Assessing Land-Cover Effects on Stream Water Quality in Metropolitan Areas Using the Water Quality Index
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Description
2.2. Statistical Analyses
2.2.1. Cluster Analysis (CA)
2.2.2. Water Quality Index (WQI) Development
2.2.3. Seasonal Mann-Kendall (SMK) Test
2.2.4. Factor Analysis (FA)
3. Results
3.1. Land-Cover Characteristics of Metropolitan Areas in South Korea
3.2. Land-Cover Effects on Stream Water Quality in Urban Areas
3.3. Key Water Quality Parameters for Different Land-Cover Types
3.4. Comparison between WQIobj and WQImin
3.5. Spatial Distribution of Overall Stream Water Quality in Urban Areas
3.6. Seasonality of Overall Stream Water Quality in Urban Areas
4. Discussion
4.1. Suitability of FA as a Parameter Selection Method
4.2. Key water Quality Parameters
4.3. Comparison between WQImin and WQIobj
4.4. Land-Cover Effects on Stream Water Quality in Urban Areas
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- United Nations Department of Economic and Social Affairs. 68% of the World Population Projected to Live in Urban Areas by 2050, Says UN. Available online: https://www.un.org/development/desa/en/news/population/2018-revision-of-world-urbanization-prospects.html (accessed on 20 February 2020).
- Arnold, C.L., Jr.; Gibbons, C.J. Impervious surface coverage: The emergence of a key environmental indicator. J. Am. Plan. Assoc. 1996, 62, 243–258. [Google Scholar] [CrossRef]
- Defries, R.S.; Rudel, T.; Uriarte, M.; Hansen, M. Deforestation driven by urban population growth and agricultural trade in the twenty-first century. Nat. Geosci. 2010, 3, 178–181. [Google Scholar] [CrossRef]
- Dewan, A.M.; Yamaguchi, Y. Land use and land cover change in Greater Dhaka, Bangladesh: Using remote sensing to promote sustainable urbanization. Appl. Geogr. 2009, 29, 390–401. [Google Scholar] [CrossRef]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global change and the ecology of cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barnett, T.P.; Pierce, D.W.; Hidalgo, H.G.; Bonfils, C.; Santer, B.D.; Das, T.; Bala, G.; Wood, A.W.; Nozawa, T.; Mirin, A.A.; et al. Human-induced changes in the hydrology of the western United States. Science 2008, 319, 1080–1083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carpenter, S.R.; Caraco, N.F.; Correll, D.L.; Howarth, R.W.; Sharpley, A.N.; Smith, V.H. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol. Appl. 1998, 8, 559–568. [Google Scholar] [CrossRef]
- Meybeck, M.; Helmer, R. The quality of rivers: From pristine stage to global pollution. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1989, 75, 283–309. [Google Scholar] [CrossRef]
- Everard, M.; Moggridge, H.L. Rediscovering the value of urban rivers. Urban Ecosyst. 2012, 15, 293–314. [Google Scholar] [CrossRef]
- Findlay, S.J.; Taylor, M.P. Why rehabilitate urban river systems? Area 2016, 38, 312–325. [Google Scholar] [CrossRef]
- Francis, R.A. Positioning urban rivers within urban ecology. Urban Ecosyst. 2012, 15, 285–291. [Google Scholar] [CrossRef]
- Paul, M.J.; Meyer, J.L. Streams in the urban landscape. Annu. Rev. Ecol. Syst. 2001, 32, 333–365. [Google Scholar] [CrossRef]
- Bascarón, M. Establishment of a methodology for the determination of water quality. Bol. Inf. Medio Ambient. 1979, 9, 30–51. [Google Scholar]
- Brown, R.M.; McClelland, N.I.; Deininger, R.A.; Tozer, R.G. A water quality index: Do we dare? Water Sew. Works 1970, 117, 339–343. [Google Scholar]
