Performance Evaluation of Stormwater Management Systems and Its Impact on Development Costing
Abstract
:1. Introduction
1.1. Backgraound
1.2. Aims of the Paper
- Design of conventional and hybrid drainage systems for the selected catchment, using the DRAINS modeling tool and source control principles.
- Estimation of the installation cost of the two drainage systems based on the guidelines from the Australian literature, and
- Comparison of the performance and the cost-effectiveness of the two drainage systems by taking the pre-developed scenario as the benchmark.
2. Materials and Methods
2.1. Study Area
2.2. Study Approach
2.2.1. Design Procedure of Conventional Drainage System
The Hydrological Model Set Up
Rainfall Data Set Up
Pit Locations and Types
Sub-Catchment Data
Travel Time Calculation
Pipe Type and Details
Overflow Route Details
Detention Basin
Dummy Outlet
Design Criteria
2.2.2. Design Procedure of Hybrid Drainage System
2.2.3. Installation Cost of Drainage Systems
- trench excavation,
- backfilling trenches using the excavated material,
- pipes
- dual rubber ring joints for pipes,
- precast concrete base, walls and pipe cover,
- gully pits,
- inclined bend from one pit to another, and
- detention basin construction cost.
- excavation for the infiltration system,
- installation of the geofabric liner,
- placement of a perforated pipe, gravel storage layer and topsoil layer,
- application of grass seed, fertilizer and watering, and
- the rainwater tank unit, where applicable.
3. Design Outcomes of the Two Drainage Systems
3.1. Design Result of WSUD Systems
3.2. Detention Basin Design: Dimensions, Inflow Rate, Outflow Rate and Water Levels
3.3. Vulnerability of Flooding
3.4. Comparison of Pipe Size and Length
3.5. Comparison of Overflow Routes
3.6. Installation Cost of Drainage Systems
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A.
Appendix A1. Detention Basin Design for Conventional Drainage System (Figure 2a,b)
Conventional Drainage System | Hybrid Drainage System |
Using geometric formulas, the following basin design parameters have been obtained: b = 3 m, for 1V:5H batters y = 1.2 m and m = 6 m, Top Width B = b + 2my = 17.40 m, Flow Area = y × (b + bmy) = 12.24 m2, Bottom length, Lb = V/A = 145.88 m. Top length, Lt = Lb + 2my = 160.28 m | Using geometric formulas, the following basin design parameters have been obtained: b = 3 m, for 1V:5H batters y = 1.2 m and m = 6 m, Top Width B = b + 2my = 17.40 m, Flow Area = y × (b + bmy) = 12.24 m2, Bottom length, Lb = V/A = 60.29 m. Top length, Lt = Lb + 2my = 74.69 m |
References
- Fletcher, T.D.; Andrieu, H.; Hamel, P. Understanding, management and modeling of urban hydrology and its consequences for receiving waters: A state of the art. Adv. Water Resour. 2013, 51, 261–279. [Google Scholar] [CrossRef]
- Jacobson, C.R. Identification and quantification of the hydrological impacts of imperviousness in urban catchments: A review. J. Environ. Manage. 2011, 92, 1438–1448. [Google Scholar] [CrossRef] [PubMed]
- Linton, J.; Budds, J. The hydro social cycle: Defining and mobilizing a relational-dialectical approach to water. Geoforum 2014, 57, 170–180. [Google Scholar] [CrossRef]
- Miller, J.D.; Kim, H.; Kjeldsen, T.R.; Packman, J.; Grebby, S.; Dearden, R. Assessing the impact of urbanization on storm runoff in a peri-urban catchment using historical change in impervious cover. J. Hydrol. 2014, 515, 59–70. [Google Scholar] [CrossRef] [Green Version]
- Bajracharya, A.R.; Rai, R.R.; Rana, S. Effects of urbanization on storm water run-off: a case study of Kathmandu Metropolitan City, Nepal. J. Inst. Eng. 2015, 11, 36–49. [Google Scholar] [CrossRef] [Green Version]
