Megacity Wastewater Poured into A Nearby Basin: Looking for Sustainable Scenarios in A Case Study
Abstract
:1. Introduction
1.1. Hydrological Balance Model
1.2. Study Case
2. Materials and Methods
2.1. Model Description
2.1.1. Schematic Model
2.1.2. Assumptions for the Baseline Scenario (2005)
- The valley is considered a basin that compiles a set of six adjacent sub-basins. Figure 1 shows the elevation map of the area, which delimits sub-basins. The GIS layer depicts six sub-basins: three small ones in the southern region (Tlautla, Tepeji-El Salto, and El Salado Rivers) and three bigger ones in the center and north (Actopan, Alfajayucan, and Tula Rivers).
- The superficial wastewater importation from Mexico City enters in the southern area through the El Salto and El Salado Rivers. Both flows merge as a one-point entrance by the connecting channel between them.
- The startup of WWTP in Atotonilco de Tula occurred in 2017 at a 30% capacity and reached 100% as of 2020. It treats about 60% of the imported sewage at its maximum capacity.
- The model considers six aquifers based on the orography, which determines the catchment areas. It does not assume the political division criteria reported by [24].
- The value of consumptive water for each irrigation district was distributed and divided by the area, based on the official reports [22]. The consumptive water use for individual crops was considered similarly because the flood irrigation distributes water proportionally to the sown area, regardless of the type of crop.
- Starting from 2020, 31% of the wastewater importation from Mexico City is to be allocated in Mexico State. Scenario 3 considers this sharp reduction as a realistic transient scenario. The program provides the mathematical expressions which best fit the conceptual model assumptions and aims.
2.1.3. Data Model
2.2. Scenarios: Steady-State and Transient Conditions
- (#1)
- Steady-State Scenario. It simulates the inertial tendency (BAU, business as usual), even though it includes the WWTP startup since 2017. Table 2 shows the population projections data [64]. The industrial growth rates were from the Mexican Business Information System [65]: chemical, 0.45%; textile, 3%; food, 3.7%; metallurgical, 3.7%; and lime and cement, 2.5%. The irrigated areas expansion was assumed to equal the crop annual growth rates (maize, 1.7%; beans, 0.88%; alfalfa, forages, and vegetables, 1.27%) [46].
- (#2)
- (#3)
- Adaptation Scenarios. The perturbations are related to irrigation alternatives and sewage import reduction. It considers Scenario #2 + decreased wastewater imports + each irrigation technology the most likely, with a 36% decrease in wastewater imports since 2020 due to the startup of five sewage treatment plants and the fact that Mexico State will catch 606 Mm3/y. Additionally, the imported surface water will fit the quality requirements for sprinkling and drip irrigation technologies that will be analyzed separately from 2020, instead of the current flood irrigation with water savings of 25% and 43%, respectively [68].
3. Results and Discussion
3.1. Model Validation
3.2. Model Boundaries Result in the Base Year 2005 (Baseline)
- A sub-basin analysis is needed for management policies as their characteristics are not the same.
- Freshwater caption and the prevention of its contamination should be underlined in special programs for sub-basins El Salto-Tepeji and El Salado.
- A total of 59% of the imported untreated wastewater supports the agriculture irrigation of four sub-basins. Therefore, soil recuperating programs and remediation technologies should be designed, with particular emphasis on the Tula sub-basin.
- There is a misleading thought that rain is the first water input and support of valley agriculture because of the unsuitable evaluation of evapotranspiration.
- The Actopan and Alfajayucan sub-basins will not be benefit with the WWTP. Therefore, they need different local policy plans for water remediation.
