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Abstract: Precipitation is a central quantity of hydrometeorological research and applications.
Especially in complex terrain, such as in High Mountain Asia (HMA), surface precipitation
observations are scarce. Gridded precipitation products are one way to overcome the limitations
of ground truth observations. They can provide datasets continuous in both space and time.
However, there are many products available, which use various methods for data generation and
lead to different precipitation values. In our study we compare nine different gridded precipitation
products from different origins (ERA5, ERA5-Land, ERA-interim, HAR v2 10 km, HAR v2 2 km,
JRA-55, MERRA-2, GPCC and PRETIP) over a subregion of the Central Himalaya and the Southwest
Tibetan Plateau, from May to September 2017. Total spatially averaged precipitation over the study
period ranged from 411 mm (GPCC) to 781 mm (ERA-Interim) with a mean value of 623 mm and
a standard deviation of 132 mm. We found that the gridded products and the few observations,
with few exceptions, are consistent among each other regarding precipitation variability and rough
amount within the study area. It became obvious that higher grid resolution can resolve extreme
precipitation much better, leading to overall lower mean precipitation spatially, but higher extreme
precipitation events. We also found that generally high terrain complexity leads to larger differences
in the amount of precipitation between products. Due to the considerable differences between
products in space and time, we suggest carefully selecting the product used as input for any research
application based on the type of application and specific research question. While coarse products
such as ERA-Interim or ERA5 that cover long periods but have coarse grid resolution have previously
shown to be able to capture long-term trends and help with identifying climate change features,
this study suggests that more regional applications, such as glacier mass-balance modeling, require
higher spatial resolution, as is reproduced, for example, in HAR v2 10 km.

Keywords: precipitation; reanalysis data; satellite retrieval; complex terrain; spatial resolution;
temporal resolution; High Mountain Asia; Tibetan Plateau; third pole
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1. Introduction

High Mountain Asia (HMA) is the major water source of large river systems, especially of the
Yangtze, the Yellow, the Brahamputra, the Ganges and the Indus river. It forms the freshwater supply
for billions of people in Asia who depend on it as a drinking and agriculture water supply or source
for hydropower electricity, and it is among the most vulnerable water towers globally [1,2]. Hence, it is
becoming increasingly important to monitor and model water availability as the climate is changing.
The three main direct sources of water in HMA rivers are direct precipitation, snow melt and glacier
runoff, all of which experience drastic changes due to increasing temperatures and altered precipitation
patterns [3–6].

Observing precipitation constitutes a challenge, especially in complex terrain with harsh climatic
conditions and limited access [7]. Precipitation measured with rain-gauge stations can provide
information about spatial and temporal patterns, and they are therefore essential for monitoring
and modeling. Direct observations at rain-gauge stations are (i) only available as point measurements;
(ii) sparsely and unevenly distributed in space, especially in remote areas such as HMA; (iii) error-prone,
especially for solid precipitation; and (iv) often discontinuous in time [8–14]. Further limitations arise
when comparing different gauge stations among each other due to different instrumentation and
site characteristics. A heated tipping bucket will give different results than a non-heated bucket,
and vegetation types and changes over time can influence measured precipitation and possible
interpretations about what has caused these changes [15].

To inform various research applications, such as hydrological models, precipitation data need to
be continuous in both space and time. For this purpose, weather model-derived reanalysis datasets
may provide spatially homogeneous gridded data. Gridded precipitation data can also be derived from
interpolation of ground observations, which are subject to considerable uncertainties in data-scarce
areas such as HMA [16]. Retrieving precipitation from satellites is another method for generating
gridded data. Precipitation measurement missions such as the Tropical Rainfall Measuring Mission
(TRMM) [17] and the Global Precipitation Measurement Mission (GPM) [18] were established to
continuously observe precipitation from space.

The choice of dataset to use for hydrological modeling applications greatly impacts the
results, as there are significant differences between both absolute and relative values among
datasets [4,7,19–22]. It is an inherent feature of the research problem that it is not possible to ultimately
determine whether any of the datasets provides the “true” value of precipitation. Nevertheless, it is
possible to make an informed decision about the choice of dataset by knowing about the differences,
limitations and similarities, and through validation against ground truth data. Depending on the study
area, some datasets may outperform others.

A major issue with gridded precipitation in rugged terrain, such as HMA, is the accurate
representation of a grid-mean value that represents the local variability of precipitation. The terrain
heterogeneity and topographical features get smoothed out in coarse-grid resolution products. It has
been shown that the comparison between observed and modeled elevation within a global climate
model leads to a bias of up to 2 km in elevation over HMA with higher inaccuracies on the edges
of the Tibetan Plateau, which shows the highest gradients in topography [23]. Besides the effect of
altitude as such on the amount of precipitation, it can cause inaccuracies in spatial rainfall estimates
due to local-scale dynamics of convective precipitation resulting from thermal slope breeze systems or
orographically-induced precipitation.

The comparison of gridded data to actual measurements is problematic. Even though they
are used in the majority of studies (e.g., [4,21,22]), ground observation stations are also not fully
representative of the areas of the grid cells in which they are located. Usually, gauge stations are
located in valley bottoms rather than on top of the mountains or on slopes. Further error sources
of gauge station data are the undercatch due to wind drift, especially during snowfall, wetting and
measurement inconsistencies [8,13,15,24]. However, as surface measurements are the only ground
truth observations of precipitation, they are also used as a reference in this study.
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The scope of this study is to compare the global reanalysis datasets ERA5 [25], ERA5-Land and
ERA-Interim [25,26], the Japanese 55-year Reanalysis (JRA-55) [27] and the Modern-Era Retrospective
analysis for Research and Applications, Version 2 (MERRA-2) [28], the regional WRF-downscaled
High Asia Refined analysis version 2–10 km domain (HAR v2 10 km) [29] and High Asia Refined
analysis version 2–2 km domain (HAR v2 2 km) [29] gridded products, the station based precipitation
dataset Global Precipitation Climatology Centre (GPCC) and the satellite derived precipitation product
Precipitation REtrieval covering the TIbetan Plateau (PRETIP) [30,31]. Further information on spatial
and temporal resolutions of the datasets and websites for data downloads are shown in Table 1. In a
case study, we compared these datasets over a data-scarce sub-region covering each parts of the Tibetan
Plateau (TiP), the Himalaya and the Himalaya foothills to the south during May to September 2017.
To achieve a comprehensive intercomparison, we combined and extended different commonly used
methods to inter-compare precipitation datasets and quantify differences based on terrain complexity.
We finally compared gridded to rain-gauge data from the Chinese Ministry of Water Resources.