- Yazdanfar, Z.; Sharma, A. Urban drainage system planning and design–challenges with climate change and urbanization: A review. Water Sci. Technol. 2015, 72, 165–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- United Nations. World urbanization prospects: The 2017 revision; United Nations Department of Economic and Social Affairs: New York, NY, USA, 2018. [Google Scholar]
- James, P. Measuring community sustainability: The social Life Questionnaire. In Urban. Sustainability in theory and practice: Circles of sustainability, 1st ed.; Routledge: London, UK; New York, NY, USA, 2015. [Google Scholar]
- Yigitcanlar, T. Smart cities: An effective urban development and management model? Aust. Plan. 2015, 52, 27–34. [Google Scholar] [CrossRef]
- Dams, J.; Dujardin, J.; Reggers, R.; Bashir, I.; Canters, F.; Batelaan, O. Mapping impervious surface change from remote sensing for hydrological modeling. J. Hydrol. 2013, 485, 84–95. [Google Scholar] [CrossRef]
- Moglen, G.E.; Kim, S. Limiting imperviousness: Are threshold-based policies a good idea? J Am. Plan. Assoc. 2007, 73, 161–171. [Google Scholar] [CrossRef]
- Guan, M.; Sillanpää, N.; Koivusalo, H. Storm runoff response to rainfall pattern, magnitude and urbanization in a developing urban catchment. Hydrol. Processes 2016, 30, 543–557. [Google Scholar] [CrossRef]
- McGrane, S.J. Impacts of urbanization on hydrological and water quality dynamics, and urban water management: A review. Hydrol. Sci. J. 2016, 61, 2295–2311. [Google Scholar] [CrossRef]
- Patil, A. Urban hydrology, need of India. Environ. We Int. J. Sci. Tech. 2015, 10, 29–36. [Google Scholar]
- Jia, H.; Yao, H.; Shaw, L.Y. Advances in LID BMPs research and practice for urban runoff control in China. Front. Env. Sci. Eng. 2013, 7, 709–720. [Google Scholar] [CrossRef]
- Miller, J.D.; Hutchins, M. The impacts of urbanization and climate change on urban flooding and urban water quality: A review of the evidence concerning the United Kingdom. J. Hydrol. Reg. Stud. 2017, 12, 345–362. [Google Scholar] [CrossRef] [Green Version]
- Braud, I.; Fletcher, T.; Andrieu, H. Hydrology of peri-urban catchments: Processes and modeling. J. Hydrol. 2013, 485, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Li, X.X.; Koh, T.Y.; Panda, J.; Norford, L.K. Impact of urbanization patterns on the local climate of a tropical city, Singapore: An ensemble study. J. Geophys. Res. Atmos. 2016, 121, 4386–4403. [Google Scholar] [CrossRef] [Green Version]
- Pathirana, A.; Denekew, H.B.; Veerbeek, W.; Zevenbergen, C.; Banda, A.T. Impact of urban growth-driven landuse change on microclimate and extreme precipitation—A sensitivity study. Atmos. Res. 2014, 138, 59–72. [Google Scholar] [CrossRef]
- Qiu, G.Y.; LI, H.Y.; Zhang, Q.T.; Wan, C.; Liang, X.J.; & Li, X.Z. Effects of evapotranspiration on mitigation of urban temperature by vegetation and urban agriculture. J. Integr. Agric. 2013, 12, 1307–1315. [Google Scholar] [CrossRef]
- Zhou, Q. A review of sustainable urban drainage systems considering the climate change and urbanization impacts. Water 2014, 6, 976–992. [Google Scholar] [CrossRef]
- Argue, J.R. Introduction: Some Basic Concepts. Water sensitive urban design: basic procedure for source control of stormwater: A Handbook for Australian Practice, student ed.; Argue, J.R., Ed.; University of South Australia: Adelaide, Australia, 2017. [Google Scholar]
- Barbosa, A.E.; Fernandes, J.N.; David, L.M. Key issues for sustainable urban stormwater management. Water Res. 2012, 46, 6787–6798. [Google Scholar] [CrossRef]
- Benzerra, A.; Cherrared, M.; Chocat, B.; Cherqui, F.; Zekiouk, T. Decision support for sustainable urban drainage system management: A case study of Jijel, Algeria. J. Environ. Manage. 2012, 101, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Chocat, B.; Ashley, R.; Marsalek, J.; Matos, M.; Rauch, W.; Schilling, W.; Urbonas, B. Toward the sustainable management of urban storm-water. Indoor Built Environ. 2007, 16, 273–285. [Google Scholar] [CrossRef]