3.3. Transient Conditions Results
3.3.1. Scenario 1. Steady-State (Reference)
3.3.2. Scenario 2. Climate Change Perturbations
3.3.3. Scenario 3. Imported Wastewater Reduction and Adaptation Action, Sprinkler and Drip Irrigation
3.4. Mezquital Valley Hydrological Balance Scenarios. Flow Diagrams
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brooks, K.N.; Folliott, P.F.; Magner, J.A. Hydrology and the Management of Watersheds, 4th ed.; Wiley-Blackwell: Oxford, UK, 2013; pp. 5–15. [Google Scholar]
- Kraas, F. Megacities as global risk areas. In Urban Ecology; Marzluff, J.M., Ed.; Springer: Boston, MA, USA, 2008; pp. 583–596. [Google Scholar] [CrossRef]
- Mancosu, N.; Snyder, R.; Kyriakakis, G.; Spano, D. Water scarcity and future challenges for food production. Water 2015, 7, 975–992. [Google Scholar] [CrossRef]
- Harding, R.J.; Weedon, G.P.; van Lanen, H.A.J.; Clark, D.B. The future for global water assessment. J. Hydrol. 2014, 518, 186–193. [Google Scholar] [CrossRef] [Green Version]
- Sun, G.; Michelsen, A. Water for mega cities: Challenges and solutions. In Proceedings of the AWRA Specialty Conference. Watershed Update, Beijing, China, 16–18 September 2013; pp. 1–7. Available online: http://www.awra.org/committees/techcom/watershed/pdfs/AWRA%20H&WM_2013_Water-for-Mega-Cities.pdf (accessed on 11 November 2019).
- Varis, O.; Biswas, A.K.; Tortajada, C.; Lundqvist, J. Megacities and water management. Int. J. Water Resour. Dev. 2006, 22, 377–394. [Google Scholar] [CrossRef]
- Contreras, J.D.; Meza, R.; Siebe, C.; Rodriguez-Dozal, S.; Lopez-Vidal, Y.A.; Castillo-Rojas, G.; Amieva, R.I.; Solano-Galvez, S.G.; Mazari-Hiriart, M.; Silva-Magana, M.A.; et al. Health risks from exposure to untreated wastewater used for irrigation in the Mezquital Valley, Mexico: A 25-year update. Water Res. 2017, 123, 834–850. [Google Scholar] [CrossRef] [PubMed]
- Moazeni, M.; Nikaeen, M.; Hadi, M.; Moghim, S.; Mouhebat, L.; Hatamzadeh, M.; Hassanzadeh, A. Estimation of health risks caused by exposure to enteroviruses from agricultural application of wastewater effluents. Water Res. 2017, 125, 104–113. [Google Scholar] [CrossRef] [PubMed]
- Gelaw, A.M.; Singh, B.R.; Lal, R. Soil organic carbon and total nitrogen stocks under different land use in a semi-arid watershed in Tigray, Northern Ethiopia. Agric. Ecosyst. Environ. 2014, 188, 256–263. [Google Scholar] [CrossRef]
- WHO. WHO Guidelines for the Safe Use of Wastewater, Excreta and Greywater-Volume 4; WHO Press: Geneva, Switzerland, 2006; Available online: https://www.who.int/water_sanitation_health/publications/gsuweg4/en/ (accessed on 10 November 2019).
- Wichelns, D.; Qadir, M. Policy and institutional determinants of wastewater use in agriculture. In Wastewater. Economic Asset in an Urbanizing World; Drechsel, P., Qadir, M., Wichelns, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; p. 282. [Google Scholar] [CrossRef]
- Sadr Seyed, M.K.; Saroj, D.P.; Mierzwa, J.C.; McGrane, S.J.; Skouteris, G.; Farmani, R.; Kazos, X.; Aumeier, B.; Kouchaki, S.; Kouchaki, S. A multi expert decision support tool for the evaluation of advanced wastewater treatment trains: A novel approach to improve urban sustainability. Environ. Sci. Policy 2018, 90, 1–10. [Google Scholar] [CrossRef]
- Sulis, A.; Sechi, G.M. Comparison of generic simulation models for water resource systems. Environ. Model. Softw. 2013, 40, 214–225. [Google Scholar] [CrossRef]
- Loucks, D.P.; van Beek, E. Water Resource Systems Planning and Management: An Introduction to Methods, Models, and Applications; Springer: Berlin/Heidelberg, Germany, 2017; pp. 1–39. [Google Scholar] [CrossRef]
- Ashofteh, P.S.; Haddad, O.B.; Mariño, M.A. Risk analysis of water demand for agricultural crops under climate change. J. Hydrol. Eng. 2015, 20, 401–406. [Google Scholar] [CrossRef] [Green Version]
- Sieber, J.; Purkey, D. WEAP. Water Evaluation and Planning System. User Guide; Stockholm Environment Institute US Center: Somerville, MA, USA, 2015; p. 400. Available online: http://www.weap21.org/downloads/WEAP_User_Guide.pdf (accessed on 12 October 2017).
