Performance of a Full-Scale Biogas Plant Operation in Greece and Its Impact on the Circular Economy
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Digester’s Design
2.2. Feedstocks’ Characterization
2.3. Digester’s Operation
2.4. Assessment of the Digestate’s Stability
2.5. Analytical Methods
3. Results and Discussion
3.1. Full-Scale Digester’s Performance
3.2. Desulfurization
3.3. Recycling Digestate
3.4. Economic Considerations
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Phase Time (Day) | I | II | III | IV | V | VI | VII | VIII | IX | X |
---|---|---|---|---|---|---|---|---|---|---|
0–33 | 34–51 | 52–88 | 89–108 | 109–133 | 134–196 | 197–249 | 250–289 | 290–324 | 325–365 | |
Total COD Feeding (t COD day−1) | 14.2 ± 0.6 | 16.1 ± 0.7 | 15.3 ± 0.6 | 14.6 ± 0.2 | 14.6 ± 1.4 | 14.5 ± 0.5 | 14.5 ± 0.4 | 14.3 ± 0.6 | 12.7 ± 0.3 | 13.6 ± 0.3 |
Total VS Feeding (t VS day−1) | 11.6 ± 0.5 | 12.6 ± 0.5 | 12.0 ± 0.3 | 11.8 ± 0.2 | 11.6 ± 1.1 | 11.8 ± 0.4 | 11.6 ± 0.4 | 11.3 ± 0.4 | 10.1 ± 0.2 | 10.9 ± 0.2 |
Total OLR (kg COD m−3 day−1) | 3.4 ± 0.1 (3.3–3.4) | 3.8 ± 0.2 (3.8–3.9) | 3.6 ± 0.1 (3.6–3.7) | 3.5 ± 0.0 (3.5–3.5) | 3.5 ± 0.3 (3.4–3.6) | 3.5 ± 0.1 (3.4–3.5) | 3.4 ± 0.1 (3.4–3.5) | 3.4 ± 0.2 (3.4–3.5) | 3.0 ± 0.1 (3.0–3.0) | 3.3 ± 0.1 (3.2–3.3) |
COD/TKN | 29 ± 1 | 30 ± 1 | 30 ± 1 | 29 ± 0 | 29 ± 2 | 28 ± 1 | 28 ± 1 | 28 ± 3 | 34 ± 1 | 28 ± 1 |
HRT (day) | 31 ± 2 | 28 ± 1 | 29 ± 1 | 28 ± 1 | 30 ± 6 | 29 ± 1 | 29 ± 1 | 30 ± 0 | 30 ± 0 | 30 ± 1 |
References
- European Commission Roadmap 2050. Policy; Publications Office of the European Union: Luxembourg, 2012; pp. 1–9. ISBN 978-92-79-21798-2. [Google Scholar] [CrossRef]
- Cavinato, C.; Fatone, F.; Bolzonella, D.; Pavan, P. Thermophilic anaerobic co-digestion of cattle manure with agro-wastes and energy crops: Comparison of pilot and full scale experiences. Bioresour. Technol. 2010, 101, 545–550. [Google Scholar] [CrossRef]
- Weiland, P. Biogas production: Current state and perspectives. Appl. Microbiol. Biotechnol. 2010, 85, 849–860. [Google Scholar] [CrossRef]
- Pobeheim, H.; Munk, B.; Johansson, J.; Guebitz, G.M. Influence of trace elements on methane formation from a synthetic model substrate for maize silage. Bioresour. Technol. 2010, 101, 836–839. [Google Scholar] [CrossRef]
- Comino, E.; Riggio, V.A.; Rosso, M. Biogas production by anaerobic co-digestion of cattle slurry and cheese whey. Bioresour. Technol. 2012, 114, 46–53. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Xiao, G.; Peng, L.; Su, H.; Tan, T. The anaerobic co-digestion of food waste and cattle manure. Bioresour. Technol. 2013, 129, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Fitamo, T.; Boldrin, A.; Boe, K.; Angelidaki, I.; Scheutz, C. Co-digestion of food and garden waste with mixed sludge from wastewater treatment in continuously stirred tank reactors. Bioresour. Technol. 2016, 206, 245–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jha, P.; Schmidt, S. Reappraisal of chemical interference in anaerobic digestion processes. Renew. Sustain. Energy Rev. 2017, 75, 954–971. [Google Scholar] [CrossRef]
