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Abstract: Understanding the geochemistry of natural waters is helpful for grasping how the water
environment responds to climate and environment changes. The basin of the Yarlung Tsangpo River,
the most important river in the Tibetan Plateau, was selected as the study area. Based on our field
sampling data and the previously published data of major ions in the river, we distinguished the
different sources of the riverine ionic budget. Subsequently, the changes in their contributions were
determined over the past four decades. The results indicate that carbonate weathering was the
main source of the dissolved ions in the Yarlung Tsangpo River. Consequently, an increasing trend
was found in the Ca2+, Mg2+, and HCO3

− concentrations in the river water. Conversely, silicate
weathering, the secondary source of ions, declined after 2000. More notably, the sulfide oxidation
process was considerably enhanced over the study period, which resulted in a two-fold increase in
SO4

2− in the riverine water.

Keywords: geochemistry; surface water chemistry; chemical weathering; Yarlung Tsangpo River;
Tibetan Plateau

1. Introduction

Riverine dissolved salts have many sources such as atmosphere inputs, including sea salt aerosols
and rainwater; products from the chemical weathering of rocks, including silicates, carbonates,
evaporites, and sulfides; and anthropogenic inputs [1]. Therefore, the study of water geochemistry can
help with understanding the water environment in a region, as well as revealing the linkage between
climate, weathering, and tectonic impacts. Presently, the water geochemistry of a basin is understood
for a certain period [2–7]; however, analyses of its temporal differences are lacking. With the current
dramatic climate and environmental changes, the sources of riverine dissolved salts are also shifting
significantly [8]. Therefore, establishing a long-term dataset of water chemistry and identifying the
changes of the impacts of various natural processes on the water ionic chemistry are necessary. For this
purpose, stoichiometry based on the ion content can provide simple methods (e.g., forward and inverse
models) to create these datasets [9]. These methods have been applied in many river basins around the
world [10–15].

Since Raymo and Ruddiman hypothesized that the uplift of the Tibetan Plateau caused an increase
in chemical weathering [16], the river geochemistry in this area has received wide attention.
Many studies were conducted for the Ganges–Brahmaputra [17–20], Yangtze [21–26], Yellow [27–29],
Indus [30,31], Yamuna [32], and Red [33] Rivers. The Yarlung Tsangpo River basin, the headwater
of the Brahmaputra River, is the largest river in the Tibetan Plateau, and affects the sediment and
chemical budgets in the Himalayas. In this study, we built the water chemistry dataset for the Yarlung
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Tsangpo River by pairing our field sampling data from 2013 and 2015 with historical data published
in previous studies. Subsequently, we used this dataset to distinguish the different sources of the
riverine dissolved salts. Finally, the changes in contributions from different natural processes to the
ionic budget in the Yarlung Tsangpo River for the past 40 years were revealed.

2. Materials and Methods

2.1. Hydrologic and Geologic Setting of the Study Area

The Yarlung Tsangpo River originates at the base of the Chamyungdung Glacier in Northern
Himalaya and collects many tributaries, including the Dugxung Tsangpo, Nianchu, Lhasa, Nyang,
and Po Tsangpo Rivers. The elevation of the basin ranges from ~7000 to ~150 m. The Nuxia Hydrological
Station is the lowest station providing long-term runoff observations. The region above the station
has an elevation that is generally higher than ~3000 m; the elevation drops suddenly at the eastern
syntaxis to less than 100 km below the station. Thus, the observational data from the Nuxia Station
represent the runoff characteristics for the higher portion of the Yarlung Tsangpo River. The basin has
a drainage area of ~16.8 × 104 km2 and an annual water discharge of ~585.1 × 108 m3. The basin can
be divided into different areas by four hydrological stations (Figure 1). The runoff for each region is
shown in Table 1. The study area is characterized by a semi-humid and semi-arid plateau monsoon
climate system, with an annual average precipitation of ~494.6 mm. June to September are the peak
monsoon months, accounting for ~85% of the annual precipitation; these are also the months with the
highest temperatures. From the headwater to the downstream, both the temperature and precipitation
increase due to elevation changes and water vapor transport from the Indian Ocean.
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(c) sampling locations in 2015 (elevation data were obtained from the Shuttle Radar Topography
Mission (SRTM) 90 m digital elevation data downloaded from the Consultative Group for International
Agricultural Research (CGIAR)-Consortium for Spatial Information (http://srtm.csi.cgiar.org/)).
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Table 1. Hydrological settings of the Yarlung Tsangpo River Basin.

