Are Sterols Useful for the Identification of Sources of Faecal Contamination in Shellfish? A Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Sampling Area
2.2. Sample Collection
2.3. Sterol Extraction and Analysis
2.4. Sterol Extraction from Oyster and Faecal Samples Using Hexane
2.5. Sterol Analysis
2.6. Statistical Analyses
3. Results and Discussion
3.1. Sterol Concentrations of Oysters and Overlying Water Sampled throughout the Year
3.2. Sterol Profile of Oysters and Overlying Water Sampled throughout the Year
3.3. Sterol Ratio Analysis of Oysters and Overlying Water Sampled throughout the Year
3.4. Sterol Profile Analysis of Potential Faecal Inputs
3.5. Correlation Analysis of Overlying Water Site 4 with Water Sampled from Sites 1–3
3.6. Sterol Ratio Analysis of the Potential Inputs of Faecal Contamination in Salcott Creek
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chou, C.-C.; Liu, Y.-P. Determination of fecal sterols in the sediments of different wastewater outputs by GC-MS. Int. J. Environ. Anal. Chem. 2004, 84, 379–388. [Google Scholar] [CrossRef]
- Florini, S. Factors Influencing the Concentration of Fecal Coliforms in Oysters in the River Blackwater Estuary, UK. Water 2020, 12, 1086. [Google Scholar] [CrossRef]
- American Public Health Association. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 1995. [Google Scholar]
- Sinton, L.; Finlay, R.; Hannah, D. Distinguishing human from animal faecal contamination in water: A review. N. Z. J. Mar. Freshw. Res. 1998, 32, 323–348. [Google Scholar] [CrossRef] [Green Version]
- Sharip, Z.; Mohamad, M.F. Microbial Contamination in Urban Tropical Lentic Waterbodies and Ponds along an Urbanization Gradient. Pertanika J. Trop. Agric. Sci. 2019, 42, 165–184. [Google Scholar]
- Obiri-Danso, K.; Jones, K. Distribution and seasonality of microbial indicators and thermophilic campylobacters in two freshwater bathing sites on the River Lune in northwest England. J. Appl. Microbiol. 1999, 87, 822–832. [Google Scholar] [CrossRef] [Green Version]
- Obiri-Danso, K.; Jones, K. Intertidal sediments as reservoirs for hippurate negative campylobacters, salmonellae and faecal indicators in three EU recognised bathing waters in north west England. Water Res. 2000, 34, 519–527. [Google Scholar] [CrossRef]
- Zimmer-Faust, A.G.; Brown, C.A.; Manderson, A. Statistical models of fecal coliform levels in Pacific Northwest estuaries for improved shellfish harvest area closure decision making. Mar. Pollut. Bull. 2018, 137, 360–369. [Google Scholar] [CrossRef]
- Campos, C.J.; Kershaw, S.R.; Lee, R.J. Environmental influences on faecal indicator organisms in coastal waters and their accumulation in bivalve shellfish. Estuaries Coasts 2013, 36, 834–853. [Google Scholar] [CrossRef]
- Leeming, R. Using faecal sterols from humans and animals to distinguish faecal pollution in receiving waters. Water Res. 1996, 30, 2893–2900. [Google Scholar] [CrossRef]
- Harrault, L. Faecal biomarkers can distinguish specific mammalian species in modern and past environments. PLoS ONE 2019, 14, e0211119. [Google Scholar] [CrossRef] [Green Version]