- Canadian Council of Ministers of the Environment. Canadian Water Quality Guidelines for the Protection of Aquatic Life: CCME Water Quality Index 1.0, User’s Manual. In Canadian Environmental Quality Guidelines; Canadian Council of Ministers of the Environment: Edmonton, AB, Canada, 2001. [Google Scholar]
- Cude, C.G. Oregon water quality index: A tool for evaluating water quality management effectiveness. J. Am. Water. Resour. Assoc. 2001, 37, 125–137. [Google Scholar] [CrossRef]
- Ramakrishnaiah, C.R.; Sadashiyaiah, C.; Ranganna, G. Assessment of water quality index for the groundwater in Tumkur Taluk, Karnataka State, India. J. Chem. 2009, 6, 523–530. [Google Scholar] [CrossRef] [Green Version]
- Abbasi, T.; Abbasi, S.A. Water Quality Indices; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Lumb, A.; Sharma, T.C.; Bibeault, J.F. A review of genesis and evolution of water quality index (WQI) and some future directions. Water Qual. Expo. Health 2011, 3, 11–24. [Google Scholar] [CrossRef]
- Sutadian, A.D.; Muttil, N.; Yilmaz, A.G.; Perera, B.J.C. Development of river water quality indices—A review. Environ. Monit. Assess. 2016, 188, 58. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Zhang, Y.; Arhonditsis, G.B.; Gao, J.; Chen, Q.; Wu, N.; Dong, F.; Shi, W. How successful are the restoration efforts of China’s lakes and reservoirs? Environ. Int. 2019, 123, 96–103. [Google Scholar] [CrossRef]
- Vatanpour, N.; Malvandi, A.M.; Talouki, H.H.; Gattinoni, P.; Scesi, L. Impact of rapid urbanization on the surface water’s quality: A long-term environmental and physicochemical investigation of Tajan river, Iran (2007–2017). Environ. Sci. Pollut. Res. 2020, 27, 8439–8450. [Google Scholar] [CrossRef]
- Srivastava, P.K.; Mukherjee, S.; Gupta, M.; Singh, S.K. Characterizing monsoonal variation on water quality index of River Mahi in India using geographical information system. Water Qual. Expo. Health 2011, 2, 193–203. [Google Scholar] [CrossRef]
- Verma, R.K.; Murthy, S.; Tiwary, R.K.; Verma, S. Development of simplified WQIs for assessment of spatial and temporal variations of surface water quality in upper Damodar river basin, eastern India. Appl. Water Sci. 2019, 9, 21. [Google Scholar] [CrossRef] [Green Version]
- Şener, Ş.; Şener, E.; Davraz, A. Evaluation of water quality using water quality index (WQI) method and GIS in Aksu River (SW-Turkey). Sci. Total Environ. 2017, 584, 131–144. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Jiang, Y.; Liu, Q.; Dong, M.; Xu, D.; Liu, Y.; Xu, X. Using a water quality index to assess the water quality of the upper and middle streams of the Luanhe River, northern China. Sci. Total Environ. 2019, 667, 142–151. [Google Scholar] [CrossRef]
- Koçer, M.A.T.; Sevgili, H. Parameters selection for water quality index in the assessment of the environmental impacts of land-based trout farms. Ecol. Indic. 2014, 36, 672–681. [Google Scholar] [CrossRef]
- Ma, Z.; Song, X.; Wan, R.; Gao, L. A modified water quality index for intensive shrimp ponds of Litopenaeus vannamei. Ecol. Indic. 2013, 24, 287–293. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, J. Investigating the effects of point source and nonpoint source pollution on the water quality of the East River (Dongjiang) in South China. Ecol. Indic. 2013, 32, 294–304. [Google Scholar] [CrossRef]
- de Souza Pereira, M.A.; Cavalheri, P.S.; de Oliveira, M.Â.C.; Magalhães Filho, F.J.C. A multivariate statistical approach to the integration of different land-uses, seasons, and water quality as water resources management tool. Environ. Monit. Assess. 2019, 191, 549. [Google Scholar] [CrossRef]
