Distribution and ECo-Toxicological Risk Assessment of Legacy Persistent Organic Pollutants in Surface Water of Talar, Babolrood and Haraz Rivers
Abstract
:1. Introduction
2. Material and Methods
2.1. Locations of Sampling Stations and Selection of POPs
2.2. Collection of Samples
2.3. Extraction and Analysis
2.4. Quality Assurance and Quality Control
2.5. Statistical Analysis
2.6. Ecotoxicological Risk
3. Results and Discussion
3.1. Levels of Selected Legacy POPs and Comparison with Other Studies
3.2. Monthly Variations of Legacy POPs
3.3. Risk Presumption
3.4. Ecotoxicological Concerns
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Arslan, M.; Imran, A.; Khan, Q.M.; Afzal, M. Plant-bacteria partnerships for the remediation of persistent organic pollutants. Environ. Sci. Pollut. Res. 2017, 24, 4322–4336. [Google Scholar] [CrossRef] [PubMed]
- Dai, G.H.; Liu, X.H.; Liang, G.; Xu, M.Z.; Han, X.; Shi, L. Health risk assessment of organochlorine contaminants in fish from a major lake (Baiyangdian lake) in North China. Bull. Environ. Contam. Toxicol. 2011, 87, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Sharma, B.M.; Bharat, G.K.; Tayal, S.; Nizzetto, L.; Čupr, P.; Larssen, T. Environment and human exposure to persistent organic pollutants (POPs) in India: A systematic review of recent and historical data. Environ. Int. 2014, 66, 48–64. [Google Scholar] [CrossRef] [PubMed]
- Kodavanti, P.R.S.; Loganathan, B.G. Polychlorinated biphenyls, polybrominated biphenyls, and brominated flame retardants. In Biomarkers in Toxicology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 501–518. ISBN 9780128146552. [Google Scholar]
- Necibi, M.; Mzoughi, N. The distribution of organic and inorganic pollutants in marine environment. Nov. Sci. Publ. 2017. [Google Scholar]
- Strémy, M.; Šutová, Z.; Murínová, L.P.; Richterová, D.; Wimmerová, S.; Čonka, K.; Drobná, B.; Fábelová, L.; Jurečková, D.; Jusko, T.A.; et al. The spatial distribution of congener-specific human PCB concentrations in a PCB-polluted region. Sci. Total Environ. 2019, 651, 2292–2303. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, P.; Khuman, S.N.; Selvaraj, S.; Sampath, S.; Devi, N.L.; Bang, J.J.; Katsoyiannis, A. Polychlorinated biphenyls and organochlorine pesticides in river Brahmaputra from the outer Himalayan Range and river Hooghly emptying into the Bay of Bengal: Occurrence, sources and ecotoxicological risk assessment. Environ. Pollut. 2016, 219, 998–1006. [Google Scholar] [CrossRef]
- Eqani, S.A.-M.-A.-S.; Malik, R.N.; Cincinelli, A.; Zhang, G.; Mohammad, A.; Qadir, A.; Rashid, A.; Bokhari, H.; Jones, K.C.; Katsoyiannis, A. Uptake of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) by river water fish: The case of river Chenab. Sci. Total Environ. 2013, 450–451, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Jorjandi, M.A.; Asadikaram, G.; Abolhassani, M.; Fallah, H.; Abdollahdokht, D.; Salimi, F.; Faramarz, S.; Pournamdari, M. Pesticide exposure and related health problems among family members of farmworkers in southeast Iran. A case-control study. Environ. Pollut. 2020, 267, 115424. [Google Scholar] [CrossRef] [PubMed]
- Khuman, S.N.; Chakraborty, P. Air-water exchange of pesticidal persistent organic pollutants in the lower stretch of the transboundary river Ganga, India. Chemosphere 2019, 233, 966–974. [Google Scholar] [CrossRef]
- Zhang, G.; Chakraborty, P.; Li, J.; Sampathkumar, P.; Balasubramanian, T.; Kathiresan, K.; Takahashi, S.; Subramanian, A.; Tanabe, S.; Jones, K.C. Passive atmospheric sampling of organochlorine pesticides, polychlorinated biphenyls, and polybrominated diphenyl ethers in urban, rural, and wetland sites along the coastal length of India. Environ. Sci. Technol. 2008, 42, 8218–8223. [Google Scholar] [CrossRef]