Station River Elevation
(m)

Distance
Downstream (km)

Drainage Area
(104 km2)

Annual Runoff
(108 m3)

Lazi main stream 3974 619.4 4.34 53.6
Nugesha main stream 3839 833.7 7.46 163.8
Yangcun main stream 3590 1049.5 13.00 304.7

Nuxia main stream 2918 1333.2 16.81 585.1
Shigatse Nianchu River 3836 215.5 1.42 16.9

Lhasa Lhasa River 3656 408.1 2.59 97.1
Gengzhang Nyang River 3062 206.3 1.78 145.8

Strata of various ages can be found in the Yarlung Tsangpo River Valley and adjacent regions,
with the Mesozoic strata being particularly well exposed. Sedimentary, metamorphic, and igneous
rocks all occupy a certain proportion in the study area [34]. The clastic rock, shale, slate, and their
mixed forms are most widely distributed in the basin (Figure 2). The igneous rocks, mainly in the
form of volcanic rocks and granite, appear mostly in the area north of the Yarlung Tsangpo River.
The limestone is mostly associated with some siliceous sedimentary and metamorphic rocks, which are
mainly found in the upstream and midstream of the basin. Carbonate such as limestone is significantly
less distributed than silicate rocks in the Yarlung Tsangpo River Basin. In addition, evaporate rocks,
such as halite and gypsum, often occur in other silicate or carbonate sedimentary rocks.
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2.2. Sampling and Chemical Analysis

Heavy monsoon rainfall can induce large changes in the characteristics of the riverine solute
load [35]. This will affect the calculation of chemical denudation deduced from stoichiometry. Therefore,
we sampled the main stream and major tributaries of the Yarlung Tsangpo River four times before and
after the monsoon seasons in 2013 and 2015 (June and October of 2013 and April and September of
2015). We selected sites where tributaries ran into the main stream, sites with significantly different
land covers, and sites where human disturbance is frequent; this allowed us to obtain water chemical
data that reflect the combined influences of various factors. In 2015, sampling was conducted from
the headwater to the location near Nuxia Station, and a part of the sampling sites were a repeated
collecting of 2013 (Figure 1). A total of 16 water samples were collected for each period in 2013,
and 48 samples were collected for each period of 2015. The samples were collected at a depth
of 10 cm, filtered using a 0.45 µm cellulose acetate membrane filter, and then stored, free of air,
in pre-cleaned 50 mL polyethylene bottles. The pH was measured in the field using a Horiba U53
multi-parameter meter (HORIBA. Ltd., Kyoto, Japan). Subsequently, the water samples were returned
to the laboratory and placed in the freezer for cryopreservation. The samples melted naturally at
room temperature prior to the chemical measurements. The major cations (K+, Na+, Ca2+, and Mg2+)
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and SiO2 concentrations were determined using an inductively coupled plasma optical emission
spectrometer (ICP–OES; PerkinElmer Corporation, USA). The anion concentrations (SO4

2−, Cl−,
and NO3

−) were measured with high-performance liquid chromatography (LC–10ADvp; (Shimadzu
Corporation, Japan). The instrument error was ±2% for cations and ±5% for anions. The alkalinity was
represented by HCO3

-, which was calculated using the ionic charge balance.

2.3. Historical Chemical Data Collection

Besides our measurements, which can provide the newest ion contents for the Yarlung Tsangpo
River, we also compiled a historical water ion dataset for the mainstreams and tributaries of the Yarlung
Tsangpo River for 1973–1976 [36], 1985 [37], 2005 [19], and 2008 [34]. To maintain consistency in the
samples of different periods, we selected published data from sites where the samples were close to
our samples. Then, the data were re-encoded based on our sampling codes. This resulted in 35, 19, 28,
and 29 sites of major ion sample data for the four historical data periods, respectively.

3. Results and Discussion

3.1. Major Ion Chemistry and Variation During the Period of 1975 to 2015

The results showed that water in the Yarlung Tsangpo River Basin is alkaline, with a pH value
of ~8.0. The annual mean total dissolved solids (TDS) value in the basin was 138.6 mg/L (individual
measurements range from 80.3 to 208.3 mg/L; Table 2), which is higher than the typical average levels of
the world’s rivers (70–130 mg/L) [38]. This result is consistent with those of several rivers originating in
the Himalayas, which have TDS values of 99–491 mg/L [39]. The dominant cation in the river water was
Ca2+, with a mean content of 766 (range 573 to 1151) µmol/L, accounting for 53.3% of the total cation
content. The Na+ content, with a mean of 384 (125–594) µmol/L, was higher than the Mg2+ content,
with a mean of 245 (113.3–440.4) µmol/L. The lowest cation content was observed for K+, with a mean
of 40.9 (33.3–60) µmol/L, accounting for only 2.8% of the total cation content. The dominant anion
in the river water was HCO3