- Tripathi, M.; Singal, S.K. Use of Principal Component Analysis for parameter selection for development of a novel Water Quality Index: A case study of river Ganga India. Ecol. Indic. 2019, 96, 430–436. [Google Scholar] [CrossRef]
- Tripathi, M.; Singal, S.K. Allocation of weights using factor analysis for development of a novel water quality index. Ecotoxicol. Environ. Saf. 2019, 183, 109510. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, X.; Chen, Y.; Cai, Y.; Deng, J. Assessing river water quality using water quality index in Lake Taihu Basin, China. Sci. Total Environ. 2018, 612, 914–922. [Google Scholar] [CrossRef]
- Han, Q.; Tong, R.; Sun, W.; Zhao, Y.; Yu, J.; Wang, G.; Shrestha, S.; Jin, Y. Anthropogenic influences on the water quality of the Baiyangdian Lake in North China over the last decade. Sci. Total Environ. 2020, 701, 134929. [Google Scholar] [CrossRef]
- Rodríguez-Romero, A.J.; Rico-Sánchez, A.E.; Mendoza-Martínez, E.; Gómez-Ruiz, A.; Sedeño-Díaz, J.E.; López-López, E. Impact of changes of land use on water quality, from tropical forest to anthropogenic occupation: A multivariate approach. Water 2018, 10, 1518. [Google Scholar] [CrossRef] [Green Version]
- Cha, Y.; Cho, K.H.; Lee, H.; Kang, T.; Kim, J.H. The relative importance of water temperature and residence time in predicting cyanobacteria abundance in regulated rivers. Water Res. 2017, 124, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Gebler, D.; Wiegleb, G.; Szoszkiewicz, K. Integrating river hydromorphology and water quality into ecological status modelling by artificial neural networks. Water Res. 2018, 139, 395–405. [Google Scholar] [CrossRef] [PubMed]
- Tong, S.T.; Chen, W. Modeling the relationship between land use and surface water quality. J. Environ. Manag. 2002, 66, 377–393. [Google Scholar] [CrossRef]
- Whitehead, P.G.; Jin, L.; Bussi, G.; Voepel, H.E.; Darby, S.E.; Vasilopoulos, G.; Manley, R.; Rodda, C.; Hutton, C.; Hackney, C.; et al. Water quality modelling of the Mekong River basin: Climate change and socioeconomics drive flow and nutrient flux changes to the Mekong Delta. Sci. Total Environ. 2019, 673, 218–229. [Google Scholar] [CrossRef] [Green Version]
- You, Q.; Fang, N.; Liu, L.; Yang, W.; Zhang, L.; Wang, Y. Effects of land use, topography, climate and socio-economic factors on geographical variation pattern of inland surface water quality in China. PLoS ONE 2019, 14, e0217840. [Google Scholar] [CrossRef]
- Statistics Korea, 2017 Population and Housing Census of Korea. Available online: http://kostat.go.kr/ (accessed on 26 February 2020).
- Kannel, P.R.; Lee, S.; Lee, Y.S.; Kanel, S.R.; Khan, S.P. Application of water quality indices and dissolved oxygen as indicators for river water classification and urban impact assessment. Environ. Monit. Assess. 2007, 132, 93–110. [Google Scholar] [CrossRef]
- Pesce, S.F.; Wunderlin, D.A. Use of water quality indices to verify the impact of Córdoba City (Argentina) on Suquía River. Water Res. 2000, 34, 2915–2926. [Google Scholar] [CrossRef]
- Sánchez, E.; Colmenarejo, M.F.; Vicente, J.; Rubio, A.; García, M.G.; Travieso, L.; Borja, R. Use of the water quality index and dissolved oxygen deficit as simple indicators of watersheds pollution. Ecol. Indic. 2007, 7, 315–328. [Google Scholar] [CrossRef]
- QGIS Development Team. QGIS geographic information system. Open Source Geospatial Foundation Project; QGIS Development Team. 2018. Available online: http://qgis.osgeo.org (accessed on 4 January 2019).
