016 Central Italy Earthquakes. Water 2020, 12, 767. [Google Scholar] [CrossRef] [Green Version]
- Dar, F.A.; Perrin, J.; Ahmed, S.; Narayana, A.C. Review: Carbonate aquifers and future perspectives of karst hydrogeology in India. Hydrogeol. J. 2014, 22, 1493–1506. [Google Scholar] [CrossRef]
- Bakalowicz, M. Karst groundwater: A challenge for new resources. Hydrogeol. J. 2005, 13, 148–160. [Google Scholar] [CrossRef]
- Manga, M.; ABeresnev, I.; Brodsky, E.E.; ElKhoury, J.E.; Elsworth, D.; Ingebritsen, S.E.; Mays, D.C.; Wang, C.-Y. Changes in permeability caused by transient stresses: Field observations, experiments, and mechanisms. Rev. Geophys. 2012, 50, 50. [Google Scholar] [CrossRef]
- Fiorillo, F.; Doglioni, A. The relation between karst spring discharge and rainfall by cross-correlation analysis (Campania, southern Italy). Hydrogeol. J. 2010, 18, 1881–1895. [Google Scholar] [CrossRef]
- Lambrakis, N.; Andreou, A.S.; Polydoropoulos, P.; Georgopoulos, E.; Bountis, T. Nonlinear analysis and forecasting of a brackish Karstic spring. Water Resour. Res. 2000, 36, 875–884. [Google Scholar] [CrossRef]
- Larocque, M.; Mangin, A.; Razack, M.; Banton, O. Contribution of correlation and spectral analyses to the regional study of a large karst aquifer (Charente, France). J. Hydrol. 1998, 205, 217–231. [Google Scholar] [CrossRef]
- Mathevet, T.; Lepiller, M.L.; Mangin, A. Application of time-series analyses to the hydrological functioning of an Alpine karstic system: The case of Bange-L’Eau-Morte. Hydrol. Earth Syst. Sci. 2004, 8, 1051–1064. [Google Scholar] [CrossRef]
- Aquilanti, L.; Clementi, F.; Landolfo, S.; Nanni, T.; Palpacelli, S.; Tazioli, A. A DNA tracer used in column tests for hydrogeology applications. Environ. Earth Sci. 2013, 70, 3143–3154. [Google Scholar] [CrossRef]
- Tazioli, A.; Aquilanti, L.; Clementi, F.; Marcellini, M.; Nanni, T.; Palpacelli, S.; Vivalda, P.M. Hydraulic contacts identification in the aquifers of limestone ridges: Tracer tests in the Montelago pilot area (Central Apennines). Acque Sotter. Ital. J. Groundw. 2016, 5. [Google Scholar] [CrossRef] [Green Version]
- Mudarra, M.; Hartmann, A.; Andreo, B. Combining Experimental Methods and Modeling to Quantify the Complex Recharge Behavior of Karst Aquifers. Water Resour. Res. 2019, 55, 1384–1404. [Google Scholar] [CrossRef]
- Chiaraluce, L.; Di Stefano, R.; Tinti, E.; Scognamiglio, L.; Michele, M.; Casarotti, E.; Cattaneo, M.; De Gori, P.; Chiarabba, C.; Monachesi, G.; et al. The 2016 Central Italy Seismic Sequence: A First Look at the Mainshocks, Aftershocks, and Source Models. Seismol. Res. Lett. 2017, 88, 757–771. [Google Scholar] [CrossRef]
- Di Matteo, L.; Dragoni, W.; Azzaro, S.; Pauselli, C.; Porreca, M.; Bellina, G.; Cardaci, W.; Lucio, D.M.; Dragoni, W.; Salvatore, A.; et al. Effects of earthquakes on the discharge of groundwater systems: The case of the 2016 seismic sequence in the Central Apennines, Italy. J. Hydrol. 2020, 583, 124509. [Google Scholar] [CrossRef]
- Fronzi, D.; Banzato, F.; Caliro, S.; Cambi, C.; Cardellini, C.; Checcucci, R.; Mastrorillo, L.; Mirabella, F.; Petitta, M.; Valigi, D.; et al. Preliminary results on the response of some springs of the Sibillini Mountains area to the 2016-2017 seismic sequence. Acque Sotter. Ital. J. Groundw. 2020. [Google Scholar] [CrossRef] [Green Version]