-, accounting for 77% of the total anion content, with a mean of 1716
(1053–2661) µmol/L. In contrast, the SO4

2− and Cl− contents were relatively low, with mean values
of 385.1 (160–544.2) µmol/L and 154.9 (40–232.5) µmol/L, respectively. The analysis also showed that
the dissolved ion levels of water in the upstream reach were significantly higher than those in the
downstream reach; the TDS of the Nianchu and Dogxung Tsangpo Rivers were the highest, and that of
the downstream reaches of the Nyang and Po Tsangpo Rivers were the lowest. This is largely due to
more precipitation in the downstream region, contributing to more runoff and lower concentrations of
dissolved solids. Unlike other ions, the Na+ concentration was the highest in the midstream of Yarlung
Tsangpo River, whereas K+ was prevalent in the Nyang and Po Tsangpo Rivers.

The ion contents of the Yarlung Tsangpo River and its major tributaries of the past 40 years
were compared. We found that the average TDS values of the whole basin before and after 2000
were 124.6 and 152.0 mg/L, respectively (Table 3). The increase in dissolved ions was much higher
in the upstream than in the downstream region. The TDS of the Dogxung Tsangpo River was up
to twice as high after 2000 when compared with before. In contrast, the TDS of the Nianchu River
remained relatively stable over the 40-year period, and the TDS of the Lhasa River decreased 15.9%
after 2000. The most significantly increased ion in the basin was SO4

2−, which trended upward after
1985, and doubled concentration as of 2015. The increase was particularly clear in the Dogxung
Tsangpo and Po Tsangpo Rivers, where the SO4

2− content increased by a factor of three. The Ca2+,
Mg2+, and HCO3

− concentrations also increased over the 40-year period, with increases of 16%–30%
after 2000. Conversely, the K+, Na+, and Cl− contents showed a downward trend in most regions after
2000, with levels of 75%, 84.2%, and 90% of those in the 1970s and 1980s, respectively.



Water 2020, 12, 616 5 of 15

Table 2. Summary of the chemical components of the mainstream and tributaries in the Yalung Tsangpo
River Basin (annual mean value).

pH TDS
mg/L

Ca2+

µmol/L
Mg2+

µmol/L
Na+

µmol/L
K+

µmol/L
HCO3−

µmol/L
SO42−

µmol/L
Cl−

µmol/L
NO3−

µmol/L

Mainstream
Average 8.1 142.9 783.3 240.0 438.3 40.0 1930.0 305.8 177.5 46.8

SD 0.4 18.7 110.6 41.4 115.3 7.1 466.5 71.3 40.7 49.8

Upstream Average 8.1 156.0 893.3 275.0 433.3 43.0 2107.5 325.0 198.3 27.7
SD 0.4 37.8 231.0 106.1 116.9 8.4 556.6 153.0 79.3 22.6

Midstream
Average 8.1 146.7 758.3 246.7 499.2 37.0 1953.3 332.5 178.3 63.7

SD 0.4 25.1 126.5 58.6 173.4 4.5 634.6 129.1 27.1 79.1

Downstream
Average 8.1 119.2 617.5 192.5 360.0 33.3 1647.5 271.3 122.5 31.7

SD 0.6 11.2 73.3 15.5 134.7 5.8 532.1 77.9 35.9 19.7
Dogxung
Tsangpo

Average 8.2 190.7 1151.0 291.5 594.0 35.0 1661.0 700.5 138.0 37.5
SD 0.3 108.3 917.9 252.8 284.1 12.9 437.8 618.5 102.0 50.9

Nianchu
Average 8.2 218.0 1188.0 489.5 541.0 38.8 2513.0 635.0 243.0 52.0

SD 0.4 26.5 251.5 139.6 249.6 8.9 492.9 283.3 72.4 32.1

Lhasa
Average 8.2 125.5 632.0 212.5 383.0 32.5 1849.0 238.0 170.0 32.1

SD 0.5 17.1 123.2 48.9 241.7 7.1 262.3 110.1 100.0 32.5

Nyang Average 7.9 72.5 345.8 120.0 238.3 35.0 946.7 138.3 200.0 19.7
SD 1.4 24.4 205.2 28.4 140.3 28.3 821.4 35.0 186.1 7.9

Po Tsangpo Average 7.5 100.7 615.0 166.7 106.7 65.0 1426.7 245.0 30.0 22.4
SD 2.5 42.4 194.5 155.6 21.2 12.1 226.3 254.6 42.4 24.6

Table 3. Ion chemistry for the mainstream and tributaries in the Yalung Tsangpo River Basin during
different periods.