Comparable, longer-term comparisons across HMA have been carried out by e.g., Li et al., [20],
who found that grid resolution plays a significant role in overall mean precipitation and local maximum
precipitation, that observation-derived datasets are likely to underestimate precipitation due to their
locations in the valley bottoms and that satellite products show high uncertainties, especially for solid
precipitation. Similarly, Gao et al. [4] used precipitation indices to compare ERA-Interim reanalysis
with WRF-downscaled products based on ERA-Interim and the community climate system model
(CCSM) for the historical period and future projections over the Tibetan Plateau. They found that
both ERA-Interim and CCSM greatly overestimate mean and extreme precipitation indices when
compared to observation data. The dynamically downscaled products generally outperform their
forcings in terms of absolute precipitation accuracy, and spatial and temporal patterns, indicating the
importance of resolving small-scale processes. Similar conclusions were drawn by Huang and Gao [19],
stating that ERA-Interim and final analysis data from the Global Forecasting System (GFS-FNL)
datasets largely overestimate precipitation over the Tibetan Plateau (TiP). This wet bias is reduced in
WRF-downscaled products. Further work by Yoon et al. [21] studied the terrestrial water budget over
HMA, comparing different gridded precipitation data as boundary conditions for land surface models,
including the older HAR (High Asia Refined analysis) version [32]. Mean estimates of precipitation
were found to differ significantly between products, while the spatial patterns and seasonality were
reasonably captured in all products. The first HAR version has also been evaluated by Pritchard et
al. [33], who found that it is capable of representing precipitation in the Upper Indus Basin at multiple
scales and matches ground observation data well. Furthermore, Wang and Zeng [7] used several
predecessors of the current study over the TiP and found that the Global Land Data Assimilation
Systems (GLADS) data has the overall best performance for precipitation when compared to station
data over the 1992–2004 period. GLDAS is derived as a combination from surface observations
and remote sensing. Additionally, Bai et al. [22] investigated different precipitation datasets over
the Qinghai-Tibet Plateau, highlighting the importance of precipitation data in data-scarce regions
and complex terrain such as the TiP. In their study satellite products, blended satellite and gauge
station measurements, and climate modeling data, such as the HAR dataset, have been compared.
They conclude that extreme precipitation is generally overestimated, while light precipitation (less
than 1 mm day−1) was mostly underestimated by most products.

In our study, we complement those earlier studies by including the new and even higher spatially
resolved HAR v2 10 km and HAR v2 2 km datasets, and by applying additional ways of comparing
different gridded precipitation datasets. We emphasize that differences between datasets must be
discussed based on season, precipitation type and spatial context. With a set of selected analysis
methods, our aim was to address the following key research questions: (1) How similar are the various
gridded precipitation datasets? (2) What is the effect of terrain complexity on variations in precipitation
between products?
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2. Data and Methods

In order to address the proposed question, we compiled a set of methods to compare the datasets.
Similarities and differences are mostly related to grid-cell based values and how the various products
represent precipitation at the same location and the same time or period. In this section, we present the
study region, the datasets used for the intercomparison and the methods applied to address similarities
and differences.

2.1. Study Area and Period

The study area encompasses parts of the TiP, the Himalayas and the Himalaya foothills (Figure 1).
It stretches from 81◦ E to 88◦ E and from 28◦ N to 32◦ N (about 230,000 km2). We chose this study area
to include different topographic features, and to represent the transition from the central parts of
the Himalayas to the Tibetan Plateau and the Transhimalaya. From southwest to northeast, the first
part represents the low-lying southern slopes of the Himalaya, followed by the extreme relief of the
Himalayas, and the less complex TiP terrain. The study period was set from May to September 2017,
which is the first year in which PRETIP precipitation can be considered. Further, the period covers a
full Indian Summer Monsoon season, which exhibits the most interesting features in precipitation for
any kind of research application in the study area. The 2017 monsoon season was also unobtrusive in
the amount and length of the monsoon precipitation, making it a suitable study period. The choice
of the study area was further motivated in the course of follow-up research by Kropáček et al. [34]
dealing with glacier lake outburst floods in the Limi Valley originating from the small Halji glacier in
northwestern Nepal, which is located within the boundaries of the present study area (close to the
west-station in Figure 1).

20.0°N

25.0°N

30.0°N

35.0°N

70.0°E 75.0°E 80.0°E 85.0°E 90.0°E 95.0°E

Rain gauge stations

West

Southeast

South

Study area

Figure 1. Overview of the study area and the 3 rain gauge stations located within the boundaries of the area.

2.2. Data

The datasets used in this study and their respective properties are listed in Table 1. For comparison
purposes, all datasets were aggregated to daily sums. As with other precipitation datasets that do not
cover either the study period or study area, we have excluded the Aphrodite dataset [35] from the
analysis in this study, which is often used in precipitation comparisons in Asia.
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Table 1. Overview datasets.

Dataset Temporal
Resolution

Spatial
Resolution (Approx.)

Temporal
Coverage

Spatial
Coverage

ERA5 [36] 1 1 h 30 km 1979—near real time global
ERA5-Land [25] 2 1 h 9 km 1981—near real time global
ERA-Interim [26] 3 6 h 80 km 1979–August 2019 global

HAR v2 10 km [29] 4 1 h 10 km 2004–2018 HMA only
HAR v2 2 km [29] 1 h 2 km April–October 2017 study area

JRA-55 [27] 5 1 h 55 km 1958—near real time global
MERRA-2 [28] 6 1 h 55 × 69 km 1980—near real time global
PRETIP [30,31] 7 30 min 4 km May 2017–September 2017 TiP

GPCC [37] 8 d 111 km January 2009–present global
1 https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5, 2 https://www.ecmwf.int/
en/era5-land, 3 https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim, 4 http:
//www.klima.tu-berlin.de/HARv2, 5 https://climatedataguide.ucar.edu/climate-data/jra-55, 6 https://
climatedataguide.ucar.edu/climate-data/nasa-merra, 7 https://doi.org/10.5678/LCRS/DAT.395, 8 https:
//climatedataguide.ucar.edu/climate-data/gpcp-monthly-global-precipitation-climatology-project.

European Centre for Medium-Range Weather Forecasts datasets. In the framework of their
so-called reanalysis project the European Centre for Medium-Range Weather Forecasts (ECMWF)
offers different atmospheric reanalyses. With the exception of their global coverage they differ in
spatial and temporal resolution, in temporal coverage (cf. Table 1) and in the applied parameterizations.
In the present study, we used the three latest products ERA-Interim, ERA5 and ERA5-Land. Please note
that ERA5-Land uses the same atmospheric forcing as ERA5, interpolating the data to a higher grid
resolution (see ERA5-Land documentation (https://confluence.ecmwf.int/display/CKB/ERA5-Land%
3A+data+documentation#ERA5Land:datadocumentation-LandSurfaceModel)). Therefore, it was not
expected to see considerable differences between ERA5 and ERA5-Land. The gridded output variables
have been downloaded from the Copernicus Climate Change Service (C3S) Climate Date Store.