- Garuti, M.; Langone, M.; Fabbri, C.; Piccinini, S. Methodological approach for trace elements supplementation in anaerobic digestion: Experience from full-scale agricultural biogas plants. J. Environ. Manag. 2018, 223, 348–357. [Google Scholar] [CrossRef]
- Alatriste-Mondragón, F.; Samar, P.; Cox, H.H.J.; Ahring, B.K.; Iranpour, R. Anaerobic Codigestion of Municipal, Farm, and Industrial Organic Wastes: A Survey of Recent Literature. Water Environ. Res. 2006, 78, 607–636. [Google Scholar] [CrossRef]
- Shah, F.A.; Mahmood, Q.; Rashid, N.; Pervez, A.; Raja, I.A.; Shah, M.M. Co-digestion, pretreatment and digester design for enhanced methanogenesis. Renew. Sustain. Energy Rev. 2015, 42, 627–642. [Google Scholar] [CrossRef]
- Zupančič, G.D.; Uranjek-Ževart, N.; Roš, M. Full-scale anaerobic co-digestion of organic waste and municipal sludge. Biomass Bioenergy 2008, 32, 162–167. [Google Scholar] [CrossRef]
- Nägele, H.J.; Steinbrenner, J.; Hermanns, G.; Holstein, V.; Haag, N.L.; Oechsner, H. Innovative additives for chemical desulphurisation in biogas processes: A comparative study on iron compound products. Biochem. Eng. J. 2017, 121, 181–187. [Google Scholar] [CrossRef]
- Garuti, M.; Langone, M.; Fabbri, C.; Piccinini, S. Monitoring of full-scale hydrodynamic cavitation pretreatment in agricultural biogas plant. Bioresour. Technol. 2018, 247, 599–609. [Google Scholar] [CrossRef]
- Rasheed, R.; Yasar, A.; Ahmad, S.R.; Tabinda, A.B.; Khan, S.A.; Su, Y. Bioenergy recovery analysis from various waste substrates by employing a novel industrial scale AD plant. Energy Sources Part A Recovery Util. Environ. Eff. 2018, 40, 1935–1946. [Google Scholar] [CrossRef]
- Martí-Herrero, J.; Soria-Castellón, G.; Diaz-de-Basurto, A.; Alvarez, R.; Chemisana, D. Biogas from a full scale digester operated in psychrophilic conditions and fed only with fruit and vegetable waste. Renew. Energy 2019, 133, 676–684. [Google Scholar] [CrossRef]
- Björnsson, L.; Murto, M.; Mattiasson, B. Evaluation of parameters for monitoring an anaerobic co-digestion process. Appl. Microbiol. Biotechnol. 2000, 54, 844–849. [Google Scholar] [CrossRef]
- Carrere, H.; Antonopoulou, G.; Affes, R.; Passos, F.; Battimelli, A.; Lyberatos, G.; Ferrer, I. Review of feedstock pretreatment strategies for improved anaerobic digestion: From lab-scale research to full-scale application. Bioresour. Technol. 2016, 199, 386–397. [Google Scholar] [CrossRef]
- Zhurka, M.; Spyridonidis, A.; Vasiliadou, I.A.; Stamatelatou, K. Biogas production from sunflower head and stalk residues: Effect of alkaline pretreatment. Molecules 2020, 25, 164. [Google Scholar] [CrossRef] [Green Version]
- Alexandridis, C. Map of biogas plants (in Greek). Bioenergy News 2018, 2, 14–17. [Google Scholar]
- Hellenic Electricity Distribution Network Operator S.A. Available online: https://www.deddie.gr/en/ (accessed on 19 February 2020).