River pH TDS
mg/L

Ca2+

µmol/L
Mg2+

µmol/L
Na+

µmol/L
K+

µmol/L
HCO3−

µmol/L
SO42−

µmol/L
Cl−

µmol/L
NO3−

µmol/L

1975 a Mainstream 7.7 124.7 625 200 640 1550 270 200
Dx Tsangpo b 7.9 98.7 485 140 580 1260 200 140

Nianchu 7.7 208.4 905 605 1000 3070 295 350
Lhasa 7.8 126.3 535 220 760 1760 180 310
Nyang 7.0 62.0 230 145 350 530 200 160

Po Tsangpo 5.7 67.0 465 95 140 980 115 70

1985 Mainstream 7.7 124.5 790 195 340 50 1810 190 160
Dx Tsangpo

Nianchu 8.2 199.1 1215 390 370 30 2110 655 280
Lhasa
Nyang

Po Tsangpo

2005 Mainstream 7.8 164.6 795 295 360 40 2770 290 110 13.8
Dx Tsangpo 8.0 375.4 2755 740 240 20 2300 1775 10 2.0

Nianchu
Lhasa 8.0 160.3 685 195 350 40 3400 90 180 2.0
Nyang 7.6 84.3 390 110 170 30 1680 80 60 14.2

Po Tsangpo 108.0 640 90 70 80 2000 145 10 5.0

2008 Mainstream 8.6 145.9 810 230 360 30 1940 335 190 25.0
Dx Tsangpo 8.7 143.1 900 180 400 30 1440 480 70 10.3

Nianchu 8.7 230.2 1300 450 350 30 2650 750 150 47.9
Lhasa 8.4 108.5 630 210 180 20 1540 245 80 23.6
Nyang

Po Tsangpo

2013 c Mainstream 8.3 165.0 960 283 500 40 2040 378 230 121.0
Dx Tsangpo 8.2 191.3 973 230 905 40 1925 608 205 112.5

Nianchu 7.8 226.4 1290 493 485 45 2480 695 225 85.9
Lhasa 8.0 125.4 723 233 340 35 1460 325 165 78.3
Nyang

Po Tsangpo

2015 c Mainstream 8.6 132.6 720 238 430 40 1470 373 175 27.4
Dx Tsangpo 8.4 145.0 643 168 845 50 1380 440 265 25.5

Nianchu 8.5 225.7 1230 510 500 50 2255 780 210 22.1
Lhasa 8.95 106.9 588 205 285 35 1085 350 115 24.4
Nyang 9 71.1 418 105 195 40 630 135 380 25.3

Po Tsangpo 9.2 127.0 740 315 110 50 1300 475 10 39.8
a Na+ concentration in 1975 represents the content of (Na+ + K+). b Dx Tsangpo is the Dogxung Tsangpo. c Ion
chemistry in 2013 and 2015 are the average value of two sampling periods.
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The water samples in the Yarlung Tsangpo River Basin fell near the Ca2+ apex in the cation ternary
plot (Figure 3a), indicating the dominance of Ca2+ in the river water; the Ca2+ content peaked in
2005. In the anion ternary plot, the water samples fell closer to the HCO3

− apex and extended to the
Cl− + SO4

2− apex (Figure 3b), which implied that carbonate weathering was relatively severe and
evaporite weathering was accelerating in the region. Additionally, the distribution of the samples in
the ternary plot indicated the difference of the water samples before and after the monsoon season
in 2015. Before the monsoon season, the samples fell closer to the HCO3

− apexes (average of 119.33
meq/L with a standard deviation of 28.91); however, after the monsoon season, the samples fell closer
to the Cl− + SO4

2− apex (average of 42.73 meq/L with SD of 13.26). The percent of the Cl− + SO4
2- in

the total anions content after the monsoon season (39.9%) was higher than that before the monsoon
season (23.7%) at a significant level of 95%. The SiO2 content after the monsoon season (average
of 16.52 meq/L) was slightly higher than that before the monsoon season (average of 13.09 meq/L).
These changes in the Cl−, SO4