- Petitta, M.; Mastrorillo, L.; Preziosi, E.; Banzato, F.; Barberio, M.D.; Billi, A.; Cambi, C.; De Luca, G.; Di Carlo, G.; Di Curzio, D.; et al. Water-table and discharge changes associated with the 2016–2017 seismic sequence in central Italy: Hydrogeological data and a conceptual model for fractured carbonate aquifers. Hydrogeol. J. 2018, 26, 1009–1026. [Google Scholar] [CrossRef] [Green Version]
- Valigi, D.; Mastrorillo, L.; Cardellini, C.; Checcucci, R.; Di Matteo, L.; Frondini, F.; Mirabella, F.; Viaroli, S.; Vispi, I. Springs discharge variations induced by strong earthquakes: The Mw 6.5 Norcia event (Italy, October 30th 2016). Rendiconti Online Soc. Geol. Ital. 2019, 47, 141–146. [Google Scholar] [CrossRef]
- Mastrorillo, L.; Saroli, M.; Viaroli, S.; Banzato, F.; Valigi, D.; Petitta, M. Sustained post-seismic effects on groundwater flow in fractured carbonate aquifers in Central Italy. Hydrol. Process. 2019, 34, 1167–1181. [Google Scholar] [CrossRef] [Green Version]
- Nanni, T.; Vivalda, P.M.; Palpacelli, S.; Marcellini, M.; Tazioli, A. Groundwater circulation and earthquake-related changes in hydrogeological karst environments: A case study of the Sibillini Mountains (central Italy) involving artificial tracers. Hydrogeol. J. 2020, 1–20. [Google Scholar] [CrossRef]
- Banzato, F.; Mastrorillo, L.; Nanni, T.; Palpacelli, S.; Petitta, M.; Vivalda, P.M. L’acquifero carbonatico fratturato delle Sorgenti del Fiume Aso (Parco Nazionale dei Monti Sibillini): Valutazioni sulla risorsa rinnovabile e sull’area di alimentazione. In Proceedings of the “La ricerca carsologica in Italia” Laboratorio Carsologico Sotterraneo di Bossea, Frabosa Soprana, Italy, 22–23 June 2013. [Google Scholar]
- Nanni, T. Caratteri idrogeologici delle Marche. In L’ambiente Fisico delle Marche; S.E.C.L.A. s.r.l.: Florence, Italy, 1991. [Google Scholar]
- Mastrorillo, L.; Baldoni, T.; Banzato, F.; Boscherini, A.; Cascone, D.; Checcucci, R.; Boni, C. Quantitative hydrogeological analysis of the carbonate domain of the Umbria Region (Central Italy). Ital. J. Eng. Geol. Environ. 2009, 1, 137–155. [Google Scholar]
- Aquilanti, L.; Clementi, F.; Nanni, T.; Palpacelli, S.; Tazioli, A.; Vivalda, P.M. DNA and fluorescein tracer tests to study the recharge, groundwater flowpath and hydraulic contact of aquifers in the Umbria-Marche limestone ridge (central Apennines, Italy). Environ. Earth Sci. 2016, 75, 1–17. [Google Scholar] [CrossRef]
- Calamita, F. Thrusts and fold-related structures in the Umbria-Marche Apennines (Central Italy). Ann. Tecto. 1990, 4, 83–117. [Google Scholar]
- Pierantoni, P.; Deiana, G.; Galdenzi, S. Stratigraphic and structural features of the Sibillini Mountains (Umbria-Marche Apennines, Italy). Ital. J. Geosci. 2013, 132, 497–520. [Google Scholar] [CrossRef]
- Lavecchia, G. II sovrascorrimento dei Monti Sibillini: Analisi cinematica e strutturale. Boll. Soc. Geol. It. 1985, 104, 161–194. [Google Scholar]
- Calamita, F.; Deiana, G. Evoluzione Strutturale Neogenico-Quaternaria Dell’appennino Umbro-Marchigiano. Available online: http://193.204.8.201:8080/jspui/bitstream/1336/204/1/Vol.%20Geologia%20Marche%20Capitolo%208.pdf (accessed on 2 November 2020).