- Environmental Systems Research Institute. ArcGIS Desktop: Release 10.3; Environmental Systems Research Institute: Redlands, CA, USA, 2014. [Google Scholar]
- Forina, M.; Armanino, C.; Raggio, V. Clustering with dendrograms on interpretation variables. Anal. Chim. Acta 2002, 454, 13–19. [Google Scholar] [CrossRef]
- Shrestha, S.; Kazama, F. Assessment of surface water quality using multivariate statistical techniques: A case study of the Fuji river basin. Jpn. Environ. Model. Softw. 2007, 22, 464–475. [Google Scholar] [CrossRef]
- Singh, K.P.; Malik, A.; Mohan, D.; Sinha, S. Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)—A case study. Water Res. 2004, 38, 3980–3992. [Google Scholar] [CrossRef] [PubMed]
- Jones, E.; Oliphant, T.; Peterson, P. SciPy: Open Source Scientific Tools for Python. 2001. Available online: https://www.scipy.org (accessed on 25 December 2019).
- Van Rossum, G.; Drake, F.L., Jr. Python Reference Manual; Centrum voor Wiskunde en Informatica: Amsterdam, The Netherlands, 1995. [Google Scholar]
- Dojlido, J.; Raniszewski, J.; Woyciechowska, J. Water quality index applied to rivers in the Vistula river basin in Poland. Environ. Monit. Assess. 1994, 33, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Kendall, M.G. Rank Correlation Methods; Griffin: Oxford, UK, 1948. [Google Scholar]
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Hirsch, R.M.; Slack, J.R.; Smith, R.A. Techniques of trend analysis for monthly water quality data. Water Resour. Res. 1982, 18, 107–121. [Google Scholar] [CrossRef] [Green Version]
- Hussain, M.; Mahmud, I. pyMannKendall: A python package for non parametric Mann Kendall family of trend tests. J. Open Source Softw. 2019, 4, 1556. [Google Scholar] [CrossRef]
- Kaiser, H.F. An index of factorial simplicity. Psychometrika 1974, 39, 31–36. [Google Scholar] [CrossRef]
- Barlett, M.S. Properties of sufficiency and statistical tests. Proc. R. Soc. Lond. A Math. Phys. Sci. 1937, 160, 268–282. [Google Scholar]
- Horn, J.L. A rationale and test for the number of factors in factor analysis. Psychometrika 1965, 30, 179–185. [Google Scholar] [CrossRef]
- Thompson, B. Exploratory and Confirmatory Factor Analysis: Understanding Concepts and Applications; American Psychological Association: Washington, DC, USA, 2004. [Google Scholar]
- Williams, B.; Onsman, A.; Brown, T. Exploratory factor analysis: A five-step guide for novices. Australas. J. Paramed. 2010, 8, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Revelle, W.R. Psych: Procedures for Personality and Psychological Research. 2017. Available online: https://CRAN.R-project.org/package=psych (accessed on 16 February 2019).
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Liu, C.W.; Lin, K.H.; Kuo, Y.M. Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. Sci. Total Environ. 2003, 313, 77–89. [Google Scholar] [CrossRef]
- Debels, P.; Figueroa, R.; Urrutia, R.; Barra, R.; Niell, X. Evaluation of water quality in the Chillán River (Central Chile) using physicochemical parameters and a modified water quality index. Environ. Monit. Assess. 2005, 110, 301–322. [Google Scholar] [CrossRef] [PubMed]
- El Najjar, P.; Kassouf, A.; Probst, A.; Probst, J.L.; Ouaini, N.; Daou, C.; El Azzi, D. High-frequency monitoring of surface water quality at the outlet of the Ibrahim River (Lebanon): A multivariate assessment. Ecol. Indic. 2019, 104, 13–23. [Google Scholar] [CrossRef] [Green Version]
- Liou, S.M.; Lo, S.L.; Wang, S.H. A generalized water quality index for Taiwan. Environ. Monit. Assess. 2004, 96, 35–52. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Xia, C.; Xu, M.; Guo, J.; Sun, G. Application of modified water quality indices as indicators to assess the spatial and temporal trends of water quality in the Dongjiang River. Ecol. Indic. 2016, 66, 306–312. [Google Scholar] [CrossRef]
- Wang, J.; Fu, Z.; Qiao, H.; Liu, F. Assessment of eutrophication and water quality in the estuarine area of Lake Wuli, Lake Taihu, China. Sci. Total Environ. 2019, 650, 1392–1402. [Google Scholar] [CrossRef]
- Nong, X.; Shao, D.; Zhong, H.; Liang, J. Evaluation of water quality in the South-to-North Water Diversion Project of China using the water quality index (WQI) method. Water Res. 2020, 178, 115781. [Google Scholar] [CrossRef]
- Landwehr, J.M.; Deininger, R.A. A comparison of several water quality indexes. J. Water Pollut. Control Fed. 1976, 48, 954–958. [Google Scholar]
- Korea Environment Institute. River Management and Ecological Restoration in Response to Climate Change; Korea Environment Institute: Sejong, Korea, 2012. [Google Scholar]
- National Institute of Environmental Research. A Study on the Improvement for TMDL System Enforcement—Analysis of the Pollutant Load Contribution and the Establishment of Monitoring Standards for Decentralized Wastewater Treatment System; National Institute of Environmental Research: Incheon, Korea, 2018.