2−, and SiO2 contents indicated that both the chemical weathering of
silicate rocks and the dissolution of evaporites increased with increased precipitation and runoff.
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3.2. Anthropogenic Impact on Riverine Dissolved Ions

Human activity can increase the ion content of rivers through agricultural fertilizers, animal waste,
and municipal and industrial effluents [40]. The NO3

− concentration is generally considered to be a good
tracer of the influence of agricultural runoff and sewage from the increasing population [41–43]; in the
Yarlung Tsangpo River Basin, the NO3

− concentration has a notably spatial variation. The historical
NO3

− content of the rainwater indicated that anthropogenic pollutants had a limited effect in the
study area before the 1980s; however, the anthropogenic influence became increasingly significant after
2000 (Table 4). The highest NO3

− concentrations were found in the flood season in the downstream
region near the Shigatse and Lhasa stations (Figure 4). Additionally, the NO3

− concentrations in two
tributaries of the Lhasa and Nianchu Rivers were relatively high. This indicated that urbanization
and increased agricultural production in the densely inhabited districts of Tibet had an increasingly
significant impact on the river ion chemistry. However, the mean NO3

− molar mass accounted for only
~1.5% (ranging from 0% to 8.1% for different rivers) of the total anion content of the study area. Thus,
the anthropogenic input from domestic and agricultural activity can be ignored in this study. Mining
activities were proven to have local impacts on hydrochemistry; however, the watercourse in the basin
can, in general, be considered relatively pristine [34,44]. Land use and cover change (LUCC) is thought
to reflect the extent of the impact of human activities. LUCC was not significant in the past several
decades in the Yarlung Tsangpo River Basin, with the change rates between land use/land cover types
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being mostly less than 1%, except residential areas, which only accounted for less than 1% of the basin
area [45,46]. Therefore, the anthropogenic impact on the riverine dissolved ions was negligible in the
study area.

Table 4. Solute chemistry of rainwater in or near the Yarlung Tsangpo River Basin (µmol/L).

Year Location Ca2+ Mg2+ Na+ K+ HCO3− SO42− Cl− NO3−

1975 [47] Nyalam County 77.5 15.2 37.8 24.1 155.8 30 31.5 -
1987–988 [48] Lhasa 75.15 2.83 88.96 14.8 288.9 1.235 21.7 1.96

1998–2000 [48] Lhasa 98.7 5.5 11.2 5.14 231.7 2.6 9.7 6.9
2015 Gongbogvamda 27.35 2.2 5.1 0.9 34.8 8.65 13 16.34

Ca2+/Cl− Mg2+/Cl− Na+/Cl− K+/Cl− HCO3
−/Cl− SO4

2−/Cl− NO3
−/Cl−

1975 2.46 0.48 1.20 0.77 4.95 0.95 - -
1987–1988 3.46 0.13 4.10 0.68 13.31 0.06 - 0.09
1998–2000 10.18 0.57 1.15 0.53 23.89 0.27 - 0.71

2015 2.10 0.17 0.39 0.07 2.68 0.67 - 1.26
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3.3. Atmospheric Contribution to Riverine Dissolved Ions

Because the Himalayas are far from the sea, the cyclic variations in sea salt aerosols have little effect
on the ion content of the river water [49]. This was confirmed by the significant spatial randomness of
the Cl− content at different times (Table 1). Therefore, the atmospheric contribution to the riverine
solutes from rainwater can be calculated as follows [3]:

[X]rain = [X/Cl]rain × [Cl]rain (1)

where X is the ion type, [X]rain is the contribution to the river’s ion X from precipitation (µmol/L),
[X/Cl]rain is the average molar ratio between ion X and Cl− in the rainwater, and [Cl]rain is the
contribution to the river’s Cl− content from precipitation (µmol/L).

The atmospheric contribution to the riverine solute load is determined by the rainwater’s ion
contents, which are normalized by Cl−. Because our study spanned over 40 years, we used different
values of [X/Cl]rain for the different time periods (Table 4). The minimum Cl− content (Cl−min) in river
water samples was assumed to be derived entirely from rain contribution in previous studies [19,26].
However, in this study, we found significant differences between Cl−min for different periods, ranging
from 1.97 (June 1985) to 30.99 µmol/L (September 2008). Using an individual Cl−min for each period
would potentially bias the calculation of the atmosphere’s relative contribution, as the dissolved Cl− in
glacial melt water is thought to be totally due to rainfall and the glacier, and the chemical composition
in a glacier surface is stable in the short term. The lowest contents of Cl− were both found in the samples
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at the terminus of the Karuola Glacier (Figure 1) for sampling in June and October, 2013, with values
of 5.0 and 9.2 µmol/L, respectively. Because one flood season occurred between these two periods
and no bursts in human activity or any natural processes substantially affected the glacial melt water
at that time, the difference between the two measured Cl− contents (4.2 µmol/L) was assumed to be
entirely due to precipitation contributions to the basin, that is, [Cl]rain. Consequently, the calculations
using Equation (1) showed that the mean atmospheric contribution by Ca2+ was 2.3% (0.8%–6.4%),
Mg2+ was 0.8% (0.2%–1.9%), Na+ was 2.0% (0.3%–7.2%), K+ was 3.7% (0.7%–10.9%), HCO3