- Obregón Valencia, D.; García Sánchez, H.; Díaz Tang, I. The corrosion behavior of ferrous materials immersed in acidic-media using D-optimal design. Multidiscip. Model. Mater. Struct. 2019, 16, 647–656. [Google Scholar] [CrossRef]
- Komilis, D.P.; Tziouvaras, I.S. A statistical analysis to assess the maturity and stability of six composts. Waste Manag. 2009, 29, 1504–1513. [Google Scholar] [CrossRef] [PubMed]
- APHA. Standard Methods for the Examination of Water & Wastewater, 20th ed.; American Public Health Association/American Water Works Association/Water Environment Federation: Washington, DC, USA, 2005. [Google Scholar]
- Spyridonidis, A.; Skamagkis, T.; Lambropoulos, L.; Stamatelatou, K. Modeling of anaerobic digestion of slaughterhouse wastes after thermal treatment using ADM1. J. Environ. Manag. 2018, 224, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Bouallagui, H.; Touhami, Y.; Ben Cheikh, R.; Hamdi, M. Bioreactor performance in anaerobic digestion of fruit and vegetable wastes. Process Biochem. 2005, 40, 989–995. [Google Scholar] [CrossRef]
- Weiland, P. Biomass digestion in agriculture: A successful pathway for the energy production and waste treatment in Germany. Eng. Life Sci. 2006, 6, 302–309. [Google Scholar] [CrossRef]
- Khoufi, S.; Louhichi, A.; Sayadi, S. Optimization of anaerobic co-digestion of olive mill wastewater and liquid poultry manure in batch condition and semi-continuous jet-loop reactor. Bioresour. Technol. 2015, 182, 67–74. [Google Scholar] [CrossRef]
- Drosg, B. Process Monitoring in Biogas Plants; IEA Bioenergy: Paris, France, 2013; pp. 1–38. ISBN 978-1-910154-02-1. [Google Scholar]
- Carrera-Chapela, F.; Donoso-Bravo, A.; Jeison, D.; Díaz, I.; Gonzalez, J.A.; Ruiz-Filippi, G. Development, identification and validation of a mathematical model of anaerobic digestion of sewage sludge focusing on H2S formation and transfer. Biochem. Eng. J. 2016, 112, 13–19. [Google Scholar] [CrossRef]
- Okoro, O.V.; Sun, Z. Desulphurisation of Biogas: A Systematic Qualitative and Economic-Based Quantitative Review of Alternative Strategies. ChemEngineering 2019, 3, 76. [Google Scholar] [CrossRef] [Green Version]
- Naegele, H.J.; Lindner, J.; Merkle, W.; Lemmer, A.; Jungbluth, T.; Bogenrieder, C. Effects of temperature, pH and O2 on the removal of hydrogen sulfide from biogas by external biological desulfurization in a full scale fixed-bed trickling bioreactor (FBTB). Int. J. Agric. Biol. Eng. 2013, 6, 69–81. [Google Scholar] [CrossRef]
- Thompson, J.C.; He, B.B. Characterization of crude glycerol from biodiesel production from multiple feedstocks. Appl. Eng. Agric. 2006, 22, 261–265. [Google Scholar] [CrossRef]