- SEI. Water Evaluation and Planning. WEAP. Available online: https://www.weap21.org/ (accessed on 12 October 2017).
- Demographia. Demographia World Urban Areas 2018. 14th Annual Edition: 2018/04. Available online: http://www.demographia.com/db-worldua.pdf (accessed on 12 November 2019).
- Tortajada, C. Water management in Mexico City metropolitan area. Int. J. Water Res. Dev. 2006, 22, 353–376. [Google Scholar] [CrossRef]
- Tortajada, C. Mexico-City. In World of Water; ESA, ESRIN, Eds.; ESA/ESRIN: Frascati, Italy, 2015; pp. 191–195. Available online: https://eo194society.esa.int/resources/the-world-of-water/ (accessed on 12 November 2019).
- Moreno-Alcántara, B.; Garret-Ríos, M.G.; Fierro Alonso, U.J. Otomíes del valle del mezquital. In Pueblos Indígenas del México Contemporáneo; CDI: Mexico, Mexico, 2006; p. 52. Available online: http://www.cdi.gob.mx/dmdocuments/otomies_valle_mezquital.pdf (accessed on 11 February 2020).
- CONAGUA. Estadísticas del Agua de la Región Hidrológico-Administrativa XIII; Conagua: Mexico City, Mexico, 2014; Available online: https://agua.org.mx/wp-content/uploads/2015/09/Estadisticas_Agua_Valle_de_Mexico_2014.pdf (accessed on 12 November 2019).
- Rodarte-García, R.; Galindo-Escamilla, E.; Díaz-Pérez, F.; Fernández-Fernández, G.L. Gestión del Agua y Reconstrucción de la Naturaleza En el Valle del Mezquital; Universidad Autónoma del Estado de Hidalgo: Hidalgo, Mexico, 2012; pp. 123–239. Available online: https://www.uaeh.edu.mx/investigacion/productos/5058/libro_gestion_agua.pdf (accessed on 12 November 2019).
- Lesser-Carrillo, L.E.; Lesser-Illades, J.M.; Arellano-Islas, S.; González-Posadas, D. Balance hídrico y calidad de agua subterránea en el acuífero del Valle del Mezquital, México central. Rev. Mex. Cienc. Geol. 2011, 28, 323–336. Available online: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1026-87742011000300001 (accessed on 11 November 2019).
- González-Méndez, B.; Webster, R.; Fiedler, S.; Loza-Reyes, E.; Hernández, J.M.; Ruíz-Suárez, L.G.; Siebe, C. Short-term emissions of CO2 and N2O in response to periodic flood irrigation with wastewater in the Mezquital Valley of Mexico. Atmos. Environ. 2015, 101, 116–124. [Google Scholar] [CrossRef]
- Jiménez-Cisneros, B. Water recycling and reuse: An overview. In Water Reclamation and Sustainability; Ahuja, S., Ed.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 431–454. [Google Scholar] [CrossRef]
- Jiménez-Cisneros, B.; Chávez-Mejía, A. Treatment of Mexico City wastewater for irrigation purposes. Environ. Technol. 1997, 18, 721–729. [Google Scholar] [CrossRef]
- Jiménez, B. Irrigation in developing countries using wastewater. Int. Rev. Environ. Strateg. 2006, 6, 229–250. Available online: https://pub.iges.or.jp/pub_file/iresvol6-2229pdf/download (accessed on 11 November 2019).