- Chiang, Y.-R.; Ismail, W. Anaerobic Biodegradation of Steroids. In Anaerobic Utilization of Hydrocarbons, Oils, and Lipids; Springer International Publishing: Cham, Switzerland, 2017; pp. 1–32. [Google Scholar]
- Mudge, S.M. Sterols in the Ria Formosa Lagoon, Portugal. Water Res. 1999, 33, 1038–1048. [Google Scholar] [CrossRef]
- Venkatesan, M.; Ruth, E.; Kaplan, I. Coprostanols in Antarctic marine sediments: A biomarker for marine mammals and not human pollution. Mar. Pollut. Bull. 1986, 17, 554–557. [Google Scholar] [CrossRef]
- Kolm, H.E. An integrated appraisement of multiple faecal indicator bacteria and sterols in the detection of sewage contamination in subtropical tidal creeks. Int. J. Hyg. Environ. Health 2018, 221, 1032–1039. [Google Scholar] [CrossRef] [PubMed]
- Venkatesan, M.I.; Kaplan, I.R. Sedimentary coprostanol as an index of sewage addition in Santa Monica Basin, Southern California. Environ. Sci. Technol. 1990, 24, 208–214. [Google Scholar] [CrossRef]
- Frena, M. Evaluation of anthropogenic contamination using sterol markers in a tropical estuarine system of northeast Brazil. Mar. Pollut. Bull. 2016, 109, 619–623. [Google Scholar] [CrossRef]
- Patton, D.; Reeves, A. Sterol concentrations and temporal variations on the north shore mudflats of the firth of Tay, Scotland. Mar. Pollut. Bull. 1999, 38, 613–618. [Google Scholar] [CrossRef]
- Bull, I.D. The origin of faeces by means of biomarker detection. Environ. Int. 2002, 27, 647–654. [Google Scholar] [CrossRef]
- Mudge, S.L.; Hooper, J. Biomarkers associated with sewage in the Arade Estuary, Portugal. Environ. Technol. 1998, 19, 1055–1059. [Google Scholar] [CrossRef]
- Grimalt, J.O. Assessment of Fecal Sterols and Ketones as Indicators of Urban Sewage Inputs to Coastal Waters. Environ. Sci. Technol. 1990, 24, 357–363. [Google Scholar] [CrossRef]
- Leeming, R. Detecting and Distinguishing Sources of Sewage Pollution in Australian Inland and Coastal Waters and Sediments; ACS Publications: Washington, DC, USA, 1997. [Google Scholar]
- Bethell, P. The study of molecular markers of human activity: The use of coprostanol in the soil as an indicator of human faecal material. J. Archaeol. Sci. 1994, 21, 619–632. [Google Scholar] [CrossRef]
- Evershed, R.P.; Bethell, P.H. Application of Multimolecular Biomarker Techniques to the Identification of Fecal Material in Archaeological Soils and Sediments; ACS Publications: Washington, DC, USA, 1996. [Google Scholar]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, P.; Patterson, G.W.; Wikfors, G.H. Use of an improved internal-standard method in the quantitative sterol analyses of phytoplankton and oysters. Lipids 1997, 32, 1011–1014. [Google Scholar] [CrossRef] [PubMed]
- Ennos, R.; Johnson, M. Statistical and Data Handling Skills in Biology; Pearson Education Limited: London, UK, 2018. [Google Scholar]
- Goodfellow, R. A faecal sterol survey in the Clyde Estuary. Mar. Pollut. Bull. 1977, 8, 272–276. [Google Scholar] [CrossRef]
- Gilpin, B.; Gregor, J.; Savill, M. Identification of the source of faecal pollution in contaminated rivers. Water Sci. Technol. 2002, 46, 9–15. [Google Scholar] [CrossRef]
- Cathum, S.; Sabik, H. Determination of steroids and coprostanol in surface water, effluent and mussel using gas chromatography-mass spectrometry. Chromatographia 2001, 53, S394–S399. [Google Scholar] [CrossRef]