High Asia Refined analysis version 2. The High Asia Refined analysis version 2 (HAR v2) is
an atmospheric dataset generated by dynamical downscaling of ERA5 reanalysis data. The regional
climate model used for this purpose is the Weather Research and Forecasting model version 4.1
(WRF V4.1, [38]). In contrast to traditional regional climate simulations, WRF is re-initialized daily and
integrated over 36 h with the first 12 h discarded as spin-up time. The HAR v2 provides meteorological
fields at 10 km grid spacing and hourly temporal resolution. The 10 km domain covers the whole TiP
and the surrounding mountains. The HAR v2 is described in detail by Wang et al. [29]. The dataset
currently covers the period from 2004 to 2018 and will be both extended back to 1979 and updated
continuously into the future. To investigate the influence of horizontal grid spacing on precipitation
simulation, ERA5 has also been downscaled to 2 km grid spacing using WRF V4.1 for the study area
from April 2017 to October 2017 (hereinafter HAR v2 2 km). The model setup for HAR v2 2 km was
the same as HAR v2 10 km, except that no cumulus parameterization scheme was used for HAR v2
2 km and cumulus convection was thus explicitly resolved.

Precipitation REtrieval covering the TIbetan Plateau. PRETIP is a new satellite-based precipitation
retrieval dataset for the TiP and originates from a feasibility study, which aimed at the combination of
the brightness temperatures from the geostationary satellites Insat-3D and Elektro-L2 for precipitation
retrieval [39,40]. PRETIP was trained using a random forest approach. The reference for the model training
is GPM (Global Precipitation Measurement Mission) IMERG (Integrated Multi-satellite Retrievals for GPM)
from which only the rain gauge calibrated microwave precipitation data are used [41]. Gauge calibrated
microwave precipitation is the most reliable precipitation estimate from space thus far [18,42,43]. The
temporal coverage is restricted to May–September 2017 due to the limited availability of Elektro-L2.
PRETIP has the same temporal resolution as IMERG, which is 30 min, and is available in both 11 and
4 km resolutions. This increase in resolution from 11 to 4 km constitutes the advantage of PRETIP over
IMERG. The spatial coverage is confined by the Tibetan Plateau and areas above 2500 m a.s.l., which does

https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
https://www.ecmwf.int/en/era5-land
https://www.ecmwf.int/en/era5-land
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim
http://www.klima.tu-berlin.de/HARv2
http://www.klima.tu-berlin.de/HARv2
https://climatedataguide.ucar.edu/climate-data/jra-55
https://climatedataguide.ucar.edu/climate-data/nasa-merra
https://climatedataguide.ucar.edu/climate-data/nasa-merra
https://doi.org/10.5678/LCRS/DAT.395
https://climatedataguide.ucar.edu/climate-data/gpcp-monthly-global-precipitation-climatology-project
https://climatedataguide.ucar.edu/climate-data/gpcp-monthly-global-precipitation-climatology-project
https://confluence.ecmwf.int/display/CKB/ERA5-Land%3A+data+documentation##ERA5Land:datadocumentation-LandSurfaceModel
https://confluence.ecmwf.int/display/CKB/ERA5-Land%3A+data+documentation##ERA5Land:datadocumentation-LandSurfaceModel
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only partly cover the study area (c.f. Figure 5). Further, PRETIP is limited by the availability of microwave
data, which are not available for every single 30-min timestep. Scenes for which no microwave based
precipitation but satellite data (Insat-3D, Elektro-L2) are available were modeled using a daily model,
which was built from the microwave based precipitation available on that day. However, due to the lack
of availability of Insat-3D and Elektro-L2 at some time slots, some data gaps exist. Therefore, the daily
product only contains the available timesteps. The number of available scenes per day is illustrated in
Figure A1 in the Appendix A. For further details about PRETIP please refer to Kolbe et al. [30,31] .

Japanese 55-year Reanalysis. JRA-55 is the second reanalysis project carried out by The Japan
Meteorological Agency [27]. Observations used in JRA-55 consist of those used in ERA-40 [44] and an
additional array of observations listed in the former paper. The product utilizes a four dimensional
variance analysis (4D-VAR) for data assimilation. The spatial resolution is 0.56◦ × 0.56◦ and it covers
the period from 1958 to near real-time. We obtained the dataset through The Data Support Section
facilities at the National Center of Atmospheric Research, and for purposes of the paper, accumulated
6-hourly precipitation values to daily sums.

Modern-Era Retrospective analysis for Research and Applications, Version 2. MERRA-2 is the
second version of the Modern-Era Retrospective analysis for Research and Applications produced by
NASA’s Global Modeling and Assimilation Office. It replaces its predecessor, MERRA, by including
additional observations and updates to the Goddard Earth Observing System model and analysis
scheme. It has been available in 1-hourly temporal resolution and 0.5 ◦ × 0.625 ◦ spatial resolution in
near real-time since 1980.

Global Precipitation Climatology Centre. The GPCC First Guess Daily Product is a global
gridded daily precipitation estimate based on station data. The measurements undergo automatic
quality control, and are interpolated between grid cells using an ordinary block kriging [37]. The spatial
resolution of the grid is 1◦ latitude by 1◦ longitude and the dataset is available from January 2009
until near real-time. Within our study area, a total of three gauge stations are used to derive
daily precipitation.

Ground observations. For a ground validation of the precipitation products we resorted to the
collection of precipitation data provided by the Chinese Ministry of Water Resources and collected
by the hydrometerological service of Tibet. The amount of precipitation was measured by tipping
bucket rain gauges installed according to World Meteorological Organization standards over the
period 2007–2015. The network, albeit sparse given the size of the area, provides the only set of ground
observations available to assess the gridded precipitation datasets. The stations of network used in
this study are shown in Figure 1.