- Antonious, G.F.; Perkins, E.; Cantor, A.H. Chicken manure increased concentration of organic sulfur compounds in field-grown onions. J. Environ. Sci. Health Part B Pestic. Food Contam. Agric. Wastes 2009, 44, 481–487. [Google Scholar] [CrossRef]
- Ouazzane, H.; Laajine, F.; El Yamani, M.; El Hilaly, J.; Rharrabti, Y.; Amarouch, M.Y.; Mazouzi, D. Olive mill solid waste characterization and recycling opportunities: A review. J. Mater. Environ. Sci. 2017, 8, 2632–2650. [Google Scholar]
- Allegue, L.B.; Hinge, J. Biogas Upgrading Evaluation of Methods for H2S Removal; Danish Technological Institute: Taastrup, Denmark, 2014; Volume 31. [Google Scholar]
- Hvitved-Jacobsen, T.; Vollertsen, J.; Nielsen, A.H. Sewer Processes: Microbial and Chemical Process Engineering of Sewer Networks, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2013; ISBN 978-1-4398-8177-4. [Google Scholar]
- Valli, L.; Rossi, L.; Fabbri, C.; Sibilla, F.; Gattoni, P.; Dale, B.E.; Kim, S.; Ong, R.G.; Bozzetto, S. Greenhouse gas emissions of electricity and biomethane produced using the Biogasdoneright™ system: Four case studies from Italy. Biofuels Bioprod. Bioref. 2017, 11, 847–860. [Google Scholar] [CrossRef]
- Ahn, H.K.; Mulbry, W.; White, J.W.; Kondrad, S.L. Pile mixing increases greenhouse gas emissions during composting of dairy manure. Bioresour. Technol. 2011, 102, 2904–2909. [Google Scholar] [CrossRef]
- Liebetrau, J.; Reinelt, T.; Clemens, J.; Hafermann, C.; Friehe, J.; Weiland, P. Analysis of greenhouse gas emissions from 10 biogas plants within the agricultural sector. Water Sci. Technol. 2013, 67, 1370–1379. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Biological Treatment of Biowaste. Available online: http://europa.eu.int/comm/environment/waste/facts_en.htm (accessed on 1 September 2020).
- Nkoa, R. Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: A review. Agron. Sustain. Dev. 2014, 34, 473–492. [Google Scholar] [CrossRef] [Green Version]
- Molaey, R.; Bayrakdar, A.; Sürmeli, R.Ö.; Çalli, B. Anaerobic digestion of chicken manure: Mitigating process inhibition at high ammonia concentrations by selenium supplementation. Biomass Bioenergy 2018, 108, 439–446. [Google Scholar] [CrossRef]
- Stamatelatou, K.; Antonopoulou, G.; Ntaikou, I.; Lyberatos, G. The Effect of Physical, Chemical, and Biological Pretreatments of Biomass on its Anaerobic Digestibility and Biogas Production. Biogas Prod. Pretreat. Methods Anaerob. Dig. 2012, 3, 55–90. [Google Scholar] [CrossRef]
- Carrère, H.; Dumas, C.; Battimelli, A.; Batstone, D.J.; Delgenès, J.P.; Steyer, J.P.; Ferrer, I. Pretreatment methods to improve sludge anaerobic degradability: A review. J. Hazard. Mater. 2010, 183, 1–15. [Google Scholar] [CrossRef]