− was 2.3%
(0.5%–5.4%), SO4

2− was 1.2% (0.1%–2.9%), and Cl− was 6.8% (2.2%–21.0%).

3.4. Contribution of Chemical Weathering to Riverine Dissolved Ions

3.4.1. Contribution from Halite and Non-Silicate Sodium Salts

After the atmospheric correction, the remaining Cl− content in the river can be derived from the
dissolution of halite (NaCl), which is completely balanced with Na+ (Equation (2)). The mean riverine
Na+ content derived from halite in the Yarlung Tsangpo River was ~166.0 µmol/L (ranging from 94.2
to 215.8 µmol/L), accounting for 37.1% (23.8%–48.4%) of the total Na+ content and 10.8% (6.2%–14.5%)
of the total cation content. Theoretically, the remaining Na+ content in the river (after removing
the contribution of the atmospheric input and dissolution of halite) is derived from the chemical
weathering of silicates [3]. However, non-silicate salts, such as borax (Na2CO3), are widespread in the
study area. Their dissolution in the midstream region contributes more than 50% to the Na+ content in
the rivers [19]. Thus, the equations are as follows:

[Cl]evaporite = [Cl]river − [Cl]rain = [Na]halite (2)

[Na]river = [Na]rain + [Na]halite + [Na]silicate + [Na]non-silicate (3)

where [Na]river is the Na+ content in the river (µmol/L); [Na]rain, [Na]halite, [Na]silicate, and [Na]non-silicate

are the contributions of precipitation, halite, silicate, and non-silicate salts, respectively, to the Na+

content in the river (µmol/L); and [Cl]evaporite is the contribution of halite to the Cl− content (µmol/L).
Ideally, Na+ and H4SiO2 released into solution during the weathering of sodium silicate minerals

(generally plagioclase) to kaolinites follow a linear relationship of 1:2 [50]. However, we found that only
~10% of the water samples from 2005 to 2015 followed the expected relationship (Figure 5). Therefore,
we subtracted the residuals of those samples, which fell well off the line of 1:2, to follow the relationship.
Because the Si content was not measured in 1975 and 1985, we used the relationship between the
calculated non-silicate Na+ and riverine HCO3

− (coefficient of determination (R2) = 0.26; p < 0.05)
for the estimation instead. The results showed that the contribution of non-silicate sodium salts to
the Na+ content in the river was approximately 173.9 µmol/l (ranging from 100.3 to 256.4 µmol/L),
which accounted for 37.4% (23.5–48.3%) of the river’s Na+ content.

3.4.2. Contribution from Evaporites and Sulfides

Evaporites (generally taken to be gypsum, CaSO4) and sulfides (generally taken to be pyrite, FeS2)
are the major sources of SO4

2− in river water (Equation (4)) [33]. The Ca2+ content from evaporites is
equal to the SO4

2− content (Equation (5)). These contributions are calculated by:

[SO4]river = [SO4]rain + [SO4]evaporite + [SO4]sulfide (4)

[SO4]evaporite = [Ca]evaporite (5)

where [SO4]river is the SO4
2− content in the river water (µmol/L); [SO4]rain, [SO4]evaporite, and [SO4]sulfide

are the contributions from precipitation, evaporites, and sulfides, respectively, to SO4
2− in the rivers

(µmol/L); and [Ca]evaporite is the contribution of evaporites to Ca2+ (µmol/L).
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After applying the atmospheric correction, the equivalent weights of Ca2+ + Mg2+ were larger
than the equivalent weight of HCO3

− in ~88.3% of the water samples (excluding the samples from 2005);
the mean ratio of HCO3

−/(Ca2+ + Mg2+) was ~0.8 (ranging from 0.56 to 0.97) (Figure 6a). Accounting
for the SO4