- Dragoni, W.; Speranza, G.; Valigi, D. Impatto delle variazioni climatiche sui sistemi idrogeologici: II caso della sorgente Pescara di Arquata (Appennino umbro-marchigiano, Italia). Geol. Tec. Ambient. 2003, 3, 27–35. [Google Scholar]
- Boni, C. Hydrogeological study for identification, characterisation and management of groundwater resources in the Sibillini Mountains National Park (Central Italy). Ital. J. Eng. Geol. Environ. 2010, 21–39. [Google Scholar] [CrossRef]
- Lippi Boncambi, C. Soil observations on the Sibillini Mountains, in particular on the peaty soils of the Castelluccio di Norcia plain. Boll. Soc. Geol. It. 1950, 69, 26–37. [Google Scholar]
- US EPA. The Qtracer2 Program for Tracer-Breakthrough Curve Analysis for Tracer Tests in Karstic Aquifers and Other Hydrologic Systems; EPA/600/R-02/001; US Environmental Protection Agency, Office of Research and Development, National Centre for Environmental Assessment: Washington, DC, USA, 2002. Available online: https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=54930 (accessed on 2 November 2020).
- Delbart, C.; Valdes, D.; Barbecot, F.; Tognelli, A.; Richon, P.; Couchoux, L. Temporal variability of karst aquifer response time established by the sliding-windows cross-correlation method. J. Hydrol. 2014, 511, 580–588. [Google Scholar] [CrossRef]
- Chiaudani, A.; Di Curzio, D.; Palmucci, W.; Pasculli, A.; Polemio, M.; Rusi, S. Statistical and Fractal Approaches on Long Time-Series to Surface-Water/Groundwater Relationship Assessment: A Central Italy Alluvial Plain Case Study. Water 2017, 9, 850. [Google Scholar] [CrossRef] [Green Version]
- Viaroli, S.; Di Curzio, D.; Lepore, D.; Mazza, R. Multiparameter daily time-series analysis to groundwater recharge assessment in a caldera aquifer: Roccamonfina Volcano, Italy. Sci. Total Environ. 2019, 676, 501–513. [Google Scholar] [CrossRef]
- Nanni, T.; Rusi, S. Idrogeologia del massiccio carbonatico della Majella (Abruzzo). Boll. Soc. Geol. It. 2003, 122, 173–202. [Google Scholar]
- Fiorillo, F.; Petitta, M.; Preziosi, E.; Rusi, S.; Esposito, L.; Tallini, M. Long-term trend and fluctuations of karst spring discharge in a Mediterranean area (central-southern Italy). Environ. Earth Sci. 2014, 74, 153–172. [Google Scholar] [CrossRef]
- Rusi, S.; Di Curzio, D.; Palmucci, W.; Petaccia, R. Detection of the natural origin hydrocarbon contamination in carbonate aquifers (central Apennine, Italy). Environ. Sci. Pollut. Res. 2018, 25, 15577–15596. [Google Scholar] [CrossRef] [PubMed]
- Chiaudani, A.; Di Curzio, D.; Rusi, S. The snow and rainfall impact on the Verde spring behavior: A statistical approach on hydrodynamic and hydrochemical daily time-series. Sci. Total Environ. 2019, 689, 481–493. [Google Scholar] [CrossRef]
- Gregor, M. BFI+ 3.0 User’s Manual (21pp) 2010. Available online: https://hydrooffice.org/Files/UM%20BFI.pdf (accessed on 30 October 2020).