- Chakraborty, P.; Zhang, G.; Li, J.; Xu, Y.; Liu, X.; Tanabe, S.; Jones, K.C. Selected organochlorine pesticides in the atmosphere of major Indian cities: Levels, regional versus local variations, and sources. Environ. Sci. Technol. 2010, 44, 8038–8043. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.; Yu, J.; Liao, Y.; Chen, J.; Wu, Z.; Mai, B. Geographical distribution and risk assessment of dichlorodiphenyltrichloroethane and its metabolites in Perna viridis mussels from the northern coast of the South China Sea. Mar. Pollut. Bull. 2020, 151, 110819. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.; Zhang, Y.; Quan, X. Health risk assessment of heavy metals and pesticides: A case study in the main drinking water source in Dalian, China. Chemosphere 2020, 242, 125113. [Google Scholar] [CrossRef]
- Ullah, R.; Asghar, R.; Baqar, M.; Mahmood, A.; Alamdar, A.; Qadir, A.; Sohail, M.; Schäfer, R.B.; Eqani, S.A.-M.-A.-S. Assessment of polychlorinated biphenyls (PCBs) in the Himalayan Riverine Network of Azad Jammu and Kashmir. Chemosphere 2020, 240, 124762. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Ye, M.; He, H.; Zhu, M.; Li, Y. The decomposition and ecological risk of DDTs and HCHs in the soil-water system of the Meijiang river. Environ. Res. 2020, 180, 108897. [Google Scholar] [CrossRef]
- Letcher, R.J.; Bustnes, J.O.; Dietz, R.; Jenssen, B.M.; Jørgensen, E.H.; Sonne, C.; Verreault, J.; Vijayan, M.M.; Gabrielsen, G.W. Exposure and effects assessment of persistent organohalogen contaminants in arctic wildlife and fish. Sci. Total Environ. 2010, 408, 2995–3043. [Google Scholar] [CrossRef]
- Baqar, M.; Sadef, Y.; Ahmad, S.R.; Mahmood, A.; Qadir, A.; Aslam, I.; Li, J.; Zhang, G. Occurrence, ecological risk assessment, and spatio-temporal variation of polychlorinated biphenyls (PCBs) in water and sediments along river Ravi and its northern tributaries, Pakistan. Environ. Sci. Pollut. Res. 2017, 24, 27913–27930. [Google Scholar] [CrossRef]
- Ali, N.; Malik, R.N.; Mehdi, T.; Eqani, S.A.-M.-A.-S.; Javeed, A.; Neels, H.; Covaci, A. Organohalogenated contaminants (OHCs) in the serum and hair of pet cats and dogs: Biosentinels of indoor pollution. Sci. Total Environ. 2013, 449, 29–36. [Google Scholar] [CrossRef]
- Eqani, S.A.-M.-A.-S.; Malik, R.N.; Katsoyiannis, A.; Zhang, G.; Chakraborty, P.; Mohammad, A.; Jones, K.C. Distribution and risk assessment of organochlorine contaminants in surface water from river Chenab, Pakistan. J. Environ. Monit. 2012, 14, 1645–1654. [Google Scholar] [CrossRef]
- Arifi, K.; Elblidi, S.; Serghini, A.; Tahri, L.; Yahyaoui, A.; Fekhaoui, M. Taxonomic diversity of benthic macroinvertebrates and bio-evaluation of water quality of Grou river (Morocco) through the use of the standardized global biological index (IBGN). J. Mater. Environ. Sci. 2018, 9, 1343–1355. [Google Scholar]
- Gutow, L.; Günther, C.-P.; Ebbe, B.; Schückel, S.; Schuchardt, B.; Dannheim, J.; Darr, A.; Pesch, R. Structure and distribution of a threatened muddy biotope in the south-eastern North Sea. J. Environ. Manage. 2020, 255, 109876. [Google Scholar] [CrossRef] [Green Version]
- Majerová, L.; Grygar, T.M.; Elznicová, J.; Strnad, L. The differentiation between point and diffuse industrial pollution of the floodplain of the Ploučnice river, Czech Republic. Water Air Soil Pollut. 2013, 224, 1688. [Google Scholar] [CrossRef]
- Tang, W.; Ao, L.; Zhang, H.; Shan, B. Accumulation and risk of heavy metals in relation to agricultural intensification in the river sediments of agricultural regions. Environ. Earth Sci. 2014, 71, 3945–3951. [Google Scholar] [CrossRef]
- Ullah, Z.; Khan, H.; Waseem, A.; Mahmood, Q.; Farooq, U. Water quality assessment of the river Kabul at Peshawar, Pakistan: Industrial and urban wastewater impacts. J. Water Chem. Technol. 2013, 35, 170–176. [Google Scholar] [CrossRef] [Green Version]
- UNDP. UNDP National Implementation Plan for the Stockholm Convention on Persistent Organic Pollutants; Department for Environment Food & Rural Affairs: London, UK, 2008.