- Puglisi, E. Cholesterol, β-sitosterol, ergosterol, and coprostanol in agricultural soils. J. Environ. Qual. 2003, 32, 466–471. [Google Scholar] [CrossRef]
- Mudge, S.; Lintern, D.G. Comparison of sterol biomarkers for sewage with other measures in Victoria Harbour, BC, Canada. Estuar. Coast. Shelf Sci. 1999, 48, 27–38. [Google Scholar] [CrossRef]
- Derrien, M.; Yang, L.; Hur, J. Lipid biomarkers and spectroscopic indices for identifying organic matter sources in aquatic environments: A review. Water Res. 2017, 112, 58–71. [Google Scholar] [CrossRef]
- Gerphagnon, M. Comparison of sterol and fatty acid profiles of chytrids and their hosts reveals trophic upgrading of nutritionally inadequate phytoplankton by fungal parasites. Environ. Microbiol. 2019, 21, 949–958. [Google Scholar] [CrossRef] [PubMed]
- Suprihatin, I. Determination of faecal pollutants in Torrens and Patawalonga catchment waters in South Australia using faecal sterols. Water Sci. Technol. 2003, 47, 283–289. [Google Scholar] [CrossRef]
- Hargan, K.E. Sterols and stanols as novel tracers of waterbird population dynamics in freshwater ponds. Proc. R. Soc. B Biol. Sci. 2018, 285, 20180631. [Google Scholar] [CrossRef] [Green Version]
- Gagné, F. Biomarker study of a municipal effluent dispersion plume in two species of freshwater mussels. Environ. Toxicol. Int. J. 2002, 17, 149–159. [Google Scholar] [CrossRef] [PubMed]
- He, D. Using fecal sterols to assess dynamics of sewage input in sediments along a human-impacted river-estuary system in eastern China. Sci. Total Environ. 2018, 636, 787–797. [Google Scholar] [CrossRef] [PubMed]
- Hughes, K.A.; Thompson, A. Distribution of sewage pollution around a maritime Antarctic research station indicated by faecal coliforms, Clostridium perfringens and faecal sterol markers. Environ. Pollut. 2004, 127, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Marvin, C. Application of faecal sterol ratios in sediments and effluents as source tracers. Water Qual. Res. J. 2001, 36, 781–792. [Google Scholar] [CrossRef]
- Gilpin, B. The use of chemical and molecular microbial indicators for faecal source identification. Water Sci. Technol. 2003, 47, 39–43. [Google Scholar] [CrossRef]
- Nishimura, M. 5β-isomers of stanols and stanones as potential markers of sedimentary organic quality and depositional paleoenvironments. Geochim. Cosmochim. Acta 1982, 46, 423–432. [Google Scholar] [CrossRef]
- Mudge, S.M.; Seguel, C.G. Organic contamination of San Vicente Bay, Chile. Mar. Pollut. Bull. 1999, 38, 1011–1021. [Google Scholar] [CrossRef]
- Foster, G.D. Sedimentary Profiles of Pollution Marker Chemicals along a Large Tributary of Chesapeake Bay (Mid-Atlantic USA). J. Soils Sediments 2019, 19, 1511–1526. [Google Scholar] [CrossRef]
Site No | Site Name | Source | Comments |
---|---|---|---|
1 | Quinces Corner input (QC) | Water | Water from (a) sheep grazing farmland and (b) fields where large flocks of Brent geese rest, especially during the winter period, drains into the creek. |
2 | Salcott STW (outlet pipe) | Water | Secondary treated wastewater from Salcott Sewage treatment work (STW) drains into the creek via an outlet pipe. |