- National Institute of Environmental Research. Customized Policy Support for Nonpoint Pollution Management and Water Circulation Improvement (III); National Institute of Environmental Research: Incheon, Korea, 2018.
- National Institute of Environmental Research. Hydraulic and Hydrologic Scenario Modelling for Prevention and Outbreak Response of Algal Bloom (II)—Focused on Monitoring-Based Contaminant Transport; National Institute of Environmental Research: Incheon, Korea, 2018.
- Goonetilleke, A.; Thomas, E.; Ginn, S.; Gilbert, D. Understanding the role of land use in urban stormwater quality management. J. Environ. Manag. 2005, 74, 31–42. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.H.; Bang, K.W. Characterization of urban stormwater runoff. Water Res. 2000, 34, 1773–1780. [Google Scholar] [CrossRef]
- Yang, Y.Y.; Toor, G.S. Sources and mechanisms of nitrate and orthophosphate transport in urban stormwater runoff from residential catchments. Water Res. 2017, 112, 176–184. [Google Scholar] [CrossRef] [PubMed]
- Belabed, B.E.; Meddour, A.; Samraoui, B.; Chenchouni, H. Modeling seasonal and spatial contamination of surface waters and upper sediments with trace metal elements across industrialized urban areas of the Seybouse watershed in North Africa. Environ. Monit. Assess. 2017, 189, 265. [Google Scholar] [CrossRef]
- Hasan, H.H.; Jamil, N.R.; Aini, N. Water quality index and sediment loading analysis in Pelus River, Perak, Malaysia. Procedia Environ. Sci. 2015, 30, 133–138. [Google Scholar] [CrossRef] [Green Version]
- Lane, P.N.; Sheridan, G.J. Impact of an unsealed forest road stream crossing: Water quality and sediment sources. Hydrol. Process. 2002, 16, 2599–2612. [Google Scholar] [CrossRef]
- O’Mullan, G.D.; Juhl, A.R.; Reichert, R.; Schneider, E.; Martinez, N. Patterns of sediment-associated fecal indicator bacteria in an urban estuary: Benthic-pelagic coupling and implications for shoreline water quality. Sci. Total Environ. 2019, 656, 1168–1177. [Google Scholar] [CrossRef]
- Fairbairn, D.J.; Karpuzcu, M.E.; Arnold, W.A.; Barber, B.L.; Kaufenberg, E.F.; Koskinen, W.C.; Novak, P.J.; Rice, P.J.; Swackhamer, D.L. Sources and transport of contaminants of emerging concern: A two-year study of occurrence and spatiotemporal variation in a mixed land use watershed. Sci. Total Environ. 2016, 551, 605–613. [Google Scholar] [CrossRef]
- Whitehead, P.G.; Wilby, R.L.; Rattarbee, R.W.; Kernan, M.; Wade, A.J. A review of the potential impacts of climate change on surface water quality. Hydrol. Sci. J. 2009, 54, 101–123. [Google Scholar] [CrossRef]