- Lesser, L.E.; Mora, A.; Moreau, C.; Mahlknecht, J.; Hernandez-Antonio, A.; Ramirez, A.I.; Barrios-Pina, H. Survey of 218 organic contaminants in groundwater derived from the world’s largest untreated wastewater irrigation system: Mezquital Valley, Mexico. Chemosphere 2018, 198, 510–521. [Google Scholar] [CrossRef]
- Montelongo-Casanova, R.; Gordillo-Martínez, A.J.; Otazo-Sánchez, E.M.; Villagómez-Ibarra, J.R.; Acevedo-Sandoval, O.A. Modelación de la calidad del agua del Río Tula, Estado de Hidalgo, México. Dyna 2008, 75, 5–18. Available online: https://revistas.unal.edu.co/index.php/dyna/article/view/1709/11601 (accessed on 11 November 2019).
- García, R.; Prieto, F.; Scott, W.; Pulido, G.; Zúñiga, A. Afectaciones a la Salud por Efecto de Metales Tóxicos en la Población de Xochitlán, Hidalgo, México (Valle del Mezquital). Cienc. Trab. 2010, 12, 362–369. Available online: http://www.medigraphic.com/pdfs/revcubsaltra/cst-2015/cst152c.pdf (accessed on 11 November 2019).
- Guédron, S.; Duwig, C.; Prado, B.L.; Point, D.; Flores, M.G.; Siebe, C. (Methyl)Mercury, arsenic, and lead contamination of the world’s largest wastewater irrigation system: The mezquital valley (hidalgo state—Mexico). Water Air Soil Pollut. 2014, 225, 2045. [Google Scholar] [CrossRef]
- Cajuste, L.; Vazquez-A, A.; Miranda-C, E. Long-term changes in the extractability and availability of lead, cadmium, and nickel in soils under wastewater irrigation. Commun. Soil Sci. Plant Anal. 2002, 33, 3325–3333. [Google Scholar] [CrossRef]
- Cajuste, L.J.; Alarcón, A.V.; Grabach, C.D.; González, G.A.; de la Isla, M.D. Cadmio, Níquel y Plomo en agua residual, suelo y cultivos en el Valle del Mezquital, Hidalgo, México. Agrociencia 2001, 35, 267–274. Available online: http://www.redalyc.org/articulo.oa?id=30200302 (accessed on 11 November 2019).
- Luneberg, K.; Schneider, D.; Siebe, C.; Daniel, R. Drylands soil bacterial community is affected by land-use change and different irrigation practices in the Mezquital Valley, Mexico. Sci. Rep. 2018, 8, 1413. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Martínez, J.L.; Prado, B.; Durán-Álvarez, J.C.; Bischoff, W.A.; Siebe, C. Movement of water and solutes in a wastewater irrigated piedmont. Procedia Earth Planet. Sci. 2014, 10, 365–369. [Google Scholar] [CrossRef] [Green Version]
- Hernández Suárez, C. El riego agrícola con aguas negras en el Valle del Mezquital, Hidalgo, México. In Decisiones históricas sobre los territorios, Memorias del VI Congreso Internacional de Ordenamiento Territorial y Ecológico; Ensenada, México. 2014. Available online: http://aplicaciones.colef.mx/.../107%20HERNANDEZ%20SUAREZ%20CLEOTILDE (accessed on 11 November 2019).
- Prieto Meendez, J.; González Ramírez, C.A.; Román Gutiérrez, A.D.; Prieto García, F. Plant Contamination and Phytotoxicity Due to Heavy Metals from Soil and Water (Valle del Mezquital). Trop. Subtrop. Agroecosyst. 2009, 10, 29–44. Available online: https://www.redalyc.org/pdf/939/93911243003.pdf (accessed on 11 October 2019).
- Sánchez–González, A.; Chapela–Lara, M.; Germán–Venegas, E.; Fuentes-García, R.; Río-Portilla, F.D.; Siebe, C. Changes in quality and quantity of soil organic matter stocks resulting from wastewater irrigation in formerly forested land. Geoderma 2017, 306, 99–107. [Google Scholar] [CrossRef]
- Acciona. Atotonilco WWTP (México), the World’s Largest Wastewater Treatment Plant, Celebrates Its First Year in Operation. 2018. Available online: http://www.acciona-agua.com/pressroom/in-depth/2018/july/atotonilco-wwtp-m%C3%A9xico-the-world-s-largest-wastewater-treatment-plant-celebrates-its-first-year-in-operation/ (accessed on 15 April 2018).
