Groundwater-Surface Water Interactions in “La Charca de Suárez” Wetlands, Spain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hydrological Settings
2.2. Monitoring Network
2.3. Evaporation Calculation
2.4. Water Balance of the Lagoons
2.5. Groundwater Contour Maps
3. Results
3.1. Water Balance of the Lagoons
3.2. Characterisation of the Lagoon Functioning
3.2.1. Lagoon Levels
3.2.2. Groundwater Levels
3.2.3. Direct Measurements of Exchange Flow
3.3. Hydrochemistry
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Misch, W.J.; Gosselink, J.G. Wetlands, 2nd ed.; Van Nostrand Reinhold: New York, NY, USA, 1993. [Google Scholar] [CrossRef]
- Richardson, C.J. Wetlands ecology. In Encyclopedia of Environmental Biology; Nierenberg, W.A., Ed.; Academic Press: New York, NY, USA, 1995; Volume 3, pp. 535–550. [Google Scholar]
- Misch, W.J.; Gosselink, J.G. Wetlands, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2000. [Google Scholar] [CrossRef]
- Jones, T.A.; Hughes, J.M.R. Wetland inventories and wetland loss studies: A European perspective. In Waterfowl and Wetland Conservation in the 1990s; Moser, M., Prentice, R.C., van Vessem, J., Eds.; IWRB Special Publication No. 26; IWRB: Slimbridge, UK, 1993; pp. 164–170. [Google Scholar]
- McCovie, M.R.; Christopher, L.L. Drainage District Formation and the Loss of Midwestern Wetlands, 1850–1930. Agric. Hist. 1993, 67, 13–39. [Google Scholar]
- Suso, J.; Llamas, M.R. Influence of groundwater development on the Doñana National Park ecosystems. Hydrol. J. 1993, 141, 239–269. [Google Scholar] [CrossRef]
- Syphard, A.D.; Garcia, M.W. Human- and beaver- induced wetland changes in the Chickahominy River watershed from 1953 to 1993. Wetlands 2001, 21, 342–353. [Google Scholar] [CrossRef]
- Richter, B.D.; Baumgartner, J.V.; Powell, J.; Braun, D.P. A method for assessing hydrologic alteration within ecosystems. Conserv. Biol. 1996, 10, 1163–1174. [Google Scholar] [CrossRef] [Green Version]
- Shaffer, P.W.; Kentula, M.E.; Gwin, S.E. Characterization of wetland hydrology using hydrogeomorphic classification. Wetlands 1999, 19, 490–504. [Google Scholar] [CrossRef]
- Zedler, J.B. Progress in wetland restoration ecology. Trend Ecol. Evol. 2000, 15, 402–407. [Google Scholar] [CrossRef]
- Doss, P.K. The nature of a dynamic water table in a system of non-tidal, freshwater coastal wetlands. J. Hydrol. 1993, 141, 107–126. [Google Scholar] [CrossRef]
- Mills, J.G.; Zwarich, M.A. Transient groundwater flow surrounding a recharge slough in a till plain. Can. J. Soil Sci. 1986, 66, 121–134. [Google Scholar] [CrossRef] [Green Version]
- Ramberg, L.; Wolski, P.; Krah, M. Water balance and infiltration in seasonal floodplain in the Okavango delta, Bostwana. Wetlands 2006, 26, 677–690. [Google Scholar] [CrossRef]
- Mendoza-Sanchez, I.; Phanikumar, M.S.; Niu, J.; Masoner, J.R.; Cozzarelli, I.M.; McGuire, J.T. Quantifying wetland-aquifer interactions in a humid subtropical climate region: An integrated approach. J. Hydrol. 2013, 498, 237–253. [Google Scholar] [CrossRef]
- Rosenberry, D.O.; Winter, T.C. Dynamics of water-table fluctuation in an upland between two praire potholes wetlands in North Dakota. J. Hydrol. 1997, 191, 266–289. [Google Scholar] [CrossRef]
- Amoros, C.; Bornette, G. Connectivity and bioicomplexity in waterbodies of riverine floodplains. Freshw. Biol. 2002, 47, 761–776. [Google Scholar] [CrossRef]
- Wurster, F.C.; Cooper, D.J.; Sanford, W.E. Stream/aquifer interactions at Great Sand Dunes National Monument, Colorado: Influences on interdunal wetland disappearance. J. Hydrol. 2003, 271, 77–100. [Google Scholar] [CrossRef]