- Xu, G.; Li, P.; Lu, K.; Tantai, Z.; Zhang, J.; Ren, Z.; Wang, X.; Yu, K.; Shi, P.; Cheng, Y. Seasonal changes in water quality and its main influencing factors in the Dan River basin. Catena 2019, 173, 131–140. [Google Scholar] [CrossRef]
Parameter | Unit | Relative Weight (Pi) | Normalization Factor (Ci) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | |||
Temp | °C | 1 | 21/16 | 22/15 | 24/14 | 26/12 | 28/10 | 30/5 | 32/0 | 36/−2 | 40/−4 | 45/−6 | >45/<−6 |
pH | - | 1 | 7 | 7–8 | 7–8.5 | 7–9 | 6.5–7 | 6–9.5 | 5–10 | 4–11 | 3–12 | 2–13 | 1–14 |
EC | μS/cm | 1 | <750 | <1000 | <1250 | <1500 | <2000 | <2500 | <3000 | <5000 | <8000 | ≤12,000 | >12,000 |
DO | mg/L | 4 | ≥7.5 | >7 | >6.5 | >6 | >5 | >4 | >3.5 | >3 | >2 | ≤1 | <1 |
BOD5 | mg/L | 3 | <0.5 | <2 | <3 | <4 | <5 | <6 | <8 | <10 | <12 | ≤15 | >15 |
COD | mg/L | 3 | <5 | <10 | <20 | <30 | <40 | <50 | <60 | <80 | <100 | ≤150 | >150 |
SS | mg/L | 4 | <20 | <40 | <60 | <80 | <100 | <120 | <160 | <240 | <320 | ≤400 | >400 |
TN | mg/L | 2 | <0.8 | <3.8 | <7.5 | <13 | <18 | <27 | <48 | <85 | <149 | ≤265 | >265 |
NH4+-N | mg/L | 3 | <0.01 | <0.05 | <0.1 | <0.2 | <0.3 | <0.4 | <0.5 | <0.75 | <1 | ≤1.25 | >1.25 |
NO3−-N | mg/L | 2 | <0.5 | <2 | <4 | <6 | <8 | <10 | <15 | <20 | <50 | ≤100 | >100 |
TP | mg/L | 1 | <0.2 | <1.6 | <3.2 | <6.4 | <9.6 | <16 | <32 | <64 | <96 | ≤160 | >160 |
PO43−-P | mg/L | 1 | <0.025 | <0.05 | <0.1 | <0.2 | <0.3 | <0.5 | <0.75 | <1 | <1.5 | ≤2 | >2 |
TC | CFU/100 mL | 3 | <50 | <500 | <1000 | <2000 | <3000 | <4000 | <5000 | <7000 | <10,000 | ≤14,000 | >14,000 |
FC | CFU/100 mL | 3 | <5 | <50 | <100 | <200 | <300 | <400 | <500 | <700 | <1000 | ≤1400 | >1400 |
Parameter | Unit | Watershed Type | ||
---|---|---|---|---|
URB | AGR | FOR | ||
Temp | °C | 16.33 ± 1.56 | 16.99 ± 0.69 | 15.56 ± 1.52 |
pH | - | 7.81 ± 0.32 | 7.76 ± 0.29 | 7.79 ± 0.34 |
EC | μS/cm | 455.51 ± 175.19 | 497.27 ± 257.41 | 384.76 ± 209.78 |
DO | mg/L | 10.52 ± 1.46 | 10.49 ± 0.88 | 11.03 ± 1.04 |
* BOD5 | mg/L | 3.05 ± 2.37 | 4.00 ± 0.49 | 1.69 ± 1.01 |
* COD | mg/L | 5.79 ± 3.04 | 8.17 ± 0.9 | 4.38 ± 2.16 |
* SS | mg/L | 7.37 ± 5.82 | 17.29 ± 3.06 | 6.51 ± 5.27 |
* TN | mg/L | 5.92 ± 3.18 | 3.49 ± 1.42 | 3.24 ± 1.43 |
NH4+-N | mg/L | 0.87 ± 1.35 | 0.52 ± 0.44 | 0.22 ± 0.32 |
* NO3−-N | mg/L | 3.86 ± 1.83 | 2.12 ± 0.78 | 2.26 ± 0.75 |
TP | mg/L | 0.11 ± 0.10 | 0.10 ± 0.02 | 0.06 ± 0.03 |
PO43−-P | mg/L | 0.05 ± 0.07 | 0.03 ± 0.01 | 0.03 ± 0.02 |