- CONAGUA. Planta de Tratamiento de Aguas Residuales Atotonilco [Atotonilco Wastewater Treatment Plant], CONAGUA Mexico City, Mexico. 2013. Available online: http://www.conagua.gob.mx/CONAGUA07/Publicaciones/Publicaciones/SGAPDS-19-11.pdf (accessed on 15 April 2018).
- Hernández-Espriú, A.; Arango-Galván, C.; Reyes-Pimentel, A.; Martínez-Santos, P.; Pita de la Paz, C.; Macías-Medrano, S.; Arias-Paz, A.; Breña-Naranjo, J. Water supply source evaluation in unmanaged aquifer recharge zones: The Mezquital Valley (Mexico) case study. Water 2016, 9, 4. [Google Scholar] [CrossRef] [Green Version]
- Psomas, A.; Panagopoulos, Y.; Konsta, D.; Mimikou, M. Designing water efficiency measures in a catchment in Greece using WEAP and SWAT models. Procedia Eng. 2016, 162, 269–276. [Google Scholar] [CrossRef] [Green Version]
- INEGI. Descriptive Technical Document of the Hydrographic Network. [Documento Técnico Descriptivo de la Red Hidrográfica] Scale 1:50,000. Ed. 2.0. General-Department-of-Geography-and-Environment, National Institute of Statistics and Geographic Information (INEGI). 2010; p. 106. Available online: http://antares.inegi.org.mx/analisis/red_hidro/PDF/Doc.pdf (accessed on 11 May 2017).
- Ayala Garay, A.V.; Sangerman-Jarquín, D.M.; Schwentesius de Rindermann, R.; Damían Huato, M.Á.; Juárez Rivera, C.G. Strengthening the competitiveness of the agricultural sector in hidalgo. Rev. Mex. Cien. Agric. 2010, 1, 233–245. Available online: http://www.scielo.org.mx/pdf/remexca/v1n2/v1n2a9.pdf (accessed on 15 November 2019).
- FAO. Coping with Water Scarcity. An Action Framework for Agriculture and Food Security; FAO Water Reports: Rome, Italy, 2012; p. 100. Available online: http://www.fao.org/3/i3015e/i3015e.pdf (accessed on 11 May 2017).
- INEGI. Dictionary of Land Use and Vegetation Data. Scale 1: 250,000, Series III. [Diccionario de Datos de Uso de Suelo y Vegetación]. Land Use and Vegetation Series, Aguascalientes. National Institute of Statistics and Geographic Information (INEGI). Mexico. 2009. Available online: https://www.inegi.org.mx/temas/mapas/usosuelo/ (accessed on 5 May 2017).
- Yates, D.; Sieber, J.; Purkey, D.; Huber-Lee, A. WEAP21—A demand-, priority-, and preference-driven water planning model. Part 1: Model characteristics. Int. Water Res. Assoc. 2005, 30, 487–500. [Google Scholar] [CrossRef]
- INEGI. Information System of Land Cover [Sistema de información de la cobertura de la tierra SICT]; National Institute of Statistics and Geographic Information (INEGI): Aguascalientes, Mexico, 2009. Available online: http://internet.contenidos.inegi.org.mx/contenidos/Productos/prod_serv/contenidos/espanol/bvinegi/productos/geografia/publicaciones/siste_inform/mar_ot5335cub_tierra.pdf (accessed on 5 May 2017).
- WMO. Guide to hydrological practices. In Hydrology Volume 1.–From Measurement to Hydrological Information (WMO-No. 168), 6th ed.; World Meteorological Organization: Geneva, Switzerland, 2008; p. 298. Available online: http://www.wmo.int/pages/prog/hwrp/publications/guide/english/168_Vol_I_en.pdf (accessed on 5 May 2017).
- Schosinsky, G.; Losilla, M. Modelo analítico para determinar la infiltración con base en la lluvia mensual. Rev. Geol. Am. Cent. 2000, 23, 43–55. Available online: https://revistas.ucr.ac.cr/index.php/geologica/article/download/8579/8102/ (accessed on 5 May 2017). [CrossRef]
- IMTA. Software Eric III. Ver 3.2-Quick Extractor of Climatologic Information. [Extractor rápido de información climatológica]; SEMARNAT: Mexico City, Mexico, 2013; Available online: https://www.imta.gob.mx/productos/software/eric-iii-version-3-2-extractor-rapido-de-informacion-climatolo-detail (accessed on 5 May 2017).