- Sloto, R.A.; Crouse, M.Y. HYSEP: A Computer Program for Streamflow Hydrograph Separation and Analysis. Water Resour. Investig. Rep. 1996, 96, 4040. [Google Scholar] [CrossRef]
- Seidenbecher, T. Amygdalar and Hippocampal Theta Rhythm Synchronization During Fear Memory Retrieval. Science 2003, 301, 846–850. [Google Scholar] [CrossRef] [Green Version]
- Mudarra, M.; Andreo, B. Relative importance of the saturated and the unsaturated zones in the hydrogeological functioning of karst aquifers: The case of Alta Cadena (Southern Spain). J. Hydrol. 2011, 397, 263–280. [Google Scholar] [CrossRef]
- Evans, J.P.; Forster, C.B.; Goddard, J.V. Permeability of fault-related rocks, and implications for hydraulic structure of fault zones. J. Struct. Geol. 1997, 19, 1393–1404. [Google Scholar] [CrossRef]
- Porreca, M.; Minelli, G.; Ercoli, M.; Brobia, A.; Mancinelli, P.; Cruciani, F.; Giorgetti, C.; Carboni, F.; Mirabella, F.; Cavinato, G.; et al. Seismic Reflection Profiles and Subsurface Geology of the Area Interested by the 2016-2017 Earthquake Sequence (Central Italy). Tectonics 2018, 37, 1116–1137. [Google Scholar] [CrossRef]
- Villani, F.; Pucci, S.; Civico, R.; De Martini, P.M.; Cinti, F.; Pantosti, D. Surface Faulting of the 30 October 2016 Mw 6.5 Central Italy Earthquake: Detailed Analysis of a Complex Coseismic Rupture. Tectonics 2018, 37, 3378–3410. [Google Scholar] [CrossRef]
- Puliti, I.; Pizzi, A.; Benedetti, L.; Di Domenica, A.; Fleury, J. Comparing Slip Distribution of an Active Fault System at Various Timescales: Insights for the Evolution of the Mt. Vettore-Mt. Bove Fault System in Central Apennines. Tectonics 2020, 39. [Google Scholar] [CrossRef]
Point | Abbreviation | Parameter | Instrument |
---|---|---|---|
Pescara spring | PES | Discharge | Water level gauge |
Capodacqua spring | CD | Discharge | Water level gauge |
Foce spring | FOC | Discharge | Water level gauge |
Monte Prata station | MTPs MTPr | Snow cover thickness | Snow gauge |
Montemonaco station | MTMr | Rainfall | Rain gauge |
Capodacqua station | CDr | Rainfall | Rain gauge |
Rainfall | Rain gauge |
Test ID | Injection Date | Tracer | Mass (kg) | Mèrgani Discharge (L/s) | Period | Reference |
---|---|---|---|---|---|---|
TEST1 | 12 February 2016 | Fluorescein | 2 | 1550 | Pre-seismic | [29] |
TEST2 | 9 June 2016 | Tinopal CBS-X | 29 | 10 | Co-seismic | [29] |
TEST3 | 20 March 2017 | Tinopal CBS-X | 85 | 136 | Post-seismic | [29] |
TEST4 | 20 March 2018 | Fluorescein | 16 | 130 | This study | |
TEST5 | 08 February 2019 | Fluorescein | 27 | 70 | This study |
Pre-Seismic Period | ||||||||
Unit | N of Data | Mean | Min | 25th | Median | 75th | Max | |
MTPs | cm | 1027 | 11.8 | 0.0 | 0.0 | 0.0 | 7.5 | 195.0 |
MTPr | mm | 1027 | 3.0 | 0.0 | 0.0 | 0.0 | 2.0 | 135.0 |
CDr | mm | 1027 | 3.5 | 0.0 | 0.0 | 0.0 | 2.8 | 179.2 |
MTMr | mm | 1027 | 3.6 | 0.0 | 0.0 | 0.0 | 3.2 | 158.8 |
PES | L/s | 1027 | 309.9 | 119.9 | 192.8 | 313.6 | 412.6 | 559.5 |
CD | L/s | 1027 | 430.3 | 205.6 | 326.8 | 444.6 | 529.8 | 671.4 |
FOC | L/s | 1027 | 1033.7 | 866.9 | 1020.0 | 1043.7 | 1059.5 | 1476.4 |
Co-Seismic Period | ||||||||