2.3. Methods

2.3.1. Correlation Coefficient

To compare the different precipitation products, we used the non-parametric Spearman’s rank
correlation coefficient, R, which describes how similar the spatial pattern of precipitation is within
the compared grids on a daily or multi-daily basis. Due to the different spatial resolutions, for each
pair of products, we aggregated the higher resolution product to match the grid resolution of the
lower resolved product within each comparison. Similarities between various generations from the
same source (ERA products) and different spatial resolutions of the same product (HAR v2 products)
can help to assess variations resulting from diverse methodologies and parameterizations in the
generations of these datasets. We used different temporal aggregation intervals to assess whether the
timing of precipitation events is different within the products and whether multi-day-sums increase
their similarities. Correlations were only derived for grid cells with valid values in both datasets.
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2.3.2. Comparison to Station Data

To obtain an approximation of ground truth precipitation, we utilized three rain-gauge stations
within our study area that provide daily precipitation sums. We compared their cumulative
sums over the study period to the cumulative sum of the respective grid cell in the precipitation
products. We extracted the elevation of each station from the Advanced Land Observing Satellite
(ALOS) Digital elevation model (DEM), provided by ALOS World 3D—30 m (AW3D30) of the
Japanese Aerospace Exploration Agency (https://www.eorc.jaxa.jp/ALOS/en/aw3d30/index.htm).
The stations’ elevations were then compared to the modeled elevation of the grid cell for the reanalysis
and WRF-downscaled products, and to the mean elevation of the grid cell for PRETIP and GPCC
(derived from ALOS, Table 2). These comparisons provide insights into the possible reasons for
differences between ground-based weather station observations and gridded reanalysis or satellite
data, because the generation of several products relies on the topography, and thus the resolution of
the underlying digital elevation model.

Table 2. Modeled elevation ( m a.s.l) of used grid cell.

Dataset West Southeast South

Rain gauge 4134 * 4320 * 4476 *
ERA5 4824 4995 4944

ERA5-Land 4415 4359 4507
ERA-Interim 3573 4856 4919

HAR v2 10 km 4448 4682 4615
HAR v2 2 km 4151 4505 4465

JRA-55 3810 4887 4887
MERRA-2 4007 3512 2989

PRETIP 4243 * 4234 * 4467 *
GPCC 4903 * 4907 * 4907 *

* derived from ALOS.

2.3.3. Climdex

Climate indices are usually used to quantify how climate has changed over long periods, how
it differs in space or to identify and track climate extremes (e.g., [45]). In this study, we used a set of
climdex indices to compare the different precipitation datasets similarly to Gao et al. [4]. The indices
used in this study are R1, R10, R20, Rx1, Rx5 and PTOT. They were calculated for every grid cell and
summarized for the different products. An overview over the different indices and their definitions is
given in Table 3.

Table 3. Selection of climdex indices used in this study for intercomparison between different
precipitation (P) products.

Index Definition Unit

R1 number of wet days (P > 1 mm) days
R10 number of wet days with P > 10 mm days
R20 number of wet days with P > 20 mm days
Rx1 maximum 1-day precipitation mm
Rx5 maximum 5-day precipitation mm

PTOT total precipitation mm

2.3.4. Terrain Complexity

There are various options to geometrically and statistically define terrain complexity [46]. In this
study, we assessed the influence of terrain complexity on the differences between the precipitation
datasets on the basis of the ALOS DEM, as illustrated in Figure 2. Two levels of complexity are defined
by the standard deviation (SD) of elevation from the high resolution ALOS-grid cells within single

https://www.eorc.jaxa.jp/ALOS/en/aw3d30/index.htm
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grid cells according to the product with the lowest resolution (GPCC). Complexity is defined as low or
high based on the percentiles of SD of grid cells. For high complexity, we set a threshold at the 75%
percentile (Q3) of SD among all grid cells. This means that 25% of the grid-cells above this threshold
are classified as “high complexity.” The remaining 75% of the grid-cells represent “low complexity.”
For each product, we calculated the mean difference between the products with regard to terrain
complexity in order to derive its potentially varying influence on rainfall calculation. In order to
compare products with different spatial resolutions, we resampled all products to the coarsest common
denominator grid (GPCC, 111 km, 24 grid cells).

Figure 2. Schematic overview of the method applied to derive terrain complexity. Black lines represent
the grid of the lowest resolved precipitation product (GPCC), red lines represent the grid of the ALOS
digital elevation model (DEM). The topography in the background is an example topography. In the
equation to calculate the DEM standard deviation (SD) in each GPCC grid cell, xi stands for the values
within the ALOS DEM cell, µ for the overall mean and N for the number of ALOS DEM grid cells
within each GPCC grid cell.

3. Results

3.1. Statistical Analysis

In this section, we describe and visualize the datasets used for comparison and the results of the
statistical analysis.

To illustrate how the different precipitation products compare within the study region and period,
we provide the cumulative sum of precipitation from May to September 2017 (Figure 3), the sum of
precipitation for each month within the study period (Figure 4), and a spatial plot with per-pixel sums
over the study period (Figure 5).

Overall, the per-pixel sum (cf. Figure 3) is between 600 and 800 mm for all ECMWF products,
the WRF-downscaled HAR products and JRA-55. MERRA-2 and GPCC only show 400 to 500 mm
of precipitation, which results in a difference up to 100% between the datasets. Despite the missing
lower-lying areas (<2500 m a.s.l.) and the fact that the daily values are built only from available satellite
scenes, PRETIP amounted to 525 mm for the period between May and September 2017, which falls
within the range of the other datasets.

Monthly sums (Figure 4) show that all products have their maximum precipitation in July and
August, while September has the lowest values. The relative variability between datasets is greatest in
the pre-monsoon season (May), while the agreement is best between most datasets in July to August
(except for MERRA-2, PRETIP and GPCC). Other than for PRETIP, for which no valid values in the
southwestern corner of the study area exist due to the elevation below 2500 m, the other datasets
generally show highest precipitation sums in the southwest along the foothill of the Himalayas,
and lowest values occur along the transition from the Himalayas to the TiP. The Himalaya range
generally shows the highest spatial heterogeneity as long as the spatial resolution is sufficient to depict
these small-scale changes (Figure 5). In general, it can be seen that only the HAR v2 datasets and
in parts the ERA5 products are able to resolve orographic precipitation, while the resolution of the
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other products only gives grid values based on averages in the area. Surprisingly, the satellite product
PRETIP, which has the second highest grid resolution (4 km) is not able to capture small-scale patterns
of topographically-induced precipitation.

The correlation on a daily basis for each combination of datasets is given in Table 4. The highest
correlation was achieved between ERA5 and ERA5-Land, with R = 1, while lowest correlation
was found between the reanalysis product MERRA-2 and the satellite dataset PRETIP (R = 0.33).
In general, the correlation between the ERA products and the ERA-derived products (HAR v2 10 km
and HAR v2 2 km) is quite high (R > 0.66), suggesting that their precipitation values depicting the
most probable range (cumulative values of 600–800 mm, c.f. Figure 3). The fact that they are not
identical, however, shows that there are also considerable differences between the datasets, which is
most likely the effect of different representations of precipitation processes at different scales and the
different representations of cumulus convection in the models.