- Darvishi, G.; Kootenaei, F.G.; Ramezani, M.; Lotfi, E.; Asgharnia, H. Comparative investigation of river water quality by OWQI, NSFWQI and Wilcox Indexes (case study: The Talar river—Iran). Arch. Environ. Prot. 2016, 42, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Mostafalou, S.; Karami-Mohajeri, S.; Abdollahi, M. Environmental and Population studies concerning exposure to pesticides in Iran: A comprehensive review. Iran. Red Crescent Med. J. 2013, 15, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Oguchi, T.; Jarvie, H.P.; Neal, C. River water quality in the Humber catchment: An introduction using GIS-based mapping and analysis. Sci. Total Environ. 2000, 251, 9–26. [Google Scholar] [CrossRef]
- Saha, P. Assessment of water quality of Damodar river by water quality index method. Indian Chem. Eng. 2010, 52, 145–154. [Google Scholar] [CrossRef]
- Karbassi, A.; Nouri, J.; Ayaz, G. Flocculation of trace metals during mixing of Talar river water with Caspian Seawater. Int. J. Environ. Res. 2007, 1, 66–73. [Google Scholar]
- Yousefi, S.; Moradi, H.R.; Keesstra, S.; Pourghasemi, H.R.; Navratil, O.; Hooke, J. Effects of urbanization on river morphology of the Talar river, Mazandarn Province, Iran. Geocarto Int. 2019, 34, 276–292. [Google Scholar] [CrossRef]
- Abbasian, H.; Azim, A.; Shamilla, H.; Hamid, G.M. Residues of diazinon in Ab-bandans supplied by Babolroud, Talar and Siaroud rivers, Iran. J. Ecol. Nat. Environ. 2014, 6, 153–158. [Google Scholar] [CrossRef] [Green Version]
- Karbassi, A.R.; Nouri, J.; Bidhendi, G.R.N.; Ayaz, G.O. Behavior of Cu, Zn, Pb, Ni and Mn during mixing of freshwater with the Caspian Sea water. Desalination 2008, 229, 118–124. [Google Scholar] [CrossRef]
- Rahmanikhah, Z.; Sari, A.E.; Bahramifar, N.; Bousjien, Z.S. Organophosphorous pesticide residues in surface and ground water in the Southern Coast Watershed of Caspian Sea, Iran. Middle East J. Sci. Res. 2011, 7, 253–259. [Google Scholar]
- Mohseni-Bandpei, A.; Yousefi, Z. Status of water quality parameters along Haraz river. Int. J. Environ. Res. 2013, 7, 1029–1038. [Google Scholar]
- Nasrabadi, T.; Bidhendi, G.N.; Karbassi, A.; Grathwohl, P.; Mehrdadi, N. Impact of major organophosphate pesticides used in agriculture to surface water and sediment quality (Southern Caspian Sea basin, Haraz river). Environ. Earth Sci. 2011, 63, 873–883. [Google Scholar] [CrossRef]
- Farzadkia, M.; Nasseri, S.; Kalantary, R.R.; Asgharnia, H.; Gohari, M.R.; Esrafili, A.; Shahamat, Y.D.; Ghanbari, N. Water quality zoning in babolrood river using national sanitation foundation water quality index and geographic information system. J. Mazandaran Univ. Med. Sci. 2016, 25, 357–362. [Google Scholar]
- Pejman, A.H.; Bidhendi, G.R.N.; Karbassi, A.R.; Mehrdadi, N.; Bidhendi, M.E. Evaluation of spatial and seasonal variations in surface water quality using multivariate statistical techniques. Int. J. Environ. Sci. Technol. 2009, 6, 467–476. [Google Scholar] [CrossRef] [Green Version]
- Safaripour, M.; Monavari, M.; Zare, M.; Abedi, Z.; Gharagozlou, A. Flood risk assessment using GIS (case study: Golestan Province, Iran). Polish J. Environ. Stud. 2012, 21, 1817–1824. [Google Scholar]
- Zhang, Z.L. Environmental Behavior and Primary Assessment of Organic Pesticides in the Estuarine Agricultural Watershed. Ph.D. Thesis, Xiamen University, Xiamen, China, 2001. [Google Scholar]
- Reddy, K.N.; Reddy, H. Pesticide residues in surface water of lakes around Hyderabad, India. Pestic. Res. J. 2010, 22, 111–115. [Google Scholar]
- Lari, S.Z.; Khan, N.A.; Gandhi, K.N.; Meshram, T.S.; Thacker, N.P. Comparison of pesticide residues in surface water and ground water of agriculture intensive areas. J. Environ. Heal. Sci. Eng. 2014, 12, 11. [Google Scholar] [CrossRef]
- Behfar, A.; Nazari, Z.; Rabiee, M.H.; Raeesi, G.; Oveisi, M.R.; Sadeghi, N.; Jannat, B. The organochlorine esticides residue levels in Karun river water. Encycl. Creat. Invent. Innov. Entrep. 2013, 8, 1447. [Google Scholar] [CrossRef]
- Kafilzadeh, F.; Shiva, A.; Malekpour, R.; Azad, H. Determination of organochlorine pesticide residues in water, sediments and fish from lake Parishan, Iran. World J. Fish. Mar. Sci. 2012, 4, 150–154. [Google Scholar] [CrossRef]
- Kafilzadeh, F. Assessment of organochlorine pesticide residues in water, sediments and fish from lake Tashk, Iran. Achiev. Life Sci. 2015, 9, 107–111. [Google Scholar] [CrossRef] [Green Version]