2− cation balance in the river water, almost all samples had (HCO3
− + SO4

2−):(Ca2+ + Mg2+)
ratios slightly higher than 1:1, with a mean of ~1.16 (ranging from 1.08 to 1.26). A linear relationship
was also found between the equivalent weights of Ca2+ + Mg2+ and HCO3

− + SO4
2− (R2 = 0.91,

range 0.78 to 0.98, p < 0.05; Figure 6b). This implied that the rock weathering in the basin was actuated
by H2SO4 in addition to H2CO3. Therefore, the oxidation of pyrite, which is the main source of H2SO4

in the environment, is suggested to contribute a considerable amount of the SO4
2− content to the

Yarlung Tsangpo River.Water 2019, 11, x FOR PEER REVIEW 9 of 15 
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To quantify the contribution of gypsum dissolution, we first calculated the contribution of the
oxidation of pyrite ([SO4]sulfide) using the equality between the equivalent weight of HCO3

− + SO4
2−

and that of Ca2+ + Mg2+. This way, the minimum assessment of evaporite contribution ([SO4]evaporite)
was obtained. If the equivalent weight of HCO3

− is larger than that of Ca2+ + Mg2+, then the
contribution of [SO4]sulfide to the total SO4

2− content can be estimated using the mean values of
[SO4]sulfide from other samples in the same sampling period. The results demonstrated that the mean
contribution of gypsum dissolution to the ion chemistry in the river was [SO4]evaporite = [Ca]evaporite
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= 143.7 µmol/L (range of 86.6 to 203.1 µmol/L). The SO4
2− and Ca2+ content derived from evaporite

accounted for 6.4% (4.1%–8.7%) and 13.3% (6.7%–39.5%) of the anion and cation content in the study
area, respectively. Most samples deviated from the Cl− + SO4

2- apex on the ternary diagram (Figure 3b)
and had relatively low ratios of SO4

2−/Ca2+ (mean of 0.4, range of 0.28 to 0.47); this indicated that the
evaporites had a relatively minimal effect on the ion chemistry in the Yarlung Tsangpo River Basin.
This is consistent with previous studies, which concluded that sulfate mainly comes from the oxidation
of pyrite rather than from the dissolution of gypsum [51].

3.4.3. Silicate and Carbonate Weathering

The chemical weathering of silicate and carbonate rocks is the most important natural source of
dissolved ions in the river. Excluding the contributions from atmospheric transport and evaporites,
Na+ and K+ are derived solely from silicate weathering (excluding non-silicate Na+), and Ca2+ and
Mg2+ are derived from both silicate and carbonate weathering; this is described by:

[K]river = [K]rain + [K]silicate (6)

[Ca]river = [Ca]rain + [Ca]evaporite + [Ca]silicate + [Ca]carbonate (7)

[Mg]river = [Mg]rain + [Mg]silicate + [Mg]carbonate (8)

where [X]river (where X can be K, Ca, or Mg) is the ion content in the river water (µmol/L); and [X]rain,
[X]evaporite, [X]silicate, and [X]carbonate are contributions to the riverine ion content from precipitation,
halite, silicate, and carbonate, respectively (µmol/L).

Sarin et al. demonstrated that silicate weathering releases less Ca2+ and Mg2+ than Na+ and
K+ [17]. Simply, after the above corrections, the Na+ + K+ content in the river samples was much
lower than the Ca2+ + Mg2+ content (Figure 7a); this indicated that carbonate weathering, rather
than silicate weathering, was the dominant source of the riverine ion content. The molar ratio of
Mg2+/Ca2+ in the river was ~0.42 (ranging from 0.29 to 0.72), which was moderate and indicated that
the substantial contributions of carbonate weathering to the riverine solute load were derived from
dolomite (CaMg(CO3)2, Mg2+/Ca2+ = ~1.1) and calcite (CaCO3, Mg2+/Ca2+ = ~0.1; Figure 7b).
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Because quantifying the Ca2+ and Mg2+ content released from the weathering of silicates is difficult,
they were estimated using the ratios of Ca2+/Na+ and Mg2+/Na+ reported in previous studies [52,53].
Based on many rock samples collected along the Yarlung Tsangpo River, Hren et al. found that most
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rocks in the stream bedload can be classified as granite [19]. We used the measured ratios of Ca2+/Na+

and Mg2+/Na+ in plagioclase (0.55 and 0.3, respectively) [19] to estimate the contribution of silicate
weathering to the Ca2+ and Mg2+ contents. The results showed that the mean K+, Na+, Ca2+, and Mg2+