- Larsen, T.A.; Gujer, W. The concept of sustainable urban water management. Water Sci. Technol. 1997, 35, 3–10. [Google Scholar] [CrossRef]
- Roseen, R.M.; Janeski, T.V.; Simpson, M.; Houle, J.H.; Gunderson, J.; Ballestero, T.P. Economic And adaptation Benefits of Low Impact Development. In Low Impact Development Technology: Implementation and Economics, 2nd ed.; ASCE Library: Reston, VA, USA, 2015. [Google Scholar]
- Stahre, P. Urban Runoff. In Sustainability in Urban Storm Drainage: Planning and Examples, 1st ed.; Svensktvatten: Stockholm, 2006. [Google Scholar]
- Niemczynowicz, J. Urban hydrology and water management–present and future challenges. Urban. Water 1999, 1, 1–14. [Google Scholar] [CrossRef]
- Roy, A.H.; Wenger, S.J.; Fletcher, T.D.; Walsh, C.J.; Ladson, A.R.; Shuster, W.D.; Thurston, H.W.; Brown, R.R. Impediments and solutions to sustainable, watershed-scale urban stormwater management: Lessons from Australia and the United States. Environ. Manage. 2008, 42, 344–359. [Google Scholar] [CrossRef] [PubMed]
- Walsh, C.J.; Booth, D.B.; Burns, M.J.; Fletcher, T.D.; Hale, R.L.; Hoang, L.N.; Livingston, G.; Rippy, M.A.; Roy, A.H.; Scoggins, M. Principles for urban stormwater management to protect stream ecosystems. Freshw. Sci. 2016, 35, 398–411. [Google Scholar] [CrossRef] [Green Version]
- Booth, C.A.; Charlesworth, S.M. Urbanization and Stormwater. In Water Resources in the Built Environment: Management Issues and Solutions, 1st ed.; John Wiley & Sons: Oxford, UK, 2014. [Google Scholar]
- Hartshorn, N.A. Low Impact Development Analysis and Comparative Assessment of Wet Detention Ponds with Floating Treatment Wetlands. Masters Thesis, Spring term, University of Central Florida, Florida, FL, USA, 2016. [Google Scholar]
- Piper Crest, Strathalbyn. Available online: https://www.piperscrest.com.au/ (accessed on 8 May 2018).
- Fletcher, T.D.; Shuster, W.; Hunt, W.F.; Ashley, R.; Butler, D.; Arthur, S.; Trowsdale, S.; Barraud, S.; Semadeni-Davies, A.; Bertrand-Krajewski, J.L.; et al. SUDS, LID, BMPs, WSUD and more–The evolution and application of terminology surrounding urban drainage. Urban. Water J. 2015, 12, 525–542. [Google Scholar] [CrossRef]
- Guan, M.; Sillanpää, N.; Koivusalo, H. Assessment of LID practices for restoring pre-development runoff regime in an urbanized catchment in southern Finland. Water Sci. Technol. 2015, 71, 1485–1491. [Google Scholar] [CrossRef]
- Jakabfi, G. Blue Landscape Urbanizm in Budabest, Hungary—The Role of WSUD in Community Building. Masters Thesis, Estonian University of Life Sciences, Estonian, 1 April 2016. [Google Scholar]
- Myers, B.; Pezzaniti, D.; Kemp, D.; Chavoshi, S.; Montazeri, M.; Sharma, A.; Chacko, P.; Hewa, G.; Tjandraatmadja, G.; Cook, S. Water Sensitive Urban. Design Impediments and Potential: Contributions to the Urban. Water Blueprint (Phase 1) Task 3: The Potential Role of WSUD in Urban. Service Provision; Technical report for Goyder Institute for Water Research: Adelaide, Australia, 2014. [Google Scholar]
- Rainfall IFD Data System. Available online: http://www.bom.gov.au/water/designRainfalls/ifd/ (accessed on 4 March 2018).
- Ball, J.; Babister, M.; Nathan, R.; Weeks, W.; Weinmann, P.E.; Retallick, M.; Testoni, I. Rainfall intensities. In Australian Rainfall and Runoff: A Guide to Flood Estimation, 4th ed.; Commonwealth of Australia (Geoscience Australia): ACT, Australia, 2016. [Google Scholar]
- Polyakov, M.; Fogarty, J.; Zhang, F.; Pandit, R.; Pannell, D.J. The value of restoring urban drains to living streams. Water Resour. Econ. 2017, 17, 42–55. [Google Scholar] [CrossRef]
- Climate Data Online: Average Annual-Seasonal and Monthly Rainfall. Available online: http://www.bom.gov.au/climate/data/?ref=ftr (accessed on 4 March 2018).
- Nature Maps. Available online: http://spatialwebapps.environment.sa.gov.au (accessed on 25 June 2019).