* TC | CFU/100 mL | 49.20 103 ± 69.12 103 | 18.09 103 ± 24.97 103 | 11.73 103 ± 10.49 103 |
* FC | CFU/100 mL | 14.01 103 ± 36.73 103 | 22.14 102 ± 27.98 102 | 16.44 102 ± 22.51 102 |
Parameter | Watershed Type | ||||||||
---|---|---|---|---|---|---|---|---|---|
URB | AGR | FOR | |||||||
Factor 1 | Factor 2 | Factor 3 | Factor 1 | Factor 2 | Factor 3 | Factor 1 | Factor 2 | Factor 3 | |
Temp | 0.261 | 0.241 | −0.639 | 0.243 | 0.643 | −0.578 | 0.220 | 0.473 | −0.580 |
pH | 0.205 | −0.661 | −0.213 | −0.666 | 0.264 | −0.434 | −0.567 | 0.021 | 0.040 |
EC | 0.553 | 0.108 | 0.568 | −0.340 | 0.295 | 0.612 | 0.342 | 0.021 | 0.605 |
DO | −0.164 | −0.677 | 0.379 | −0.634 | −0.383 | −0.071 | −0.441 | −0.578 | 0.340 |
BOD5 | * 0.867 | 0.148 | 0.062 | −0.192 | * 0.797 | 0.031 | * 0.751 | 0.004 | 0.079 |
COD | * 0.905 | 0.155 | 0.015 | −0.185 | * 0.879 | 0.018 | * 0.897 | 0.081 | −0.027 |
SS | * 0.860 | 0.050 | −0.129 | 0.028 | * 0.791 | 0.073 | * 0.825 | 0.144 | −0.033 |
TN | 0.416 | 0.330 | 0.742 | 0.074 | 0.015 | * 0.930 | 0.108 | 0.127 | * 0.930 |
NH4+-N | 0.449 | 0.503 | 0.353 | 0.280 | 0.279 | 0.685 | 0.657 | 0.144 | 0.236 |
NO3−-N | −0.006 | 0.145 | * 0.806 | 0.040 | −0.359 | * 0.819 | −0.123 | 0.065 | * 0.910 |
TP | 0.696 | 0.560 | 0.102 | 0.609 | 0.557 | −0.098 | 0.651 | 0.411 | −0.030 |
PO43−-P | 0.340 | * 0.751 | 0.125 | 0.704 | −0.150 | −0.095 | 0.141 | 0.667 | 0.028 |
TC | 0.158 | * 0.810 | 0.048 | * 0.862 | −0.157 | −0.033 | 0.062 | * 0.825 | 0.077 |
FC | 0.226 | * 0.831 | 0.025 | * 0.865 | −0.024 | 0.084 | 0.099 | * 0.825 | 0.091 |
Var (%) | 27.2 | 25.9 | 16.4 | 25.3 | 23.7 | 21.0 | 26.0 | 18.7 | 18.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, T.; Kim, Y.; Shin, J.; Go, B.; Cha, Y. Assessing Land-Cover Effects on Stream Water Quality in Metropolitan Areas Using the Water Quality Index. Water 2020, 12, 3294. https://doi.org/10.3390/w12113294
Kim T, Kim Y, Shin J, Go B, Cha Y. Assessing Land-Cover Effects on Stream Water Quality in Metropolitan Areas Using the Water Quality Index. Water. 2020; 12(11):3294. https://doi.org/10.3390/w12113294
Chicago/Turabian StyleKim, TaeHo, YoungWoo Kim, Jihoon Shin, ByeongGeon Go, and YoonKyung Cha. 2020. "Assessing Land-Cover Effects on Stream Water Quality in Metropolitan Areas Using the Water Quality Index" Water 12, no. 11: 3294. https://doi.org/10.3390/w12113294
APA StyleKim, T., Kim, Y., Shin, J., Go, B., & Cha, Y. (2020). Assessing Land-Cover Effects on Stream Water Quality in Metropolitan Areas Using the Water Quality Index. Water, 12(11), 3294. https://doi.org/10.3390/w12113294