- Javedankherad, I.; Esmaili-Sari, A.; Bahramifar, N. Levels and distribution of organochlorine pesticides and polychlorinated biphenyls in water and sediment from the International Anzali Wetland, North of Iran. Bull. Environ. Contam. Toxicol. 2013, 90, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Shakeri, A.; Shakeri, R.; Mehrabi, B. Potentially toxic elements and persistent organic pollutants in water and fish at Shahid Rajaei Dam, north of Iran. Int. J. Environ. Sci. Technol. 2015, 12, 2201–2212. [Google Scholar] [CrossRef] [Green Version]
- Mondal, R.; Mukherjee, A.; Biswas, S.; Kole, R.K. GC-MS/MS determination and ecological risk assessment of pesticides in aquatic system: A case study in Hooghly river basin in West Bengal, India. Chemosphere 2018, 206, 217–230. [Google Scholar] [CrossRef]
- Dahshan, H.; Megahed, A.M.; Abd-Elall, A.M.M.; Abd-El-Kader, M.A.-G.; Nabawy, E.; Elbana, M.H. Monitoring of pesticides water pollution—The Egyptian river Nile. J. Environ. Heal. Sci. Eng. 2016, 14, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Dai, M.; Hong, H.; Zhou, J.L.; Yu, G. Dissolved insecticides and polychlorinated biphenyls in the Pearl River Estuary and South China Sea. J. Environ. Monit. 2002, 4, 922–928. [Google Scholar] [CrossRef]
- Cruzeiro, C.; Pardal, M.Â.; Rodrigues-Oliveira, N.; Castro, L.F.C.; Rocha, E.; Rocha, M.J. Multi-matrix quantification and risk assessment of pesticides in the longest river of the Iberian peninsula. Sci. Total Environ. 2016, 572, 263–272. [Google Scholar] [CrossRef]
- Eremina, N.; Paschke, A.; Mazlova, E.A.; Schüürmann, G. Distribution of polychlorinated biphenyls, phthalic acid esters, polycyclic aromatic hydrocarbons and organochlorine substances in the Moscow river, Russia. Environ. Pollut. 2016, 210, 409–418. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, S.; Cui, W.; Meng, X.; Tang, X. Polycyclic aromatic hydrocarbons and organochlorine pesticides in surface water from the Yongding river basin, China: Seasonal distribution, source apportionment, and potential risk assessment. Sci. Total Environ. 2018, 618, 419–429. [Google Scholar] [CrossRef] [PubMed]
- Baqar, M.; Sadef, Y.; Ahmad, S.R.; Mahmood, A.; Li, J.; Zhang, G. Organochlorine pesticides across the tributaries of river Ravi, Pakistan: Human health risk assessment through dermal exposure, ecological risks, source fingerprints and spatio-temporal distribution. Sci. Total Environ. 2018, 618, 291–305. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Han, S.; Ouyang, J.; Yang, G.; Liu, W.; Ma, L.; Luo, M.; Xu, D. Organochlorine pesticides and polychlorinated biphenyls in surface water around Beijing. Environ. Sci. Pollut. Res. 2016, 23, 24824–24833. [Google Scholar] [CrossRef] [PubMed]
- Unyimadu, J.P.; Osibanjo, O.; Babayemi, J.O. Selected persistent organic pollutants (POPs) in water of river Niger: Occurrence and distribution. Environ. Monit. Assess. 2018, 190. [Google Scholar] [CrossRef]
- Mahmood, A.; Malik, R.N.; Li, J.; Zhang, G. Levels, distribution pattern and ecological risk assessment of organochlorines pesticides (OCPs) in water and sediments from two tributaries of the Chenab river, Pakistan. Ecotoxicology 2014, 23, 1713–1721. [Google Scholar] [CrossRef] [PubMed]
- Janiot, L.J.; Sericano, J.L.; Roses, O.E. Chlorinated pesticide occurrence in the Uruguay river (Argentina-Uruguay). Water. Air. Soil Pollut. 1994, 76, 323–331. [Google Scholar] [CrossRef]
- Boonyatumanond, R.; Tabucanon, M.S.; Siriwong, C.; Prinyatanakun, P. Distribution of organochlorine pesticides in the Chao Phraya river, Thailand. Environ. Monit. Assess. 1997, 44, 315–325. [Google Scholar] [CrossRef]
- Xue, N.; Zhang, D.; Xu, X. Organochlorinated pesticide multiresidues in surface sediments from Beijing Guanting reservoir. Water Res. 2006, 40, 183–194. [Google Scholar] [CrossRef]
- Osibanjo, O. Organochlorines in Nigeria and Africa. In Persistent Organic Pollutants; Springer: Berlin/Heidelberg, Germany, 2003; pp. 321–354. [Google Scholar]
- Blus, L.J.; Henny, C.J.; Kaisser, T.E.; Grove, R.A. Effects on wildlife from use of endrin in Washington State Orchards [Toxicity]. In Proceedings of the Transactions of the North American Wildlife and Natural Resources Conferences; Universidad Nacional Agraria: Lima, Peru, 1983. [Google Scholar]
- Cailleaud, K.; Forget-Leray, J.; Souissi, S.; Hilde, D.; LeMenach, K.; Budzinski, H. Seasonal variations of hydrophobic organic contaminant concentrations in the water-column of the Seine Estuary and their transfer to a planktonic species Eurytemora affinis (Calanoida, copepoda). Part 1: PCBs and PAHs. Chemosphere 2007, 70, 270–280. [Google Scholar] [CrossRef]