- Department of Planning and Local Government (DPLG). Water Sensitive Urban. Design Technical Manual for the Greater Adelaide Region; Technical Manual for Government of South Australia: Adelaide, Australia, December 20.
- Rawlinsons, W.A. Detailed prices: Stormwater Drainage. In Rawlinsons Australian Construction Handbook, 36th ed.; Rawlinsons Quantity Surveyors and Construction Cost Consultants: Perth, Western Australia, Australia, 2018. [Google Scholar]
- Aurecon Australasia Pty Ltd - DRAINS software. Available online: http://www.watercom.com.au/ (accessed on 8 August 2017).
- O’Loughlin, G.; Stack, B. DRAINS User Manual—A Manual on the DRAINS Program for Urban Stormwater Drainage System Design and Analysis; Watercom Pty Ltd.: Sydney, Australia, 2017. [Google Scholar]
- O’Loughlin, G. The ILSAX Program. for Urban. Storm Water Drainage and Analysis: (User’s Manual for Microcomputer Version v2.13); New South Wales Institute of Technology, School of Civil Engineering: Sydney, Australia, 1993. [Google Scholar]
- Rasheed, A.M. Adaptation of Water Sensitive Urban Design to Climate Change. Doctoral Dissertation, Queensland University of Technology, Queensland, Australia, 2018. [Google Scholar]
- Chowdhury, A.; Egodawatta, P.; McGree, J.; Goonetilleke, A. A Development of an Automatic Calibration Framework for Hydrologic Modeling Using Approximate Bayesian Computation. Int. J. Environ. Chem. Ecol. Geol. Geophys. Eng. 2016, 10, 119–126. [Google Scholar]
- Dayaratne, S.T. Modeling of Urban Stormwater Drainage Systems Using ILSAX. Ph.D. thesis, Victoria University of Technology, Victoria, Australia, August 2000. [Google Scholar]
- Dayaratne, S.T.; Perera, B. Calibration of urban stormwater drainage models using hydrograph modeling. Urban. Water J. 2004, 1, 283–297. [Google Scholar] [CrossRef] [Green Version]
- Skotnicki, M.; Sowiński, M. The influence of depression storage on runoff from impervious surface of urban catchment. Urban. Water J. 2015, 12, 207–218. [Google Scholar] [CrossRef]
- Liu, W.; Chen, W.; Peng, C. Assessing the effectiveness of green infrastructures on urban flooding reduction: A community scale study. Ecol. Model. 2014, 291, 6–14. [Google Scholar] [CrossRef]
- Imran, H.; Akib, S.; Karim, M.R. Permeable pavement and stormwater management systems: A review. Environ. Technol. 2013, 34, 2649–2656. [Google Scholar] [CrossRef] [Green Version]
- Yao, L.; Wei, W.; Chen, L. How does imperviousness impact the urban rainfall-runoff process under various storm cases? Eco. Indic. 2016, 60, 893–905. [Google Scholar] [CrossRef]
- Li, J.; Evans, J.; Johnson, F.; Sharma, A. A comparison of methods for estimating climate change impact on design rainfall using a high-resolution RCM. J. Hydrol. 2017, 547, 413–427. [Google Scholar] [CrossRef]
- Verdon-Kidd, D.; Kiem, A. Regime shifts in annual maximum rainfall across Australia–implications for intensity–frequency–duration (IFD) relationships. Hydrol. Earth Syst. Sci. 2015, 19, 4735–4746. [Google Scholar] [CrossRef] [Green Version]
- Herath, S.M.; Sarukkalige, P.R.; Nguyen, V.T.V. A spatial temporal downscaling approach to development of IDF relations for Perth airport region in the context of climate change. Hydrol. Sci. J. 2016, 61, 2061–2070. [Google Scholar] [CrossRef]
- Zhang, K.; Manuelpillai, D.; Raut, B.; Deletic, A.; Bach, P.M. Evaluating the reliability of stormwater treatment systems under various future climate conditions. J. Hydrol. 2019, 568, 57–66. [Google Scholar] [CrossRef]
- Merz, S.K.; Jordan, P.; Weinmann, E.; Hill, P. Australian Rainfall and Runoff Revision Project 2: Collation and Review of Areal Reduction Factors from Applications of the CRC-Forge Method in Australia; Final Report forGeoscience Australia: Canberra, ACT, Australia, April 2013. [Google Scholar]
- Argue, J.R. Storm Drainage Design in Small Urban Catchments: A Handbook for Australian Practice; Special report no. 34; Australian Road Research Board: Australia, 1986; pp. 29–30. [Google Scholar]
- Capodaglio, A.G.; Ghilardi, P.; Boguniewicz-Zablocka, J. New paradigms in urban water management for conservation and sustainability. Water Pract. Technol. 2016, 11, 176–186. [Google Scholar] [CrossRef] [Green Version]
- Rubinato, M. Physical Scale Modeling of Urban Flood Systems. Doctoral Dissertation, University of Sheffield, Sheffield, UK, 2015. [Google Scholar]
- Woolley, L. Fittings. In Drainage Details, 2nd ed.; Taylor & Francis Group: London, UK; New York, NY, USA, 2013. [Google Scholar]
- Valipour, M. Handbook of Drainage Engineering Problems; OMICS Group International: Foster City, CA, USA, 2014; Available online: http://dl.icdst.org/pdfs/files/e946abd069ebd927c56f4e8bce9eedeb.pdf (accessed on 6 July 2019).