contents in the river water due to silicate weathering were (with ranges indicated in parentheses) 41.0
(28.3–56.9), 71.1 (18.3–147.0), 39.1 (10.1–80.9), and 21.3 (5.5–44.1) µmol/L, respectively. The sum of these
cations accounted for 13.3% (4.6%–23.8%) of the total cation content after excluding the atmospheric
contribution. Subsequently, the contribution of carbonate weathering to riverine solutes was obtained.
The mean [Ca]carbonate and [Mg]carbonate contributions were 601.7 (range of 295.7–871.8) and 227.6
(range of 141.7–322.3) µmol/L, respectively; this accounted for 55.9% (39.7%–62.7%) of the total cation
content after excluding the precipitation contribution. These results demonstrated that carbonates
were the major mineral type affecting the water chemistry in the Yarlung Tsangpo River Basin.

3.5. Variation of Different Process Contributions During the Period of 1975 to 2015

With respect to the contributions from different sources to the total ionic budget, we showed
that various natural processes and mineral inputs affect the ion chemistry to varying degrees in this
area (Figure 8). The contribution from rainwater declined gradually from 1985 to 2015, which was
related to the reduced precipitation after 2000 [54]. Silicate rocks, such as clastic rock, shale, slate,
and granite, are widely distributed in the basin (Figure 2). The processes of rainwater scouring and
confluence can directly affect silicate weathering [55]. The reduction in precipitation after 2000 thus
weakened the present contribution from silicate weathering compared to that in 1975. This decrease in
weathering may also be the result of the decreased water–rock interaction along with the reduction
in precipitation. However, the Yarlung Tsangpo River Basin experienced spatiotemporally varying
precipitation changes and attendant runoff fluctuations during the 40-year period [46]. This may be
the main cause for the irregular changes found in the dissolution of halite and gypsums over time.
A significant negative correlation was found between the runoff and SO4

2− concentration in the river
(Table 5), whereas the contribution from sulfides significantly increased during the studied period.
This implies that, besides climate and associated runoff changes, the oxidation of sulfides may be
affected by other processes such as mining activity, which has enhanced the exposure of sulfides in
gangue and ore in mine tailings. In addition, the formation of sulfuric acid (H2SO4) from the enhanced
process of sulfides oxidation can also facilitate the contribution of chemical weathering of other rocks
to river water ions. Under this influence, an increasing trend was observed in the contribution of
carbonate weathering. As a result, the TDS in the river exhibited a non-significant increasing trend in
the Yarlung Tsangpo River Basin, although the correlation with runoff, which is a proxy for rainfall,
was significantly negative.Water 2019, 11, x FOR PEER REVIEW 12 of 15 
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Table 5. Pearson correlations of major ions and runoff in the basin.

TDS Ca2+ Mg2+ Na+ K+ HCO3− SO42− Cl− Runoff

TDS -
Ca2+ 0.96 * -
Mg2+ 0.92 * 0.86 * -
Na+ 0.48 0.28 0.65 * -
K+ 0.38 0.30 0.39 0.69 * -

HCO3
− 0.80 * 0.64 * 0.66 * 0.48 0.22 -

SO4
2− 0.81 * 0.91 * 0.76 * 0.13 0.30 0.32 -

Cl− 0.22 0.15 0.32 0.59 * 0.49 0.11 0.04 -
Runoff −0.95 * −0.90 * −0.93 * −0.60 * −0.33 −0.69 * −0.79 * 0.35 -

* Correlation is significant at the 95% level.

4. Conclusions

Based on the field sample data collected in 2013 and 2015, and combined with the compiled
historical data from previous studies, the spatial and temporal changes of ionic composition and their
natural sources were estimated in the Yarlung Tsangpo River Basin. The results indicated that the
average TDS in the basin was 138.6 mg/L, which increased slightly after 2000, especially in the upstream
region. Carbonate weathering was the main source of the riverine dissolved ions, followed by silicate
weathering. As a result, Ca2+ and HCO3

− were found to be the dominant cation and anion in the river
water, respectively, accounting for 53.3% and 77% of the total cation and anion content, respectively.
Over the 40-year period, an increasing trend was found in the Ca2+, Mg2+, and HCO3

− concentrations,
especially in SO4

2–, which increased two-fold. This mainly occurred due to the significant increase
in sulfide oxidation and carbonate weathering, which may be affected by both climate change and
human activities. Conversely, the ion contribution to the river from silicate weathering and rainwater
declined after 2000 due to the reduced rainfall and associated decreased water–rock interactions in the
Yarlung Tsangpo River Basin.
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