- Zotarelli, L.; Dukes, M.D.; Romero, C.C.; Migliaccio, K.W.; Morgan, K.T. Step by Step Calculation of the Penman-Monteith Evapotranspiration (FAO-56 Method) Reviewed. Available online: http://edis.ifas.ufl.edu/pdffiles/ae/ae45900.pdf (accessed on 5 May 2017).
- Zarei, A.R.; Zare, S.; Parsamehr, A.H. Comparison of several methods to estimate reference evapotranspiration. West African J. Appl. Ecol. 2015, 23, 17–25. Available online: https://www.ajol.info/index.php/wajae/article/view/130514/120094 (accessed on 5 May 2017).
- Isikwue, C.B.; Audu, O.M.; Isikwue, O.M. Evaluation of Evapotranspiration using FAO Penman-Monteith Method in Kano Nigeria. Int. J. Sci. Tech. 2014, 3, 698–703. Available online: http://www.journalofsciences-technology.org/archive/2014/nov_vol_3_no_11/61952414585354.pdf (accessed on 5 May 2017).
- SEMARNAT_CONAGUA. Estadísticas Agrícolas De Los Distritos De Riego. Año Agrícola 2013–2014; SEMARNAT: Mexico City, Mexico, 2015; p. 408. Available online: http://www.conagua.gob.mx/CONAGUA07/Publicaciones/Publicaciones/SGIH-6-15.pdf (accessed on 5 May 2017).
- Sanchez-Cohen, I.; Bueno-Hurtado, P.; Esquivel-Arriaga, G.; Velásquez-Valle, M.A. Impact of crop sensitivity to water stress in rain feed areas of Mexico. Rev. Chapingo, Serie Zonas Áridas 2015, 14, 61–74. Available online: https://doi.org/10.5154/r.rchza.2015.05.005 (accessed on 5 May 2017). [CrossRef] [Green Version]
- Espitia-Rangel, E.; Villaseñor-Mir, H.E.; Tovar Gómez, R.; de la O Olán, M.; Limón Ortega, A. Optimum cutting time for yield and quality of forage oats varieties. Rev. Mex. Cienc. Agric. 2012, 3, 771–783. Available online: http://www.scielo.org.mx/pdf/remexca/v3n4/v3n4a12.pdf (accessed on 6 May 2017).
- Limon Ortega, A.; Rodriguez-Garcia, M.F. Ocho años de siembra en camas permanentes; dinámica de rendimiento y enfermedades en trigo; National Institute of Forestry, Agriculture and Livestock Research, Eds.; SAGARPA/INIFAP: Texcoco, Estado de Mexico, 2010; Available online: http://www.inifap.gob.mx/circe/Documents/publivalle/FOLLETO%20TECNICO%2040%20pdf (accessed on 6 May 2017).
- Medina-García, G.; Baez-González, A.D.; López-Hernández, J.; Ruíz-Corral, J.A.; Tinoco-Alfaro, C.A.; Kiniry, J.R. Large-area dry bean yield prediction modeling in Mexico. Modelo regional para predecir el rendimiento de frijol de temporal en México. Rev. Mex. Cienc. Agric. 2010, 1, 413–426. Available online: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-09342010000300010 (accessed on 6 May 2017).
- Alarcón Zúñiga, B.; Cervantes Martínez, T. Producción de Semilla de Alfalfa en el Valle del Mezquital, Hidalgo, 1st ed.; Universidad Autónoma Chapingo and Fundacion Hidalgo Produce A.C.: Chapingo, México, 2013; Available online: https://es.scribd.com/document/350677200/MANUAL-SEMILLA-ALFALFA-pdf (accessed on 6 May 2017).
- Jolalpa Barrera, J.L.; Espinosa García, J.A.; Cuevas Reyes, V.; Moctezuma López, G.; Romero Santillán, F. Necesidades de investigación en la cadena productiva de alfalfa (Medicago sativa L) en el Estado de Hidalgo. Rev. Mex. Agronegocios 2009, 25, 104–115. Available online: https://www.redalyc.org/pdf/141/14118560011.pdf (accessed on 6 May 2017).