- Weeks, W.; Witheridge, G.; Rigby, E.; Barthelmess, A. Australian Rainfall and Runoff Revision Project 11: blockage of hydraulic structures; Stage 2 Report for Geoscience Australia: Barton, ACT, Australia, February 2013. [Google Scholar]
- Allen, D.; Arthur, S.; Wallerstien, N.; Blanc, J.; Haynes, H. Provision, transport and deposition of debris in urban waterways. Int. J. Sediment. Res. 2015, 30, 142–149. [Google Scholar] [CrossRef]
- Jain, G.V.; Agrawal, R.; Bhanderi, R.; Jayaprasad, P.; Patel, J.; Agnihotri, P.; Samtani, B. Estimation of sub-catchment area parameters for Storm Water Management Model (SWMM) using geo-informatics. Geocarto Int. 2016, 31, 462–476. [Google Scholar] [CrossRef]
- Bracken, L.; Wainwright, J.; Ali, G.; Tetzlaff, D.; Smith, M.; Reaney, S.; Roy, A. Concepts of hydrological connectivity: Research approaches, pathways and future agendas. Earth-Sci. Rev. 2013, 119, 17–34. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Nakagawa, H.; Kawaike, K.; Zhang, H. Experimental validation of interaction model at storm drain for development of integrated urban inundation model. JSCE 2013, 69, I_109–I_114. [Google Scholar] [CrossRef] [Green Version]
- Butler, D.; Digman, C.J.; Makropoulos, C.; Davies, J.W. Stormwater Management (SuDS). In Urban. Drainage, 4th ed.; Crc Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Alexandrina council, SA. Available online: https://www.alexandrina.sa.gov.au/page.aspx (accessed on 5 December 2017).
- Stormwater Management Design Guide—City of Onkaparinga Council Guidelines. Available online: https://renewalsa.sa.gov.au/wp-content/uploads/2019/05/Aldinga-Structure-Plan-Stormwater-Management-Report-2019.05.pdf (accessed on 25 March 2018).
- Rahman, M.M.; Biswas, R.; Mahfuz, W.I. Effects of Beta Ratio and Reynold’s Number on Coefficient of Discharge of Orifice Meter. J. Agr. Rural Dev. 2009, 7, 151–156. [Google Scholar]
- Akhter, F.; Argue, J.R.; Hewa, G.; Ahammed, F.; Mayers, B. Selection of appropriate water-sensitive systems for stormwater quantity control in South Australia. In Proceedings of the Hydrology and Water Resources Symposium (HWRS 2018): Water and Communities, Melbourne, Australia, 1–15 December 2018. [Google Scholar]
- Inflation Calculator, Australia. Available online: https://www.rba.gov.au/calculator/annualDecimal.html (accessed on 5 September 2019).