3 | Virley (Tiptree STW) | Water | Water originates from Tiptree STW. Sewage effluent from Tiptree STW is piped for approximately 3.5 km and then discharged at Virley Brook. |
4 | Oyster Beds (OB) | Water, oysters | Water samples from above oyster beds. |
Sterols (μg g−1 L Water) | January | February | March | April | May | June | July | September | November | December |
---|---|---|---|---|---|---|---|---|---|---|
Coprostanol | 0.03 | 1.20 | 0.11 | 0.09 | 0.02 | 0.02 | 0.01 | 0.01 | 0.04 | 0.07 |
Epicoprostanol | <0.01 | 0.04 | 0.01 | 0.01 | 0.01 | <0.01 | 0 | 0 | 0.01 | <0.01 |
22-dehydrocholesterol | 0.02 | 0.02 | 0.12 | 0.02 | 0.13 | 0.01 | 0 | 0 | 0.03 | 0.02 |
Cholesterol | 0.38 | 1.10 | 1.70 | 0.34 | 0.74 | 0.15 | 0.19 | 0.79 | 0.45 | 0.50 |
Cholestanol | 0.01 | 0.54 | 0.04 | 0.07 | 0.03 | <0.01 | <0.01 | 0.01 | 0.02 | 0.03 |
Brassicasterol | 0.03 | 0.04 | 0.18 | 0.04 | 0.22 | 0.03 | 0.08 | 0.07 | 0.07 | 0.06 |
Campesterol | 0.03 | 0.05 | 0.13 | 0.02 | 0.04 | <0.01 | 0.01 | 0.01 | 0.04 | 0.04 |
Ergosterol | <0.01 | 0.01 | <0.01 | <0.01 | 0.01 | <0.00 | <0.01 | <0.01 | <0.01 | <0.01 |
Stigmasterol | 0.03 | 0.05 | 0.05 | <0.01 | 0.01 | <0.01 | <0.01 | 0.01 | 0.05 | 0.04 |
β-Sitosterol | 0.27 | 0.42 | 0.36 | 0.03 | 0.05 | <0.01 | 0.01 | 0.02 | 0.45 | 0.35 |
24-Ethylcoprostanol | 0.02 | 0.24 | 0.06 | <0.01 | 0.01 | <0.01 | 0.04 | 0.05 | 0.02 | 0.03 |
Total | 0.79 | 2.51 | 2.65 | 0.53 | 1.25 | 0.19 | 0.33 | 0.96 | 1.14 | 1.07 |
Sterols (μg g−1 Dry wt Oyster Flesh) | Sampling Months | |||||||
---|---|---|---|---|---|---|---|---|
February | March | May | June | July | September | November | December | |
Coprostanol | 8.67 | 4.80 | 1.99 | 1.77 | 0.13 | <0.01 | 0.09 | 0.06 |
Epicoprostanol | 0.17 | 0.15 | 0.79 | 0.05 | 0 | 0 | <0.01 | <0.01 |
22-dehydrocholesterol | 461.22 | 92.37 | 124.86 | 50.29 | 0 | 0 | 0 | 0 |
Cholesterol | 4661.04 | 1134.92 | 904.41 | 671.39 | 27.29 | 0.11 | 52.79 | 44.82 |
Cholestanol | 62.34 | 19.66 | 19.41 | 11.35 | 0.47 | <0.01 | 1.29 | 1.03 |
Brassicasterol | 1044.90 | 202.53 | 266.83 | 155.44 | 6.78 | 0.02 | 23.33 | 21.09 |
Campesterol | 439.73 | 89.71 | 102.83 | 61.41 | 2.82 | 0.01 | 7.88 | 6.80 |
Ergosterol | 215.01 | 42.24 | 42.18 | 14.53 | 1.26 | 0.01 | 0.81 | 1.52 |
Stigmasterol | 97.00 | 24.20 | 35.10 | 14.20 | 0.70 | <0.01 | 1.90 | 2.20 |
Β-Sitosterol | 693.68 | 107.96 | 158.73 | 85.76 | 3.15 | 0.01 | 9.77 | 10.56 |
24-Ethylcoprostanol | 1.94 | 1.76 | 8.61 | 0.54 | 10.48 | 0.03 | 0 | 0 |
Total | 7686 | 1720 | 1666 | 1067 | 53.07 | 0.189 | 97.85 | 88.09 |
Sterol Ratios | January | February | March | April | May | June | July | September | November | December |
---|---|---|---|---|---|---|---|---|---|---|
Coprostanol/ epicoprostanol | 8.07 | 33.25 | 7.99 | 10.86 | 3.47 | 5.13 | 0 | 1.32 | 7.03 | 18.61 |
Coprostanol/ cholesterol | 0.08 | 1.09 | 0.07 | 0.25 | 0.03 | 0.12 | 0.04 | 0.17 | 0.09 | 0.15 |
5β/(5β + 5α) | 0.77 | 0.69 | 0.76 | 0.55 | 0.37 | 0.90 | 0.61 | 0.81 | 0.73 | 0.73 |
β-sitosterol/ cholesterol | 0.71 | 0.38 | 0.21 | 0.08 | 0.07 | 0.03 | 0.05 | 1.23 | 1.01 | 0.70 |
Coprostanol/ 24-ethylcop | 1.70 | 4.95 | 1.80 | 21.72 | 2.08 | 4.02 | 0.20 | 0.82 | 2.11 | 2.48 |