Unit | N of Data | Mean | Min | 25th | Median | 75th | Max | |
MTPs | cm | 148 | 2.6 | 0.0 | 0.0 | 0.0 | 0.0 | 64.0 |
MTPr | mm | 148 | 3.5 | 0.0 | 0.0 | 0.2 | 2.4 | 108.2 |
CDr | mm | 148 | 3.0 | 0.0 | 0.0 | 0.2 | 2.6 | 64.2 |
MTMr | mm | 148 | 3.0 | 0.0 | 0.0 | 0.0 | 1.9 | 75.0 |
PES | L/s | 148 | 346.6 | 242.4 | 320.2 | 357.0 | 378.0 | 412.3 |
CD | L/s | 148 | 568.3 | 410.1 | 559.2 | 581.0 | 602.7 | 700.5 |
FOC | L/s | 148 | 1065.9 | 871.3 | 1035.8 | 1064.3 | 1090.5 | 1343.4 |
Post-Seismic Period | ||||||||
Unit | N of Data | Mean | Min | 25th | Median | 75th | Max | |
MTPs | cm | 1016 | 17.8 | 0.0 | 0.0 | 0.0 | 14.7 | 158.7 |
MTPr | mm | 1016 | 2.6 | 0.0 | 0.0 | 0.0 | 1.6 | 60.0 |
CDr | mm | 1016 | 2.9 | 0.0 | 0.0 | 0.0 | 2.0 | 83.4 |
MTMr | mm | 1016 | 3.4 | 0.0 | 0.0 | 0.0 | 2.2 | 121.6 |
PES | L/s | 1016 | 154.6 | 24.6 | 59.5 | 143.5 | 218.6 | 404.0 |
CD | L/s | 1016 | 377.1 | 199.5 | 276.0 | 376.6 | 468.4 | 593.9 |
FOC | L/s | 1016 | 422.0 | 153.1 | 221.2 | 279.7 | 408.4 | 1740.0 |
Spring | Distance from IP (m) | TEST1 | TEST2 | TEST3 | TEST4 | TEST5 |
---|---|---|---|---|---|---|
PES | 7300 | - | 165–561 (44–13) | n.d. | n.d. | - |
CD | 6300 | 108–572 (58–11) | 114–525 (55–12) | 37–39 (170–161) | - | 20–29 (315–217) |
FOC | 12,600 | 50–59 (252–213) | 35–37 (360–340) | 35-116 (360–108) | 210–273 (60–46) | 39–132 (323–95) |
Window | N Months | Starting Date | Ending Date | Period |
---|---|---|---|---|
1 | 24 | 1 November 2013 | 31 October 2015 | Pre-seismic |
2 | 24 | 1 May 2014 | 30 April 2016 | |
3 | 24 | 1 November 2014 | 31 October 2016 | Co-seismic |
4 | 24 | 1 May 2015 | 30 April 2017 | |
5 | 24 | 1 November 2015 | 31 October 2017 | |
6 | 24 | 1 May 2016 | 30 April 2018 | |
7 | 24 | 1 November 2016 | 31 October 2018 | |
8 | 24 | 1 May 2017 | 30 April 2019 | Post-seismic |
9 | 24 | 1 November 2017 | 31 October 2019 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fronzi, D.; Di Curzio, D.; Rusi, S.; Valigi, D.; Tazioli, A. Comparison between Periodic Tracer Tests and Time-Series Analysis to Assess Mid- and Long-Term Recharge Model Changes Due to Multiple Strong Seismic Events in Carbonate Aquifers. Water 2020, 12, 3073. https://doi.org/10.3390/w12113073
Fronzi D, Di Curzio D, Rusi S, Valigi D, Tazioli A. Comparison between Periodic Tracer Tests and Time-Series Analysis to Assess Mid- and Long-Term Recharge Model Changes Due to Multiple Strong Seismic Events in Carbonate Aquifers. Water. 2020; 12(11):3073. https://doi.org/10.3390/w12113073
Chicago/Turabian StyleFronzi, Davide, Diego Di Curzio, Sergio Rusi, Daniela Valigi, and Alberto Tazioli. 2020. "Comparison between Periodic Tracer Tests and Time-Series Analysis to Assess Mid- and Long-Term Recharge Model Changes Due to Multiple Strong Seismic Events in Carbonate Aquifers" Water 12, no. 11: 3073. https://doi.org/10.3390/w12113073
APA StyleFronzi, D., Di Curzio, D., Rusi, S., Valigi, D., & Tazioli, A. (2020). Comparison between Periodic Tracer Tests and Time-Series Analysis to Assess Mid- and Long-Term Recharge Model Changes Due to Multiple Strong Seismic Events in Carbonate Aquifers. Water, 12(11), 3073. https://doi.org/10.3390/w12113073