- Walker, K.F.; Thoms, M.C.; Sheldon, F. Effects of weirs on the littoral environment of the River Murray, South Australia. In River Conservation and Management; Boon, P.J., Calow, P., Petts, G.E., Eds.; John Wiley and Sons: New York, NY, USA, 1992; pp. 271–292. [Google Scholar]
- Jolly, I.D. The effect of river management on the hydrology and hydroecology of arid and semi-arid floodplains. In Floodplain Processes; Anderson, M.G., Walling, D.E., Bates, P.D., Eds.; John Wiley and Sons: New York, NY, USA, 1996; pp. 577–609. [Google Scholar]
- Freeze, R.A.; Witherspoon, P.A. Theoretical analysis of regional groundwater flow 3: Quantitative interpretations. Water Resour. Res. 1967, 4, 581–590. [Google Scholar] [CrossRef]
- Krabbenhoft, D.P.; Anderson, M.P. Use of a numerical ground-water flow model for hypothesis testing. Groundwater 1986, 24, 49–55. [Google Scholar] [CrossRef]
- Lewandowski, J.; Meinikmann, K.; Nützmann, G.; Rosenberry, D. Groundwater- the disregarded component in lake water and nutrient budgets. Part 2: Effects of groundwater on nutrients. Hydrol. Proc. 2015, 29, 2922–2955. [Google Scholar] [CrossRef]
- de Andalucía, J. Memoria De Actuaciones En Materia De Humedales. 2017. Available online: http://www.juntadeandalucia.es/medioambiente/portal_web/servicios_generales/doc_tecnicos/publicaciones_renpa/memoria_humedales_2017/memoria_humedales_2017.pdf (accessed on 25 January 2020).
- del Hoyo, J.; Collar, N.J.; Christie, D.A.; Elliott, A.; Fishpool, L.D.C. HBW and BirdLife International Illustrated Checklist of the Birds of the World; Lynx Edicions BirdLife International: Barcelona, Spain; Cambridge, UK, 2014. [Google Scholar]
- Menotti, F.; O’Sullivan, A. The Oxford Handbook of Wetland Archaeology; Oxford University Press: Oxford, UK, 2013. [Google Scholar] [CrossRef]
- European Community. LIFE and Europe’s Wetlands. Available online: https://ec.europa.eu/environment/archives/life/publications/lifepublications/lifefocus/documents/wetlands.pdf (accessed on 25 January 2020).
- de Medio Ambiente, C. Inventario de Humedales de Andalucía Charca de Suárez. Available online: http://www.juntadeandalucia.es/medioambiente/portal_web/servicios_generales/doc_tecnicos/publicaciones_renpa/memoria_humedales_2015/03_inventario_humedales.pdf (accessed on 25 January 2020).
- IPCC. Climate Change 2014: The Scientific Basis; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Calvache, M.L.; Ibáñez, S.; Duque, C.; Martín-Rosales, W.; López-Chicano, M.; Rubio, J.; Gónzález, A.; Viseras, C. Numerical modelling of the potential effects of a dam on a coastal aquifer in s. Spain. Hydrol. Proc. 2009, 23, 1268–1281. [Google Scholar] [CrossRef]
- Aldaya, F. Mapa Geológico Y Memoria Explicative De La Hoja 1056 (Albuñol) Del Mapa Geológico De España Escala 1:50000; IGME: Madrid, Spain, 1981. [Google Scholar]
- Duque, C.; Calvache, M.L.; Pedrera, A.; Martín-Rosales, W.; López-Chicano, M. Combined time domain electromagnetic soundings and gravimetry to determine marine intrusion in a detrital coastal aquifer (Southern Spain). J. Hydrol. 2008, 349, 536–547. [Google Scholar] [CrossRef]
- Duque, C.; Calvache, M.L.; Rubio, J.C.; López-Chicano, M.; González-Ramón, A.; Martín-Rosales, W.; Cerón, J.C. Influencia de las litologías en los procesos de recarga del río Guadalfeo al acuífero de Motril-Salobreña. In Proceedings of the VI SIAGA, Sevilla, Spain, 1 June 2005; pp. 343–547. [Google Scholar]