Temporally aggregating precipitation over a 5-day window generally increases the correlation
(Table 5). The highest correlation can still be found between ERA5 and ERA5-Land (R = 1), but the
lowest correlation can now be found between the observation-based product GPCC and the satellite
product PRETIP (R = 0.56). In general, PRETIP shows the overall smallest correlation to all other
products. With a mean of 0.63 and generally similar values regarding the comparison to the other
datasets, PRETIP appears to have the largest differences in overall grid-based precipitation. Further
aggregation of precipitation over ten days and entire months did not significantly increase correlations,
indicating that most differences in the timing of precipitation between products are covered within a
5-day period (see Tables A1 and A2).

Figure 3. Spatial mean cumulative sum of precipitation throughout the study period.
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Figure 4. Spatial average monthly sum of precipitation during the study period. The gray dashed line
represents the mean precipitation in each month over all datasets.

Figure 5. Spatial log-scaled per-grid-cell sum over the study period for each of the precipitation
products. Sums were only calculated for valid values, which excluded the south-western corner in the
PRETIP product (hatched area) and individual grid cells lower than 2500 m.a.s.l.

Table 4. Correlation coefficient R for all datasets in mm/day. The five highest correlations are
highlighted with bold font. All correlations are statistically significant at the 99% confidence interval.

Dataset ERA5 ERA-Interim ERA5-Land HAR v2 2 km HAR v2 10 km JRA55 MERRA2 PRETIP

ERA-Interim 0.72
ERA5-Land 1.00 0.72

HAR v2 2 km 0.74 0.67 0.67
HAR v2 10 km 0.74 0.68 0.74 0.77

JRA55 0.61 0.66 0.64 0.61 0.60
MERRA2 0.50 0.48 0.53 0.48 0.48 0.44
PRETIP 0.47 0.51 0.44 0.34 0.40 0.45 0.33
GPCC 0.55 0.49 0.55 0.54 0.51 0.48 0.55 0.35
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Table 5. Correlation coefficient R for all datasets in mm/5days. The five highest correlations are
highlighted with bold font. All correlations are statistically significant at the 99% confidence interval.

Dataset ERA5 ERA-Interim ERA5-Land HAR v2 2 km HAR v2 10 km JRA55 MERRA2 PRETIP

ERA-Interim 0.82
ERA5-Land 1.00 0.82

HAR v2 2 km 0.85 0.79 0.82
HAR v2 10 km 0.84 0.80 0.84 0.87

JRA55 0.69 0.76 0.71 0.72 0.70
MERRA2 0.72 0.69 0.74 0.70 0.71 0.63
PRETIP 0.64 0.66 0.63 0.59 0.61 0.63 0.59
GPCC 0.77 0.68 0.78 0.73 0.73 0.67 0.74 0.56

3.2. Comparison with Rain Gauge Data

Daily values from rain gauge stations and grid values from the daily precipitation products are
cumulatively summed up over the study period as illustrated in Figure 6. In general, the station
data shows significantly lower values than most of the gridded products. Exceptions can be seen at
the south station, where both HAR products show lower cumulative sums than the observations at
the station. At the southeast station, the observed values are almost identical to the grid values of
MERRA-2 and GPCC, while both HAR products only show slightly more precipitation by the end
of the study period. A similar trend can be seen in the south station, where the before mentioned
products represent the observations best. The other products generally show more precipitation
than what is observed at these stations, up to four times as much. The west station is located in a
generally dry valley, which receives, on average, less than 200 mm of annual precipitation [47]. This can
be seen by the total cumulative precipitation observed at the station of only 64.6 mm. The closest
gridded values are again MERRA-2, GPCC and HAR v2 2 km with about 250 mm. While both HAR
products show very similar values at the south and southeast station, they are fairly different at the
west station with the 10 km resolution product showing almost twice as much precipitation as the
2 km product. ERA-Interim, on the other hand, greatly overestimates precipitation in this grid-cell by
24 times as much precipitation as observed by the station. In general, the timing of precipitation is
better represented between station and gridded product than the actual amount. Most products agree
on the majority of precipitation falling between June and August and little precipitation from August
until the end of the study period. However, the absolute differences between observed and gridded
precipitation are, in parts, substantial.

Figure 6. Cumulative sum of daily precipitation throughout the study period for the station data
(black line) and the gridded precipitation products (colored lines).
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3.3. Terrain Complexity

The magnitude of difference in precipitation with respect to terrain complexity is given in Figure 7.
Overall, it can be seen that the difference in precipitation is consistently higher in complex terrain
(red dots, SD > Q3), than in less complex terrain (blue squares, SD ≤ Q3). The biggest difference in
precipitation can be seen between PRETIP and HAR v2 10 km with 3.9 mm d−1 followed by PRETIP and
MERRA-2 with 3.7 mm d−1, and PRETIP and ERA-Interim with 3.6 mm d−1. Visually, the differences
based on terrain complexity can be distributed in different groups: (i) overall low differences and small
variation between high and low complexity pixels (e.g., HAR v2 10 km and ERA5-Land), (ii) overall
higher differences, but small variation between high and low complexity pixels (e.g., GPCC and JRA-55)
and (iii) differences spread out greatly between low and high complexity (e.g., PRETIP and HAR v2
10 km). The lowest mean difference can be seen between ERA5 and ERA5-Land with only 0.2 mm d−1,
which further affirms that the forcing in ERA5-Land is the same as in ERA5 and that interpolation is
done linearly. The second-lowest mean difference can be seen between HAR v2 2 km and HAR v2
10 km with 0.9 mm d−1. The overall mean difference between products (yellow diamond) is between
1 and 2.5 mm d−1, with the highest value between GPCC and ERA-Interim, the two products with
the coarsest grid resolutions. Overall, for low complexity terrain, most precipitation differences are
between 0 and 2 mm d−1 while high complexity differences mostly range between 1.5 and 4 mm d−1.

Figure 7. Absolute precipitation difference (mm day−1) based on terrain complexity aligned with the
coarsest grid (GPCC). Complexity is described as high (SD > Q3) or low (SD ≤ Q3) standard deviation of
ALOS-DEM elevation within a single grid cell of the common grid. Blue rectangles represent low terrain
complexity, red dots indicate high terrain complexity and the yellow diamonds depict the mean difference.
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3.4. Climdex Indices

With the climdex indices, we aim at quantifying precipitation extremes for each product and
compare the spatial mean. Figure 8 shows boxplot charts for each index where every value represents
a single grid cell within each product. In this representation, grid resolutions were not aggregated
in order to capture the full range of grid values in each product. To be able to compare the products
universally, we additionally compiled an equivalent representation of the same indices but with the
same coarse grid resolutions. The resulting illustration can be found in the appendix (Figure A2a).
Similar overall values were found in both versions but maximum values are considerably smaller due
to the spatial aggregation. In order to allow for a more straightforward comparison of original and
spatially aggregated climdex data, in Figure A2b we include the data behind Figure 8 but with the
scaling as used in Figure A2a. The following presentation and discussion of the results will focus on
the climdex indices based on the original spatial resolution of each precipitation product as presented
in Figure 8. In general, it can be seen that the higher the spatial resolution, the larger is the data range
between all grid cells (except for PRETIP).