Sterol | Sheep N = 3 | Brent Geese N = 3 | QC Water N = 3 | STW Water N = 5 | Virley Brook Water N = 4 |
---|---|---|---|---|---|
Coprostanol | 58.53 ± 25.78 | 1.13 ± 1.12 | 5.87 ± 4.53 | 12.21 ± 5.77 | 0.46 ± 0.16 |
Epi-coprostanol | 0 | 0 | 0.06 ± 0.03 | 0.28 ± 0.09 | 0.04 ± 0.01 |
22-dehydrocholesterol | 0 | 0 | 0 | 0.08 ± 0.05 | 0 |
Cholesterol | 40.30 ± 10.81 | 27.06 ± 6.67 | 5.40 ± 1.88 | 7.73 ± 3.66 | 0.91 ± 0.23 |
Cholestanol | 10.89 ± 2.55 | 0.17 ± 0.05 | 0.55 ± 0.27 | 1.96 ± 1.19 | 0.02 ± 0.01 |
Brassicasterol | 1.13 ± 0.52 | 0.18 ± 0.10 | 0.37 ± 0.17 | 0.09 ± 0.03 | 0.02 ± 0.01 |
Campesterol | 31.97 ± 22.38 | 6.50 ± 2.85 | 0.84 ± 0.23 | 0.66 ± 0.33 | 0.05 ± 0.02 |
Ergosterol | 9.87 ± 2.25 | 2.72 ± 1.39 | 0.12 ± 0.03 | 0.04 ± 0.02 | 0.01 ± 0.00 |
Stigmasterol | 29.76 ± 24.29 | 1.04 ± 0.24 | 0.48 ± 0.25 | 0.21 ± 0.12 | 0.07 ± 0.03 |
β-Sitosterol | 277.33 ± 248.24 | 34.31 ± 16.22 | 3.03 ± 1.20 | 1.55 ± 0.84 | 0.35 ± 0.14 |
24-Ethylcoprostanol | 211.83 ± 112.30 | 0.19 ± 0.17 | 2.39 ± 1.22 | 5.08 ± 3.21 | 0.17 ± 0.04 |
Total sterols (μg L−1 water/μg g−1 faeces) | 671.61± 371.73 | 73.30 ± 25.87 | 19.10 ± 8.10 | 29.90 ± 13.83 | 2.10 ± 0.62 |
Oyster Flesh | Sheep | Brent Geese | QC (Site 1) | Salcott STW (Site 2) | Virley Brook (Site 3) | Water above the Oyster Bed (Site 4) | |
---|---|---|---|---|---|---|---|
Oyster flesh | - | −0.079 | 0. 60 | 0.50 | 0.30 | 0.70 * | 0.91 ** |
Water above oyster bed | 0.91 ** | 0.24 | 0.82 ** | 0.71 * | 0.438 | 0.820 ** | 1 |
Sterol Ratios | QC (Site 1) | Salcott STW (Site 2) | Virley Brook (Site 3) | Waters above the Oyster Beds (Site 4) |
---|---|---|---|---|
Coprostanol/ Epicoprostanol | 16.29 ± 11.97 | 49.52 ± 20.26 | 11.92 ± 6.43 | 8.90 ± 2.50 |
Coprostanol/ Cholesterol | 0.76 ± 0.48 | 1.43 ± 0.18 | 0.46 ± 0.10 | 0.17 ± 0.07 |
5β/(5β + 5a) | 0.82 ± 0.07 | 0.76 ± 0.12 | 0.96 ± 0.02 | 0.65 ± 0.04 |
β-sitosterol/ cholesterol | 0.63 ± 0.24 | 0.33 ± 0.14 | 0.35 ± 0.10 | 0.44 ± 0.11 |
Coprostanol/ 24-ethylcoprostanol | 2.13 ± 0.76 | 6.59 ± 4.70 | 2.33 ± 0.53 | 3.57 ± 1.55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Florini, S.; Shahsavari, E.; Aburto-Medina, A.; Khudur, L.S.; Mudge, S.M.; Smith, D.J.; Ball, A.S. Are Sterols Useful for the Identification of Sources of Faecal Contamination in Shellfish? A Case Study. Water 2020, 12, 3076. https://doi.org/10.3390/w12113076
Florini S, Shahsavari E, Aburto-Medina A, Khudur LS, Mudge SM, Smith DJ, Ball AS. Are Sterols Useful for the Identification of Sources of Faecal Contamination in Shellfish? A Case Study. Water. 2020; 12(11):3076. https://doi.org/10.3390/w12113076
Chicago/Turabian StyleFlorini, Styliano, Esmaeil Shahsavari, Arturo Aburto-Medina, Leadin S. Khudur, Stephen M. Mudge, David J. Smith, and Andrew S. Ball. 2020. "Are Sterols Useful for the Identification of Sources of Faecal Contamination in Shellfish? A Case Study" Water 12, no. 11: 3076. https://doi.org/10.3390/w12113076
APA StyleFlorini, S., Shahsavari, E., Aburto-Medina, A., Khudur, L. S., Mudge, S. M., Smith, D. J., & Ball, A. S. (2020). Are Sterols Useful for the Identification of Sources of Faecal Contamination in Shellfish? A Case Study. Water, 12(11), 3076. https://doi.org/10.3390/w12113076