- Rowe, A.A.; Totten, L.A.; Xie, M.; Fikslin, T.J.; Eisenreich, S.J. Air- water exchange of polychlorinated biphenyls in the Delaware river. Environ. Sci. Technol. 2007, 41, 1152–1158. [Google Scholar] [CrossRef]
- Wang, X.; Han, J.; Bi, C.; Huang, X.; Jia, J.; Chen, Z. Distribution, sources, and risk assessment of polychlorinated biphenyls in surface waters and sediments of rivers in Shanghai, China. Front. Earth Sci. 2017, 11, 283–296. [Google Scholar] [CrossRef]
- Omar, W.A.; Mahmoud, H.M. Risk assessment of polychlorinated biphenyls (PCBs) and trace metals in river Nile up-and downstream of a densely populated area. Environ. Geochem. Health 2017, 39, 125–137. [Google Scholar] [CrossRef] [PubMed]
- Howell, N.L.; Suarez, M.P.; Rifai, H.S.; Koenig, L. Concentrations of polychlorinated biphenyls (PCBs) in water, sediment, and aquatic biota in the Houston Ship Channel, Texas. Chemosphere 2008, 70, 593–606. [Google Scholar] [CrossRef]
- Zhang, Z.L.; Hong, H.S.; Zhou, J.L.; Huang, J.; Yu, G. Fate and assessment of persistent organic pollutants in water and sediment from Minjiang River Estuary, Southeast China. Chemosphere 2003, 52, 1423–1430. [Google Scholar] [CrossRef]
- Kumar, B.; Singh, S.K.; Mishra, M.; Kumar, S.; Sharma, C.S. Assessment of polychlorinated biphenyls and organochlorine pesticides in water samples from the Yamuna river. J. Xenobiotics 2012, 2, e6. [Google Scholar] [CrossRef] [Green Version]
- Kaushik, C.P.; Sharma, H.R.; Kaushik, A. Organochlorine pesticide residues in drinking water in the rural areas of Haryana, India. Environ. Monit. Assess. 2012, 184, 103–112. [Google Scholar] [CrossRef]
- Sharip, Z.; Hashim, N.; Suratman, S. Occurrence of organochlorine pesticides in a tropical lake basin. Environ. Monit. Assess. 2017, 189, 560. [Google Scholar] [CrossRef]
- De Mora, S.; Villeneuve, J.-P.; Sheikholeslami, M.R.; Cattini, C.; Tolosa, I. Organochlorinated compounds in Caspian Sea sediments. Mar. Pollut. Bull. 2004, 48, 30–43. [Google Scholar] [CrossRef]
- Nazari, Z.; Haghghi, S.; Eimandel, K.; Hosseini, S.; Parriz, M.; Kalantari, H. Determination of organochlorine pesticides residue in rivers to Caspian sea and sea stations. In Proceedings of the Second National Conference on Optimum Utilization of Chemical Fertilizers and Pesticides in Agriculture; Ministry of Agricultural: Karaj, Iran, 2001. [Google Scholar]
- Wang, H.; He, M.; Lin, C.; Quan, X.; Guo, W.; Yang, Z. Monitoring and assessment of persistent organochlorine residues in sediments from the Daliaohe river Watershed, Northeast of China. Environ. Monit. Assess. 2007, 133, 231–242. [Google Scholar] [CrossRef]
- Dahmardeh Behrooz, R.; Sari, A.E.; Bahramifar, N.; Ghasempouri, S.M. Organochlorine pesticide and polychlorinated biphenyl residues in human milk from the Southern Coast of Caspian Sea, Iran. Chemosphere 2009, 74, 931–937. [Google Scholar] [CrossRef]
- Mohammed, A.; Peterman, P.; Echols, K.; Feltz, K.; Tegerdine, G.; Manoo, A.; Maraj, D.; Agard, J.; Orazio, C. Polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) in harbor sediments from Sea Lots, Port-of-Spain, Trinidad and Tobago. Mar. Pollut. Bull. 2011, 62, 1324–1332. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Yang, H.; Jiang, X.; Liu, Q.; Sun, Y.; Zhou, J. Residues and distribution of organochlorine pesticides in water and suspended particulate matter from Hangzhou Bay, East China Sea. Bull. Environ. Contam. Toxicol. 2016, 96, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Dahmardeh Behrooz, R.; Poma, G.; Covaci, A. Assessment of persistent organic pollutants in hair samples collected from several Iranian wild cat species. Environ. Res. 2020, 183, 109198. [Google Scholar] [CrossRef]
- Dahmardeh Behrooz, R.; Barghi, M.; Bahramifar, N.; Esmaili-Sari, A. Organochlorine contaminants in the hair of Iranian pregnant women. Chemosphere 2012, 86, 235–241. [Google Scholar] [CrossRef]
- Rissato, S.R.; Galhiane, M.S.; Ximenes, V.F.; de Andrade, R.M.B.; Talamoni, J.L.B.; Libânio, M.; de Almeida, M.V.; Apon, B.M.; Cavalari, A.A. Organochlorine pesticides and polychlorinated biphenyls in soil and water samples in the Northeastern part of Sao Paulo State, Brazil. Chemosphere 2006, 65, 1949–1958. [Google Scholar] [CrossRef]
- USA EPA. National Recommended Water Quality Criteria; USA Environmental Protection Agency, Office of Water, Office of Science and Technology: Washington, DC, USA, 2010.