Figure 8. Visualization of the selected climdex indices R1, R10, R20, Rx1, Rx5 and PTOT as boxplots (for
descriptions, see Table 3). Each box contains all grid cell values within the precipitation product. Boxes
range from the 1st to 3rd quartile; the yellow line denotes the median; and whiskers indicate 1.5 fold
interquartile ranges from the upper to lower boundaries. Values outside this range are displayed as
black dots. Please note that the different products have different spatial resolutions.

Data points for days with more than 10 and 20 mm of precipitation (R10 and R20), show that the
higher resolved products (HAR v2 10 km and HAR v2 2 km) return the overall highest values while
they have much lower mean values and lower maximum values for the general wet-day count (R1).
This implies that individual grid cells in higher resolved products (e.g., HAR v2 2 km) can experience
more extreme precipitation events in multiple grid cells than coarser products (e.g., ERA-Interim).
Higher overall median values in the extreme precipitation indices (R10 and R20) in the higher resolved
products further imply the resolution of locally confined heavy precipitation events. Continuing with
the extreme event indices (Rx1 and Rx5), it can be seen that the highest values can also be found within
the higher resolved products, followed by a decreasing trend with decreasing grid resolution. However,
it needs to be mentioned that in contrast to HAR v2 2 km, in which convective systems are explicitly
resolved, HAR v2 10 km uses a cumulus parameterization scheme, which has some uncertainties and
can, in rare occasions, lead to extremely high values, such as more than 500 mm in one day, which can
not be found in any of the other products. The third-highest amount of precipitation in a single day
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(Rx1) can be found within ERA5 and ERA5-Land with about 140 mm. Over a 5-day period (Rx5),
the maximum values increase to 700 and more than 800 mm in the HAR v2 10 km and HAR v2 2 km
products, respectively, while ERA5 and ERA5-Land range between 200 and 300 mm.

Total precipitation in a single grid cell is highest in HAR v2 2 km with a maximum of 7865 mm in
a single grid cell. It is followed by HAR v2 10 km with 5217 mm and ERA5 with 2317 mm. MERRA-2
has the lowest maximum total precipitation with only 1100 mm over the study period. Comparing the
two products with similar spatial resolution, ERA5-Land and HAR v2 10 km difference between linear
interpolation and WRF-downscaling become obvious. While the grid-cell with the maximum PTOT in
ERA5-Land amounts to 2400 mm, the maximum in HAR v2 2 km amounts to 7865 mm, which is more
than three times as much compared to ERA5-Land within the 5 month-period.

Figure A2 reveals that the outstanding maximum values of the two HAR v2 datasets in Rx5 and
PTOT are mainly a consequence of higher spatial resolution. As soon as spatial resolution is equalized
by spatial aggregation, the maximum values are very much different, and the two HAR datasets do not
show extra-ordinary values. In fact, in the spatially aggregated version (Figure A2a) the GPCC dataset
shows the highest maximum value of Rx5, indicating that interpolation of station measurements to
larger areas may negatively impact hydrological modeling.

Notably, despite its second-highest grid resolution, the satellite product PRETIP shows the
smallest variation regarding precipitation rates within grid cells and few outliers in all indices,
which relate to the overall more homogeneous distribution of precipitation throughout the study
area in this product (c.f. Figure 5).

4. Discussion

Despite the short period of analysis presented, it is possible to discover substantial similarities
and differences between the different gridded precipitation products over the study area. As observed
in Figure 3, the study area is influenced by the Indian Summer Monsoon which becomes visible
in the increase of precipitation during July and August and its withdrawal starting in September.
Most products show a good agreement within the monsoon season, except for PRETIP, GPCC and
MERRA-2. In addition, the area is also affected by the westerlies, which becomes visible in the
pre-monsoon season (May). The inconsistency between JRA-55 and ERA-Interim and all other datasets
might originate from different parameterizations for westerly-driven mostly solid precipitation.
Combined, it appears that ERA5, ERA5-Land, HAR v2 10 km, HAR v2 2 km and for the most part
PRETIP consistently match both the pre-monsoon and monsoon precipitation, while the remaining
datasets have limitations in either one of those two periods.

Based on the correlation between datasets, it became obvious that some are more similar
than others. ERA5-Land and ERA5 are essentially identical when aggregating ERA5-Land to
ERA5 resolution. This is to be expected, as ERA5 is using ERA5 atmospheric forcing to derive
land-surface parameters. Hence, it should be noted that ERA5-Land does not add any value regarding
orographically-induced precipitation over ERA5 when using atmospheric data. While all the ERA
products and the ERA5-derived HAR products generally are very similar, the satellite product
PRETIP exhibits the lowest correlations, even after aggregating precipitation over multiple days.
Considering the spatial patterns of PRETIP precipitation, it is no surprise that the correlations are
low. While the other products show a spatially decreasing trend in precipitation from southwest to
northeast with a highly variable region in the Himalaya mountain range, PRETIP exhibits a much more
homogeneous distribution throughout the study area. It even shows lower values for the Himalaya
mountain range than the area covering the TiP. This is a result of the averaging character of the
random forest algorithm which is smoothing for more extreme (low and high) precipitation and tends
toward average precipitation rates. In future developments, the training should be either separated for
convective and stratiform precipitation, or another machine learning algorithm that better captures
meteorological extremes should be developed [48,49]. On the other hand, the similarities between the
ERA products, the HAR products and to some extent JRA-55 lead to the conclusion that these products
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display the most likely range of precipitation in this study. The differences between those modeled
datasets can be attributed to differences in model dynamics. This is in line with Zhang and Li [50],
who found that differences in moisture advection parameterizations greatly change precipitation
patterns on steep slopes. It is not possible to ultimately say how well these products match the “true”
precipitation. However, the few observations that are available suggest that the above mentioned
products are the ones with precipitation amounts being the closest to actual precipitation amounts.