- Carballa, M.; Duran, C.; Hospido, A. Should we pretreat solid waste prior to anaerobic digestion? An assessment of its environmental cost. Environ. Sci. Technol. 2011, 45, 10306–10314. [Google Scholar] [CrossRef]
- Nguyen, L.N.; Johir, M.A.H.; Commault, A.; Bustamante, H.; Aurisch, R.; Lowrie, R.; Nghiem, L.D. Impacts of mixing on foaming, methane production, stratification and microbial community in full-scale anaerobic co-digestion process. Bioresour. Technol. 2019, 281, 226–233. [Google Scholar] [CrossRef]
- Ganidi, N.; Tyrrel, S.; Cartmell, E. Anaerobic digestion foaming causes—A review. Bioresour. Technol. 2009, 100, 5546–5554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mattioli, A.; Gatti, G.B.; Mattuzzi, G.P.; Cecchi, F.; Bolzonella, D. Co-digestion of the organic fraction of municipal solid waste and sludge improves the energy balance of wastewater treatment plants: Rovereto case study. Renew. Energy 2017, 113, 980–988. [Google Scholar] [CrossRef]
Parameter (Unit) | TS (g kgww−1) | VS (g kgww−1) | COD (gCOD kgww−1) | Total Nitrogen TKN (g kgww−1) | COD/ΤKΝ | pH |
---|---|---|---|---|---|---|
Cow manure, CM | 67 ± 20 (48–86) | 55 ± 16 (39–71) | 66 ± 3 (63–69) | 2.6 ± 0.2 (2.5–2.8) | 25.4 ± 2.0 (23.4–27.3) | 6.99 ± 0.24 (6.75–7.23) |
Chicken manure, ChM | 627 ± 28 (603–652) | 522 ± 11 (512–532) | 746 ± 67 (687–805) | 35.9 ± 2.2 (33.9–37.8) | 20.8 ± 1.7 (19.3–22.3) | N.D. |
Corn silage, CS | 293 ± 13 (280–306) | 278 ± 13 (265–291) | 399 ± 14 (380–418) | 3.8 ± 0.2 (3.6–4.1) | 104.8 ± 6.0 (96.5–113) | N.D. |
Wheat/Ray Silage, WS | 299 ± 8 (287–310) | 220 ±2 (217–222) | 377 ± 23 (351–403) | 4.5 ± 0.5 (4.0–5.1) | 84.0 ± 8.6 (72.1–95.9) | N.D. |
Cheese whey, CW | 121 ± 1 (119–123) | 100 ± 2 (97–103) | 159 ± 8 (151–167) | 2.7 ± 0.1 (2.6–2.8) | 58.6 ± 0.1 (58.5–58.6) | 4.06 ± 0.08 (3.98–4.14) |
Olive mill wastewater, OMW | 70.7 ± 0.3 (70–71) | 53.3 ± 0.6 (53–54) | 137 ± 6 (128–146) | 1.14 ± 0.04 (1.1–1.2) | 119.8 ± 5.8 (111.7–127.8) | 4.28 ± 0.28 (3.89–4.67) |
Glycerin, Gl | 812 ± 52 (752–871) | 769 ± 55 (707–831) | 1242 ± 35 (1208–1276) | N.D. | N.D. | 9.28 ± 1.8 (6.79–11.77) |
Molasses, Ml | 768 ± 23 (736–800) | 645 ± 41 (589–701) | 695 ± 23 (669–721) | 14.6 ± 1.5 (12.5–16.7) | 48 ± 4.0 (42.1–53.4) | 5.50 |
Feedstock | Average Daily Feeding (t day−1) | CH4 Yield (m3 CH4 tWW−1) | CH4 Production (m3 CH4 day−1) |
---|---|---|---|
Chicken manure | 3.2 | 136 | 434 |
Olive mill wastewater | 4.4 | 24 | 106 |
Cheese whey | 2.5 | 41 | 103 |
Corn silage | 3 | 97 | 290 |
Wheat/ray silage | 3.5 | 57 | 200 |
Cow manure | 120 | 12 | 1440 |
Glycerin | 1.2 | 460 | 552 |
Molasses | 0.16 | 216 | 35 |
Total | - | - | 3195 |
Substrate | Distance Required for Feeding (km t−1 day−1) |
---|---|
Cow manure | 0.778 |
Corn silage | 0.900 |
Wheat/ray silage | 0.900 |
Olive mill wastewater | 2.000 |
Chicken manure | 5.000 |