- Lee, K.-T.; Tanabe, S.; Koh, C.-H. Contamination of polychlorinated biphenyls (PCBs) in sediments from Kyeonggi Bay and nearby areas, Korea. Mar. Pollut. Bull. 2001, 42, 273–279. [Google Scholar] [CrossRef]
- OSPAR Commission. Quality Status Report 2000; OSPAR Commission: London, UK, 2000; Volume 3. [Google Scholar]
S1 | S2 | S3 | S4 | S5 | S6 | Total | |
---|---|---|---|---|---|---|---|
Mean | Mean | Mean | Mean | Mean | Mean | Mean | |
(Range) | (Range) | (Range) | (Range) | (Range) | (Range) | (Range) | |
PCB28 | 21 | 29 | 23 | 33 | 21 | 16 | 24 |
(<LOQ–84) | (<LOQ–123) | (<LOQ–202) | (<LOQ–143) | (<LOQ–109) | (<LOQ–63) | (<LOQ–202) | |
PCB52 | 16 | 10 | 7 | 8 | 7 | 26(<LOQ–148) | 12 |
(<LOQ–107) | (<LOQ–83) | (<LOQ–58) | (<LOQ–27) | (<LOQ–148) | |||
PCB101 | 19 | 2 | <LOQ | 9 | 1 | (<LOQ) | 5 |
(0-70) | (<LOQ–10) | (<LOQ–93) | (<LOQ–10) | (<LOQ–93) | |||
PCB138 | 21 | 0 | <LOQ | 4 | (<LOQ) | (<LOQ) | 5 |
(<LOQ–236) | (<LOQ–46) | (<LOQ–236) | |||||
PCB153 | 44 | 23 | 9 | 12 | 5 | 2 | 16 |
(<LOQ–284) | (<LOQ–146) | (<LOQ–89) | (<LOQ–54) | (<LOQ–44) | (<LOQ–12) | (<LOQ–248) | |
PCB180 | 33 | 6 | 4 | 15 | 3 | 3 | 11 |
(<LOQ–237) | (<LOQ–27) | (<LOQ–23) | (<LOQ–95) | (<LOQ–15) | (<LOQ–12) | (<LOQ–237) | |
∑7PCBs | 78 | 69 | 43 | 81 | (2-119) | 46 | 59 |
(<LOQ–273) | (<LOQ–174) | (<LOQ–215) | (LOQ–261) | (<LOQ–119) | (<LOQ–273) | ||
4,4′-DDT | 19 | 5 | 5 | 6 | 7 | 14 | 9 |
(<LOQ–139) | (<LOQ–131) | (<LOQ–48) | (LOQ–60) | (<LOQ–32) | (<LOQ–101) | (<LOQ–139) | |
2,4′-DDT | 14 | 4 | 5 | 13 | 3 | 11 | 8 |
(<LOQ–104) | (<LOQ–16) | (<LOQ–21) | (LOQ–123) | (<LOQ–25) | (<LOQ–75) | (<LOQ–123) | |
4,4′-DDE | <LOQ | 0 | <LOQ | (<LOQ) | (<LOQ) | (<LOQ) | (<LOQ) |
2,4′-DDE | 2 | 1 | 3 | 2 | 1 | 1 | 2 |
(<LOQ–10) | (<LOQ–10) | (<LOQ–10) | (<LOQ–10) | (<LOQ–4) | (<LOQ–10) | (<LOQ–10) | |
4,4′-DDD | 3 | (<LOQ–5) | 1 | 1 | (<LOQ–2) | (<LOQ) | 1 |
(<LOQ–7) | (<LOQ–5) | (<LOQ–5) | (<LOQ–7) | ||||
∑DDTS | 38 | 11 | 13 | 22 | 11 | 26 | 21 |
(<LOQ–260) | (<LOQ–33) | (<LOQ–49) | (<LOQ–123) | (<LOQ–32) | (<LOQ–101) | (<LOQ–260) | |
Dieldrin | 2 | 1 | 1 | <LOQ | (<LOQ) | (<LOQ) | 1 |
(<LOQ–6) | (<LOQ–3) | (<LOQ—4) | (<LOQ–3) | (<LOQ–6) | |||
Lindane | 3 | 1 | <LOQ | 3 | 10 | 4 | 3 |
(<LOQ–6) | (<LOQ–5) | (<LOQ–10) | (<LOQ–90) | (<LOQ–30) | (<LOQ–90) |
S1 | S2 | S3 | S4 | S5 | S6 | Total | |
---|---|---|---|---|---|---|---|
Babolrood | Mean | Mean | Mean | Mean | Mean | Mean | Mean |
(Range) | (Range) | (Range) | (Range) | (Range) | (Range) | (Range) | |
PCB28 | 12 | 5 | 1 | 3 | 6 | 3 | 5 |
(<LOQ–61) | (<LOQ–30) | (<LOQ–15) | (<LOQ–23) | (<LOQ–37) | (<LOQ–20) | (<LOQ–61) | |
PCB52 | 8 | 9 | 10 | 16 | 15 | 10 | 11 |
(<LOQ–24) | (<LOQ–20) | (<LOQ–52) | (<LOQ–55) | (<LOQ–58) | (<LOQ–34) | (<LOQ–58) | |
PCB101 | 65 | 53 | 108 | 22 | 5 | 9 | 44 |