The comparison with rain gauge station data revealed that both HAR v2 datasets have the best
matches with the ground observations. For the south and southeast stations, they also show very
similar values, though they are more different at the west station. Here, the gauge station is located
in a very localized, dry area, making local processes even more important. While these processes
seem to be better represented in HAR v2 2 km, the 10 km grid seems to catch precipitation that might
be outside the confined dry area. Considering ERA-Interim in this comparison, it becomes obvious
that the extremely coarse grid resolution must be covering areas with higher precipitation outside
the dry valley the station is located in. The elevation comparison between modeled elevation of
ERA-Interim and the DEM-extracted elevation of the rain gauge station (Table 2) shows that the station
is located higher (4134 m a.s.l) than the modeled elevation of the ERA-Interim grid cell (3573 m a.s.l.).
However, even though it is to be expected that stations located in low-lying areas would exhibit less
precipitation than higher-lying areas, ERA-Interim shows much higher values than the gauge station,
which emphasizes the limitations of trying to explain precipitation discrepancies by solely considering
altitude as the determining factor. The good match between GPCC and the ground observations can
be attributed to the fact that GPCC synthesizes station-based data and interpolates between them.
Hence, it is to be expected that GPCC scores high correlations with surface observations in grid cells
with observations, making it useful for individual grid-cells. However, the heavily interpolated values
in between distant station data are subject to extreme uncertainties as no topograhical and regional
features can be captured. Generally, rain gauge stations are often located in valley bottoms and easily
accessible areas. Precipitation at the adjacent mountain peak or on its slopes might be higher, which can
be represented by the modeled data, but not by rain-gauge station observations.

With the six climate indices (climdex) we found that the products with the highest grid resolution
exhibited the highest number of days with heavy precipitation (R10 and R20) and the largest amount
of precipitation in a single day and five consecutive days (Rx1 and Rx5). On the other hand,
the mean values of the wet-day count (R1) were much smaller, which is an improvement compared to
ERA-Interim precipitation in particular. According to Gao et al. [4], ERA-Interim tends to overestimate
precipitation on average, especially in the frequency of precipitation events. With the mean values of
R1 in both HAR datasets in our case study being much lower than those in ERA-Interim, they seem to
better represent the distribution of precipitation. The same feature, albeit lower in magnitude, can be
observed between ERA-Interim and ERA5, indicating an improvement of precipitation representation
between the two generations of ECMWF-reanalysis products in this specific case study. Overall,
extreme precipitation events can occur in multiple grid cells within the higher-resolved HAR datasets.
However, the cumulus parameterization in HAR v2 10 km seems to produce extremely high values
of more than 500 mm in a single day, which does not happen in the 2 km grid version of the product.
This finding is in accordance with Ou et al. [51], in which high-resolution WRF experiments with and
without cumulus convection scheme were conducted at a gray-zone grid spacing of 9 km. They found
that the experiment without a cumulus scheme generally outperforms the experiments with cumulus
schemes in terms of the mean total precipitation, and the diurnal cycles of precipitation amount and
frequency. The total precipitation (PTOT) for all products shows that the maximum amount of a single
grid cell can vary between less than 2000 mm up to almost 8000 mm. It became obvious that this
cumulative difference in precipitation over only five months will strongly impact on the results of
research applications if either one or the other product is chosen for the specific location.

Overall, our findings in terms of spatial resolution are in line with other studies, suggesting that
higher grid resolution is needed to accurately represent terrain-induced precipitation patterns [20]. In this
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study, only the HAR datasets and partly the ERA5 datasets were able to represent large orographic
complexity. However, an increase in spatial resolution does not always yield higher accuracy in complex
terrain, as can be seen within the PRETIP product, which is much more homogeneous than some of the
lower resolved products. On the other hand, the coarsest product GPCC might perform much better
in areas where individual grid cells contain measurements, while the interpolated cells in between are
subject to high uncertainties. Further, GPCC has a high probability of underestimating precipitation
due to the locations of ground observation stations being in valleys rather than on slopes or mountain
summit areas.

The role of terrain complexity was assessed with the help of a digital elevation model. We found
that all datasets displayed higher differences in precipitation when the terrain complexity (ALOS standard
deviation) was larger than Q3, except for one pair (PRETIP and MERRA-2). Based on the grouping of the
pairs depending on their relationship between mean difference and precipitation, for the difference between
high and low complexity terrain four main clusters can be derived (Figure 9). While cluster I includes most
of the similar datasets, such as ERA and HAR datasets due to their overall similarity, cluster II comprises
mostly comparisons with the coarsely resolved GPCC product. The greater overall mean difference between
GPCC and the other products is most likely a result of the heavily interpolated values for grid cells without
measurements. However, terrain complexity does not seem to have a significant additional impact on
the differences. Cluster IIIa and IIIb are mostly dominated by comparisons with PRETIP and MERRA-2.
While the differences with PRETIP are attributable to the averaging nature of the random forest approach
and the resulting smoothing in complex terrain, the comparisons with MERRA-2 canot be interpreted in a
straight forward way. All comparisons with MERRA-2, except for the comparison between PRETIP and
MERRA-2, are grouped within cluster III, which leads to the conclusion that precipitation in terrain with
high complexity within MERRA-2 seems to be weaker compared to most other products. The inverse
behavior of the pair PRETIP and MERRA-2 in terms of precipitation in complex terrain vs. less complex
terrain is probably attributable to the fact that this pair has the lowest overall correlation for daily values
and hence has the largest differences in all grid cells, independently of topography.

Figure 9. Visualization of precipitation differences between each two precipitation products based on
the relationship between mean difference (yellow diamonds in Figure 7) and the difference between high
(red dots in Figure 7) and low (blue squares in Figure 7) complexity precipitation. The groups describe: (I) low
mean difference and low difference between high and low terrain complexity, (II) high mean difference but
low difference with respect to terrain complexity and (III) medium overall difference but large variation
depending on terrain complexity. Only some labels of all pairs as listed in Figure 7 are displayed.
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5. Conclusions