- Duque, C.; Calvache, M.L.; Engesgaard, P. Investigating river-aquifer relations using water temperature in an anthropized environment (Motril-Salobreña aquifer. J. Hydrol. 2010, 381, 121–133. [Google Scholar] [CrossRef]
- Duque, C.; López-Chicano, M.; Calvache, M.L.; Martín-Rosales, W.; Gómez-Fontalva, J.; Crespo, F. Recharge sources and hydrogeological effects of irrigation and an influent river identified by stable isotopes in the Motril-Salobreña aquifer (southern Spain). Hydrol. Proc. 2011, 25, 2261–2274. [Google Scholar] [CrossRef]
- Reolid, J.; López-Chicano, M.; Calvache, M.L.; Duque, C.; Sánchez-Úbeda, J.P. Estimación de las aportaciones del aluvial del río Guadalfeo al acuífero Motril-Salobreña. Geogaceta 2012, 52, 141–144. [Google Scholar]
- Heredia, J.; Murillo, J.; García-Aróstegui, J.; Rubio, J.; López-Geta, J. Construcción de presas e impacto sobre el régimen hidrológico de los acuíferos situados aguas abajo. In Presa De Rules Y Acuífero Costero De Motril-Salobreña Granada, Sur De España. Boletín Geológico y Minero 2002, 113, 165–184. [Google Scholar]
- Ibañez, S. Comparación De La Aplicación De Distintos Modelos Matemáticos Sobre Acuíferos Costeros Detríticos. Ph.D. Thesis, University of Granada, Granada, Spain, 2005. [Google Scholar]
- Duque, C. Influencia Antrópica Sobre La Hidrogeología Del Acuífero Motril-Salobreña. Ph.D. Thesis, University of Granada, Granada, Spain, 2009. [Google Scholar]
- Lee, D.R. A device for measuring seepage flux in lakes and estuaries. Limnol. Oceanogr. 1977, 22, 140–147. [Google Scholar] [CrossRef]
- Rosenberry, D.O.; Toran, L.; Nyquist, J.E. Effect of surficial disturbance on exchange between groundwater and surface water in nearshore margins. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef]
- The WADMI Group. The WAM Model- A Third Generation Ocean Wave Prediction Model. J. Phys. Oceanogr. 1988, 18, 1775–1810. [Google Scholar] [CrossRef] [Green Version]
- Penman, H.L. Evaporation: An introductory survey. Neth. J. Agric. Sci. 1956, 4, 9–29. [Google Scholar]
- McMahon, T.A.; Peel, M.C.; Lowe, L.; Srikanthan, R.; McVicar, T.R. Estimating actual, potential, reference crop and pan evaporation using standard meteorological data: A pragmatic synthesis. Hydrol. Earth Syst. Sci. 2013, 17, 1331–1363. [Google Scholar] [CrossRef] [Green Version]
- Scanlon, B.R.; Healy, R.W.; Cook, P.G. Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol. J. 2002, 10, 18–39. [Google Scholar] [CrossRef]
- Carleton, J.N. Damköler number distritutions and constituent removal in treatment wetlands. Ecol. Eng. 2002, 19, 233–248. [Google Scholar] [CrossRef]
- Winter, T.C. Uncertainties in estimating the water balance of lakes. J. Am. Water Resour. Assoc. 1981, 17, 82–115. [Google Scholar] [CrossRef]
- Nicholls, R.J.; Hoozemans, F.M.J.; Marchand, M. Increasing flood risk and wetland losses due to global sea-level rise: Regional and global analyses. Glob. Environ. Chang. 1999, 9, S69–S87. [Google Scholar] [CrossRef]
- Ferrarin, C.; Tomain, A.; Bajo, M.; Petrizzo, A. Tidal changes in a heavily modified coastal wetland. Cont. Shelf Res. 2015, 101, 22–33. [Google Scholar] [CrossRef]
- Karim, F.; Mimura, N. Impacts of climate change and sea-level rise on cyclonic storm surge floods in Bangladesh. Glob. Environ. Change 2008, 18, 490–500. [Google Scholar] [CrossRef]
- Skrzypek, G.; Dogramaci, S.; Grierson, P.F. Geochemical and hydrological processes controlling groundwater salinity of a large inland wetland of northwest Australia. Chem. Geol. 2013, 357, 164–177. [Google Scholar] [CrossRef] [Green Version]