(<LOQ–457) | (<LOQ–431) | (<LOQ–550) | (<LOQ–146) | (<LOQ–44) | (<LOQ–64) | (<LOQ–550) | |
PCB138 | (<LOQ) | 12 | (<LOQ) | 10 | 10 | (<LOQ) | 5 |
(<LOQ–107) | (<LOQ–114) | (<LOQ–111) | (<LOQ–114) | ||||
PCB153 | 18 | 10 | 2 | 16 | 22 | 23 | 15 |
(<LOQ–123) | (<LOQ–103) | (<LOQ–18) | (<LOQ–114) | (<LOQ–120) | (<LOQ–170) | (<LOQ–170) | |
PCB180 | 14 | 8 | 2 | 20 | 10 | 7 | 10 |
(<LOQ–81) | (<LOQ–78) | (<LOQ–16) | (<LOQ–143) | (<LOQ–86) | (<LOQ–54) | (<LOQ–143) | |
∑PCBs | 116 | 97 | 122 | 87 | 68 | 52 | 91 |
(1-486) | (<LOQ–436) | (<LOQ–559) | (<LOQ–406) | (11-341) | (2-180) | (<LOQ–559) | |
4,4′-DDT | 1 | 7 | 3 | 48 | 19 | 12 | 15 |
(<LOQ–9) | (<LOQ–44) | (<LOQ–19) | (<LOQ–256) | (<LOQ–85) | (<LOQ–43) | (<LOQ–256) | |
2,4′-DDT | 11 | 8 | 8 | 8 | 4 | 15 | 9 |
(<LOQ–81) | (<LOQ–30) | (<LOQ–40) | (<LOQ–68) | (<LOQ–29) | (<LOQ–114) | (<LOQ–114) | |
4,4′-DDE | (<LOQ–1) | <LOQ– | 1 | 2 | 1 | 1 | 1 |
(<LOQ–6) | (<LOQ–6) | (<LOQ–5) | (<LOQ–4) | (<LOQ–6) | |||
2,4′-DDE | (<LOQ–2) | 1 | 21 | 3 | 1 | 5 | 5 |
(<LOQ–3) | (<LOQ–100) | (<LOQ–20) | (<LOQ–10) | (<LOQ–30) | (<LOQ–100) | ||
4,4′-DDD | 1 | 1 | 1 | 6 | 14 | 11 | 5 |
(<LOQ–5) | (<LOQ–5) | (<LOQ–4) | (<LOQ–30) | (<LOQ–100) | (<LOQ–60) | (<LOQ–100) | |
∑DDTS | 14 | 17 | 33 | 67 | 39 | 43 | 36 |
(<LOQ–83) | (<LOQ–83) | (<LOQ–130) | (<LOQ–257) | (<LOQ–100) | (<LOQ–174) | (<LOQ–257) | |
Dieldrin | 2 | 2 | 10 | 11 | <LOQ | 2 | 5 |
(<LOQ–6) | (<LOQ–6) | (<LOQ–50) | (<LOQ–50) | (<LOQ–20) | (<LOQ–50) | ||
Lindane | (<LOQ) | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ |
S1 | S2 | S3 | S4 | S5 | S6 | Total | |
---|---|---|---|---|---|---|---|
Haraz | Mean | Mean | Mean | Mean | Mean | Mean | Mean |
(Range) | (Range) | (Range) | (Range) | (Range) | (Range) | (Range) | |
PCB28 | 9 | 7 | 2 | 5 | 3 | 7 | 6 |
(<LOQ–51) | (<LOQ–34) | (<LOQ–10) | (<LOQ–27) | (<LOQ–14) | (<LOQ–47) | (<LOQ–51) | |
PCB52 | 15 | 7 | 5 | 6 | 11 | 14 | 10 |
(<LOQ–75) | (<LOQ–20) | (<LOQ–15) | (<LOQ–30) | (<LOQ–70) | (<LOQ–110) | (<LOQ–110) | |
PCB101 | 8 | 2 | 3 | 29 | 27 | 28 | 16 |
(<LOQ–59) | (<LOQ–12) | (<LOQ–24) | (<LOQ–184) | (<LOQ–170) | (<LOQ–181) | (<LOQ–184) | |
PCB138 | 5 | (<LOQ–1) | <LOQ | <LOQ | <LOQ | 1 | |
(<LOQ–60) | (<LOQ–60) | ||||||
PCB153 | 29 | 7 | 31 | 8 | 6 | 7 | 15 |
(<LOQ–223) | (<LOQ–5) | (<LOQ–240) | (<LOQ–40) | (<LOQ–32) | (<LOQ–39) | (<LOQ–240) | |
PCB180 | 9 | 4 | 3 | 6 | 4 | 5 | 5 |
(<LOQ–59) | (<LOQ–29) | (<LOQ–31) | (<LOQ–48) | (<LOQ–48) | (<LOQ–59) | (<LOQ–59) | |
∑PCBs | 75 | 27 | 44 | 54 | 52 | 62 | 53 |
(<LOQ–474) | (<LOQ–70) | (<LOQ–240) | (3-232) | (1-258) | (2-279) | (<LOQ–474) | |
4,4′-DDT | 1 | <LOQ | 2 | 5 | 1 | 1 | 2 |
(<LOQ–8) | (<LOQ–11) | (<LOQ–44) | (<LOQ–4) | (<LOQ–5) | (<LOQ–44) | ||
2,4′-DDT | 3 | 138 | 1 | 8 | 5 | 6 | 26 |
(<LOQ–33) | (<LOQ–1490) | (<LOQ–10) | (<LOQ–80) | (<LOQ–50) | (<LOQ–50) | (<LOQ–1490) | |