This study presents the intercomparison of nine differently generated gridded precipitation
products from a study area in HMA from May to September 2017. Precipitation as boundary
condition for any research application can greatly influence the outcome and respective interpretation.
In order to be able to understand and predict the future behavior of a system, it is necessary to
apply tools, such as modeling, which require a certain spatial and temporal coverage of their input
data. This is particularly challenging for remote regions with complex terrain, such as in HMA.
Making an informed decision about the boundary conditions used for the respective applications is
key to achieving reliable predictions and can be a difficult endeavor. In this study, we highlighted
the similarities and differences of spatially and temporally continuous gridded precipitation data
from various sources over one full monsoon period that can be used as boundary conditions for
longer-term applications, such as climate-change assessments, runoff-calculations, glacier mass balance
modeling and hydropower-applications, among others. While a product with coarse grid resolution
such as ERA-Interim might be able to reproduce seasonal patterns and long-term climate trends [4],
glacier modeling applications might require much higher grid resolution as for example in HAR v2
2 km, which resolves processes related to local topography much better than products based on coarser
grids. However, the HAR v2 2 km product has high computational demands due to its high resolution
dynamical downscaling. It is only available for distinctive study regions and periods where it is
of high value to analyze the effects of grid resolution and topography. The HAR v2 10 km, on the
other hand, shows very good matches with observational data and is available for a longer periods
and the entire HMA. It shows slight limitations compared to the 2 km version originating from the
cumulus parameterization, which can overestimate precipitation falling in a single day. Nonetheless,
HAR v2 10 km is the only product (together with HAR v2 2 km) that is able to resolve topographic
precipitation features (c.f. Figure 5). Similarly, gauge station data might not be representative of the
wider areas due to their typical locations in areas of low-complexity terrain. Hence, products derived
from station data such as GPCC might underestimate areal precipitation, especially if there are only
one or two stations within a grid cell, as is usually the case in HMA. Higher grid resolution, as in
PRETIP, on the other hand, might also not improve precipitation estimates, as this satellite-based
product is limited to the averaging within the random-forest methodology. We therefore suggest
to not only rely on a single dataset in any application but to elaborate on the potential influences
of different datasets in comparison. We suggest selecting a precipitation dataset based on one’s
application and requirements. For example, if data are needed for multi-decadal hydro-meteorological
or hydro-climatological research applications, ERA5 is currently the best choice. When HAR v2 10 km
becomes available for longer periods it will replace ERA5 in this position. If precipitation in complex
terrain at high spatial resolution is to be investigated, HAR v2 2 km would be the optimally applicable
dataset, which might still require bias correction for local applications. HAR v2 10 km and ERA5
might be employed over larger study areas or extended study periods. Similarly, glacio-hydrological
studies, which usually expand over small areas, require high spatial resolution to accurately represent
the prevailing accumulation patterns of the area. For studies focusing on the broader precipitation
patterns under consideration of terrain complexity, most ERA products, the HAR products and JRA-55
have shown to be very similar. PRETIP offers a great opportunity for near-real time applications, such
as flood forecasting, as the satellite data can be available within hours after the passage of the satellite,
whereas reanalysis products are only available after several weeks.

Overall, in this study we elaborate and conclude on the following:
(1) How similar are the different gridded precipitation datasets? Depending on the origins

and generation of the datasets, some datasets are very similar (e.g., HAR v2 2 km and HAR v2
10 km; ERA5 and ERA5-Land), while other datasets show larger discrepancies (e.g., Merra and
GPCC). Despite some data gaps, the satellite product (PRETIP) falls within the range of cumulative
precipitation and shows similar trends to other products. When comparing the grid values to station
data, we conclude that spatial resolution plays a significant role and that gauge measurements likely
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exhibit a dry bias due to their locations on valley floors or other areas of low terrain complexity.
However, most products represent the timing and patterns of precipitation events well.

(2) What is the effect of terrain complexity on variations in precipitation between products?
Terrain complexity increases the difference of precipitation between products. In complex terrain, the
difference within daily precipitation can be up to 4 mm d−1, whereas it is generally below 2 mm d−1 in
more homogeneous landscapes. Overall, the differences in precipitation derived from the analysis
based on terrain complexity enables one to draw conclusions on how well some products work for
studies focusing on complex terrain. For instance, it is possible to use the ERA5-Land dataset rather
than the HAR v2 10 km dataset, if the latter is not available. Locally, the differences can still be large,
but the overall precipitation estimates over a wider area are consistent between both datasets.
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Abbreviations

The following abbreviations are used in this manuscript:

List of Acronyms

ALOS Advanced Land Observing Satellite.
DEM Digital elevation model.
ECMWF European Centre for Medium-Range Weather Forecasts.
ERA5 ERA5.
ERA5-Land ERA5-Land.
ERA-Interim ERA-Interim.
GPCC Global Precipitation Climatology Centre.
HAR v2 High Asia Refined analysis version 2.
HAR v2 2 km High Asia Refined analysis version 2–2 km domain.
HAR v2 10 km High Asia Refined analysis version 2–10 km domain.
HMA High Mountain Asia.
JRA-55 Japanese 55-year Reanalysis.
MERRA-2 Modern-Era Retrospective analysis for Research and Applications, Version 2.
PRETIP Precipitation REtrieval covering the TIbetan Plateau.
TiP Tibetan Plateau.
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Appendix A

Table A1. Correlation coefficient R for all datasets in mm/10days. All correlations are statistically
significant at the 99% confidence interval.

Dataset ERA5 ERA-Interim ERA5-Land HAR v2 2 km HAR v2 10 km JRA55 MERRA2 PRETIP

ERA-Interim 0.84
ERA5-Land 1.00 0.84

HAR v2 2 km 0.88 0.83 0.85
HAR v2 10 km 0.86 0.84 0.86 0.89

JRA55 0.72 0.80 0.74 0.75 0.73
MERRA2 0.76 0.73 0.78 0.74 0.75 0.67
PRETIP 0.72 0.74 0.72 0.71 0.71 0.72 0.64
GPCC 0.80 0.73 0.81 0.75 0.75 0.69 0.76 0.58

Table A2. Correlation coefficient R for all datasets in mm/month. All correlations are statistically
significant at the 99% confidence interval.

Dataset ERA5 ERA-Interim ERA5-Land HAR v2 2 km HAR v2 10 km JRA55 MERRA2 PRETIP

ERA-Interim 0.83
ERA5-Land 1.00 0.83

HAR v2 2 km 0.89 0.86 0.88
HAR v2 10 km 0.87 0.87 0.87 0.92

JRA55 0.71 0.86 0.73 0.78 0.76
MERRA2 0.68 0.71 0.69 0.68 0.69 0.64
PRETIP 0.71 0.75 0.74 0.76 0.72 0.66 0.51
GPCC 0.74 0.73 0.74 0.74 0.76 0.67 0.68 0.41
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Figure A1. Amount of available PRETIP scenes per day. The maximum value is 48 (2 scenes per hour)
and marked with the black dotted line. On average, 32.6 scenes per day are available.
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Figure A2. Visualization of the selected climdex indices R1, R10, R20, Rx1, Rx5 and PTOT as boxplot
charts equivalent to Figure 8 (for description see Table 3). (a) depicts resulting values after resampling
every product to the grid resolution of the lowest resolved product. (b) shows the same boxplot charts
as Figure 8, but with the y-axis limits adjusted to the range in (a) to allow for direct comparison between
both versions.
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