Cheese whey | 8.800 |
Glycerin | 17.500 |
Molasses | 19.130 |
Substrate | Aquisition Cost (€ tWW−1) | CH4 Yield (m3 CH4 tVS−1) | VS (kg tWW−1) | CH4 Yield (m3 CH4 tWW−1) | Production Cost (€ m3CH4−1) | Production Cost (€ kWh−1) | Profit (€ kWh−1) |
---|---|---|---|---|---|---|---|
Chicken manure | 10 | 260 | 522 | 136 | 0.07 | 0.02 | 0.207 |
Olive mill wastewater | 4.5 | 450 | 53 | 24 | 0.19 | 0.05 | 0.178 |
Cheese whey | 10 | 413 | 100 | 41 | 0.24 | 0.06 | 0.165 |
Cow manure | 3.5 | 218 | 55 | 12 | 0.29 | 0.07 | 0.153 |
Glycerin | 177 | 468 | 769 | 360 | 0.49 | 0.12 | 0.104 |
Corn silage | 50 | 348 | 278 | 97 | 0.52 | 0.13 | 0.097 |
Triticale silage | 40 | 260 | 220 | 57 | 0.70 | 0.17 | 0.052 |
Molasses | 170 | 335 | 645 | 216 | 0.79 | 0.19 | 0.031 |
Feedstock a | Digestor b | T (°C) | HRT (day) | OLR (kg VS m−3 day−1) | BY (m3 kg VS−1) | CH4 (%) | Energy (MWhel year−1) | Power (W) | Ref. |
---|---|---|---|---|---|---|---|---|---|
DR, MS | 2 CSTR in series, R | 20 | 1 | 0.39 | [12] | ||||
CM, MaS, FPW, B | Two-stage digester | 47 | 33 | 5.39 | 0.45 | 52.3 | 8789 | 1000 | [2] |
DR, MS | 2 CSTR in parallel | 30–40 | 1.38 ± 0.78 | 0.5 | 57 ± 3 | 2847 | [49] | ||
Pretreated PS, MaS, M, CoM | 3 CSTR in series | 42–43 | 30–35 | 2.92 | 0.38 ± 0.04 | 58.7 ± 0.6 | 6433 ± 330 | 725 | [14] |
MaS, WS, CM | 2 CSTR in series, R | 40–42 | 107 ± 18 | 1.83 ± 0.16 | 0.25 ± 0.01 | 51.9 ± 1.7 | 380 | [9] | |
PS, MS, ChM MG | 2 CSTR in parallel and a Post Fermenter | 40–42 | 40 ± 2 | 2.33 ± 0.19 | 0.35 ± 0.03 | 53.7 ± 1.5 | 999 | [9] | |
CM, PW | 3 digesters | 35–37 | 0.112 | 62 | 170 | 150 | [15] | ||
CM, ChM, CS, WS, CWW, OMW Gl, M | One-stage digester | 40 | 29.4 ± 2.1 | 2.7 | 0.46 ± 0.05 | 55 ± 1.3 | 4631 | 500 | This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spyridonidis, A.; Vasiliadou, I.A.; Akratos, C.S.; Stamatelatou, Κ. Performance of a Full-Scale Biogas Plant Operation in Greece and Its Impact on the Circular Economy. Water 2020, 12, 3074. https://doi.org/10.3390/w12113074
Spyridonidis A, Vasiliadou IA, Akratos CS, Stamatelatou Κ. Performance of a Full-Scale Biogas Plant Operation in Greece and Its Impact on the Circular Economy. Water. 2020; 12(11):3074. https://doi.org/10.3390/w12113074
Chicago/Turabian StyleSpyridonidis, Apostolos, Ioanna A. Vasiliadou, Christos S. Akratos, and Κaterina Stamatelatou. 2020. "Performance of a Full-Scale Biogas Plant Operation in Greece and Its Impact on the Circular Economy" Water 12, no. 11: 3074. https://doi.org/10.3390/w12113074
APA StyleSpyridonidis, A., Vasiliadou, I. A., Akratos, C. S., & Stamatelatou, Κ. (2020). Performance of a Full-Scale Biogas Plant Operation in Greece and Its Impact on the Circular Economy. Water, 12(11), 3074. https://doi.org/10.3390/w12113074