Design Aspect | Minor Storm | Major Storm | ||
---|---|---|---|---|
Conventional Drainage System | Hybrid Drainage System | Conventional Drainage System | Hybrid Drainage System | |
Maximum outflow rate (m3/s) | 0.034 | 0.032 | 0.048 | 0.045 |
Maximum water level (m) | 69.16 | 69.17 | 69.28 | 69.29 |
Storage volume (m3) | 667.11 | 269.81 | 867.78 | 365.78 |
Normality Test | Minor Storm | Major Storm | ||
---|---|---|---|---|
Conventional Drainage System | Hybrid Drainage System | Conventional Drainage System | Hybrid Drainage System | |
Kolomogorov–Smirnov | 0.191 | 0.000 | 0.028 | 0.200 |
Shapiro–Wilk | 0.011 | 0.000 | 0.000 | 0.240 |
Null Hypothesis Test | Significance Value | Storm Events | Decision |
---|---|---|---|
Median freeboard of the two systems | 0.117 | Minor storm | Values are not significantly different (>0.05) |
0.000 | Major storm | Values are significantly different (<0.05) |
Pipe Size (mm) | Conventional Drainage System | Hybrid Drainage System | ||
---|---|---|---|---|
Total Length of Pipes (m) | Percentage of Pipe Length | Total Length of Pipes (m) | Percentage of Pipe Length | |
300 | 207.01 | 20% | 313.53 | 30% |
375 | 162.98 | 15% | 72.38 | 7% |
450 | 24.96 | 2% | 126.67 | 12% |
525 | 235.72 | 22% | 442.56 | 41% |
600 | 177.44 | 17% | 101.56 | 10% |
675 | 248.59 | 24% | ||
Total | 1057 | 100% | 1057 | 100% |
Item | Price, $AUD | Unit | Storm Event | Drainage System | Detention Basin Size, m3 | Total Cost, $AUD |
---|---|---|---|---|---|---|
Exceeding 300 mm wide trench excavation by machine with 1000/2000 mm total depth | 76 | $/m3 | Minor | Conventional | 1785.60 | 135,706 |
Hybrid | 738 | 56,088 | ||||
Major | Conventional | 2239 | 170,164 | |||
Hybrid | 943 | 71,668 |
Item | Price, $AUD | Unit | Pipe Size, mm | Total Pipe Length, m or Total Pit no. | Total Cost, $AUD | |
---|---|---|---|---|---|---|
Pipe Details | ||||||
300 mm wide trench excavation | 11.75 | $/m | 300 | 207.01 | 2432 | |
Exceeding 300 mm wide trench excavation | 77.5 | $/m | 581.08 | 45,034 | ||
500 mm soil depth backfilling with excavated material | 65 | $/m3 | 300 | 7.73 | 75 | |
1000 mm soil depth backfilling with excavated material | 65 | $/m3 | 375 | 74 | 1804 | |
Dual rubber ring joints | 138 | $/m | 300 | 207.01 | 28,567 | |
Pit Details | ||||||
Precast base and walls with 900 mm diameter & 900 mm deep | 1005 | $/no. | 42 | 42,210 | ||
Extra cost for each additional 100 mm in depth | 72 | $/no. | 42 | 3024 | ||
Precast concrete cover | 160 | $/no. | 42 | 6720 | ||
Pipe bend | ||||||
45 degree | 360 | $/no. | 300 | 360 | ||
610 | $/no. | 450 | 610 | |||
1035 | $/no. | 525 | 1035 | |||
88 degree | 760 | $/no. | 375 | 760 |
Item | Quantity | Unit | Rate | Cost ($/m) |
---|---|---|---|---|
Excavate and stockpile | 2.93 | m3/m | 20 | 58.6 |
Supply and install geofabric liner | 59 | m2/m | 5 | 295 |
Supply and place perforated pipe (100 mm diameter) | 5 | m/m | 13 | 65 |
Supply and place gravel storage layer | 2.93 | m3/m | 65 | 190.45 |
Supply and place topsoil layer (300 mm minimum thick) | 0.44 | m3/m | 70 | 30.8 |
Supply and apply grass seed, fertilizer and watering | 1.47 | m2/m | 1 | 1.47 |
Indicative 1 KL rainwater tank system costs | $1590 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akhter, F.; A. Hewa, G.; Ahammed, F.; Myers, B.; R. Argue, J. Performance Evaluation of Stormwater Management Systems and Its Impact on Development Costing. Water 2020, 12, 375. https://doi.org/10.3390/w12020375
Akhter F, A. Hewa G, Ahammed F, Myers B, R. Argue J. Performance Evaluation of Stormwater Management Systems and Its Impact on Development Costing. Water. 2020; 12(2):375. https://doi.org/10.3390/w12020375
Chicago/Turabian StyleAkhter, Farjana, Guna A. Hewa, Faisal Ahammed, Baden Myers, and John R. Argue. 2020. "Performance Evaluation of Stormwater Management Systems and Its Impact on Development Costing" Water 12, no. 2: 375. https://doi.org/10.3390/w12020375
APA StyleAkhter, F., A. Hewa, G., Ahammed, F., Myers, B., & R. Argue, J. (2020). Performance Evaluation of Stormwater Management Systems and Its Impact on Development Costing. Water, 12(2), 375. https://doi.org/10.3390/w12020375