4,4′-DDE | <LOQ | <LOQ | 13 | 31 | 16 | 5 | 11 |
(<LOQ–50) | (<LOQ–258) | (<LOQ–90) | (<LOQ–50) | (<LOQ–258) | |||
2,4′-DDE | <LOQ | 1 | 7 | 34 | 4 | 22 | 11 |
(<LOQ–3) | (<LOQ–50) | (<LOQ–245) | (<LOQ–20) | (<LOQ–200) | (<LOQ–245) | ||
4,4′-DDD | <LOQ | (<LOQ–3) | <LOQ | 1 | <LOQ | 1 | 1 |
(<LOQ–4) | (<LOQ–6) | (<LOQ–6) | |||||
∑DDTS | 5 | 139 | 23 | 78 | 27 | 35 | 51 |
(<LOQ–35) | (<LOQ–1496) | (<LOQ–57) | (<LOQ–326) | (<LOQ–94) | (<LOQ–215) | (<LOQ–1496) | |
Dieldrin | <LOQ | <LOQ | 8 | 49 | 14 | 22 | 17 |
(<LOQ–50) | (<LOQ–241) | (<LOQ–80) | (<LOQ–215) | (<LOQ–241) | |||
Lindane | 5 | <LOQ | 2 | 12 | 8 | 12 | 7 |
(<LOQ–30) | (<LOQ–20) | (<LOQ–40) | (<LOQ–40) | (<LOQ–40) | (<LOQ–40) |
River | Dry Season (Number Sampler 32) | Wet Season (Number Sampler 36) | ||||
---|---|---|---|---|---|---|
Babolrood River | Mean S.D. | Minimum | Maximum | Mean S.D. | Minimum | Maximum |
PCB | 174 ± 31 * | 14 | 559 | 17 ± 3 | <LOQ | 61 |
DDT | 46 ± 9 * | 0 | 180 | 26 ± 8 | <LOQ | 257 |
Dieldrin | 8 ± 3 * | 0 | 50 | 2 ± 1 | <LOQ | 40 |
Lindane | <LOQ | <LOQ | 0 | <LOQ | <LOQ | <LOQ |
Haraz River | Mean S.D. | Minimum | Maximum | Mean S.D. | Minimum | Maximum |
PCB | 95 ± 104 * | 8 | 474 | 14 ± 14 | <LOQ | 60 |
DDT | 89 ± 270 * | <LOQ | 1496 | 16 ± 23 | <LOQ | 94 |
Dieldrin | 34 ± 66 * | <LOQ | 241 | <LOQ | <LOQ | 1 |
Talar River | Mean S.D. | Minimum | Maximum | Mean S.D. | Minimum | Maximum |
PCB | 63 ± 185 * | <LOQ | 1026 | 56 ± 64 | <LOQ | 215 |
DDT | 23 ± 47 * | <LOQ | 260 | 18 ± 30 | <LOQ | 123 |
Dieldrin | 1 ± 2 | <LOQ | 6 | <LOQ | <LOQ | 6 |
Lindane | 7 ± 16 | <LOQ | 90 | <LOQ | <LOQ | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dahmardeh Behrooz, R.; Esmaili-Sari, A.; Chakraborty, P. Distribution and ECo-Toxicological Risk Assessment of Legacy Persistent Organic Pollutants in Surface Water of Talar, Babolrood and Haraz Rivers. Water 2020, 12, 3104. https://doi.org/10.3390/w12113104
Dahmardeh Behrooz R, Esmaili-Sari A, Chakraborty P. Distribution and ECo-Toxicological Risk Assessment of Legacy Persistent Organic Pollutants in Surface Water of Talar, Babolrood and Haraz Rivers. Water. 2020; 12(11):3104. https://doi.org/10.3390/w12113104
Chicago/Turabian StyleDahmardeh Behrooz, Reza, Abbas Esmaili-Sari, and Paromita Chakraborty. 2020. "Distribution and ECo-Toxicological Risk Assessment of Legacy Persistent Organic Pollutants in Surface Water of Talar, Babolrood and Haraz Rivers" Water 12, no. 11: 3104. https://doi.org/10.3390/w12113104
APA StyleDahmardeh Behrooz, R., Esmaili-Sari, A., & Chakraborty, P. (2020). Distribution and ECo-Toxicological Risk Assessment of Legacy Persistent Organic Pollutants in Surface Water of Talar, Babolrood and Haraz Rivers. Water, 12(11), 3104. https://doi.org/10.3390/w12113104