- Michot, B.; Meselhe, E.A.; Rivera-Monroy, V.H.; Coronado-Molina, C.; Twilley, R.R. A tidal creek water Budget: Estimation of groundwater discharge and overland flow using hydrologic modeling in the southern Everglades. Estuar. Coast. Shelf Sci. 2011, 93, 438–448. [Google Scholar] [CrossRef]
- Sutula, M.; Day, J.W.; Cable, J.; Rudnick, D. Hydrological and nutrient budgets of freshwater and estuarine wetlands of Taylor Slough in southern Everglades, Florida (USA). Biogeochemistry 2001, 56, 287–310. [Google Scholar] [CrossRef]
- Calvache, M.L.; Sánchez-Úbeda, J.P.; Duque, C.; López-Chicano, M.; De la Torre, B. Evaluation of analytical methods to study aquifer properties with pumping test in coastal aquifers with numerical modelling (Motril-Salobreña aquifer). Water Resor. Manag. 2016, 30, 559–575. [Google Scholar] [CrossRef] [Green Version]
- Kidmose, J.; Engesgaard, P.; Ommen, D.A.O.; Nilsson, B.; Flindt, M.R.; Andersen, F.Ø. The Role of Groundwater for Lake-Water Quality and Quantification of N Seepage. Groundwater 2015, 53, 709–721. [Google Scholar] [CrossRef]
- Duque, C.; Haider, K.; Sebok, E.; Sonnenborg, T.O.; Engesgaard, P. A conceptual model for groundwater discharge to a coastal brackish lagoon based on seepage measurements (Ringkøbing Fjord, Denmark). Hydrol. Process. 2018, 32, 3352–3364. [Google Scholar] [CrossRef]
- Sacks, L.A.; Herman, J.S.; Konikow, L.F.; Vela, A.L. Seasonal dynamics of groundwater-lake interactions at Doñana National Park, Spain. J. Hydrol. 1992, 136, 123–154. [Google Scholar] [CrossRef]
- Winter, T.C. Relation of streams, lakes, and wetlands to groundwater flow systems. J. Hydrol. 1999, 7, 28–45. [Google Scholar] [CrossRef]
- Hayashi, M.; Van der Kamp, G.; Rudolph, D.L. Water and solute transfer between a praire wetland and adjacent upland, 1. Water balance. J. Hydrol. 1998, 207, 42–55. [Google Scholar] [CrossRef]
Sensor | Resolution | Accuracy | Units |
Barometric Pressure | 0.1 | ±1 | hPa |
Rainfall | 0.2 | ±0.2 | mm |
Solar Radiation | 1 | ±90 | W/m2 |
Temperature | 0.1 | ±0.3 | °C |
Wind Speed | 0.4 | ±0.9 | m/s |
Humidity | 100 | ±2 | % |
Date (month-year) | Qin (mm) | P (mm) | Qout (mm) | ΔS (mm) | GWF (mm) | |
---|---|---|---|---|---|---|
January-19 | 142 | 1 | 109 | 46 | 19 | 30 |
February-19 | 207 | 26 | 222 | 57 | -4 | 47 |
March-19 | 262 | 21 | 162 | 93 | 9 | -19 |
April-19 | 164 | 57 | 165 | 112 | -32 | 25 |
May-19 | 132 | 0 | 31 | 156 | -40 | 13 |
Component | ||||||
Qin | P | Qout | ΔS | GWF | ||
Mean absolute percent error | 24 | 8 | 12 | 17 | 6 | 154 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blanco-Coronas, A.M.; López-Chicano, M.; Calvache, M.L.; Benavente, J.; Duque, C. Groundwater-Surface Water Interactions in “La Charca de Suárez” Wetlands, Spain. Water 2020, 12, 344. https://doi.org/10.3390/w12020344
Blanco-Coronas AM, López-Chicano M, Calvache ML, Benavente J, Duque C. Groundwater-Surface Water Interactions in “La Charca de Suárez” Wetlands, Spain. Water. 2020; 12(2):344. https://doi.org/10.3390/w12020344
Chicago/Turabian StyleBlanco-Coronas, Angela M., Manuel López-Chicano, Maria L. Calvache, José Benavente, and Carlos Duque. 2020. "Groundwater-Surface Water Interactions in “La Charca de Suárez” Wetlands, Spain" Water 12, no. 2: 344. https://doi.org/10.3390/w12020344
APA StyleBlanco-Coronas, A. M., López-Chicano, M., Calvache, M. L., Benavente, J., & Duque, C. (2020). Groundwater-Surface Water Interactions in “La Charca de Suárez” Wetlands, Spain. Water, 12(2), 344. https://doi.org/10.3390/w12020344