- CONAPO. Proyecciones de la población de México 2010–2050, National_Council_of_Population. (CONAPO), México. 2013. Available online: https://www.gob.mx/cms/uploads/attachment/file/63977/Documento_Metodologico_Proyecciones_Mexico_2010_2050.pdf (accessed on 11 May 2017).
- Global-Edge. Mexican Business Information System (SIEM). Available online: https://globaledge.msu.edu/global-resources/resource/1518 (accessed on 11 May 2017).
- Otazo-Sanchez, E.; Pavón, N.P.; Bravo-Cadena, J.; Pulido, M.T.; López-Pérez, S.; Razo-Zarate, R.; González-Ramírez, C.A.; Sánchez-Rojas, G.; Martín- Hernández, C.Y.; Fragoso López, P.I.; et al. Programa Estatal de Acción ante el Cambio Climático de Hidalgo. Available online: http://cambioclimatico.gob.mx/wp-content/uploads/2018/11/Documento-2-Programa-Estatal-2013-parte-2.pdf (accessed on 11 May 2017).
- Patiño-Gómez, C.; Reza-García, I.; Ruíz-Morelos, B.H.; Zazueta-Acosta, I.; Gómez-Martínez, J.F.; Wagner-Gómez, A.; Rivera-Benítez, J.; Balancán-Soberanis, A. Portafolio de Medidas de adaptación al cambio climático en el Escurrimiento Superficial de las Regiones hidrológico-Administrativas de México. Available online: https://es.scribd.com/document/303568055/2012-Med-Adap-Cc-Reg-Hidro (accessed on 15 May 2017).
- Jägermeyr, J.; Gerten, D.; Heinke, J.; Schaphoff, S.; Kummu, M.; Lucht, W. Water savings potentials of irrigation systems: Global simulation of processes and linkages. Hydrol. Earth Syst. Sci. 2015, 19, 3073–3091. [Google Scholar] [CrossRef] [Green Version]
- Chamizo-Checa, S.; Otazo-Sánchez, E.M.; Gordillo-Martínez, A.J.; González- Ramírez, C.A.; Suárez-Sánchez, J.; Muñoz-Nava, H. El Cambio Climático y la Disponibilidad Agua en Sub-Cuencas del Valle del Mezquital, México. Available online: http://www.reibci.org/publicados/2018/oct/3000102.pdf (accessed on 10 October 2018).
- Chang, D.; Ma, Z.; Wang, X. Framework of wastewater reclamation and reuse policies (WRRPs) in China: Comparative analysis across levels and areas. Environ. Sci. Policy 2013, 33, 41–52. [Google Scholar] [CrossRef]
- Semarnat. Acuerdo Por el Que Se Dan a Conocer Las Zonas de Disponibilidad que Corresponden a las Cuencas y acuíferos del país Para el Ejercicio Fiscal 2018, en términos del último párrafo del artículo 231 de la Ley Federal de Derechos Vigente. Available online: http://www.dof.gob.mx/nota_detalle.php?codigo=5517343&fecha=27/03/2018 (accessed on 11 October 2018).
Sub-Watersheds Rivers | Area (km2) | % | |||||
---|---|---|---|---|---|---|---|
Water Bodies | Urban | Temporal Agriculture | Irrigation Agriculture | PastureLand | Forest and Scrub | ||
Tlautla | 172 | 0.0 | 9.0 | 14 | 23 | 33 | 21 |
El Salto-Tepejí | 260 | 1.15 | 8.5 | 13 | 23 | 33.5 | 21 |
Salado | 275 | 0.0 | 21 | 38 | 15 | 5.5 | 20.5 |
Alfajayucan | 850 | 0.8 | 1.2 | 12 | 22 | 25 | 39 |
Actopan | 1320 | 0.0 | 7 | 11 | 27 | 8.0 | 47 |
Tula | 2168 | 1.0 | 16 | 29 | 20 | 12 | 21 |
Mezquital Valley Basin | 5045 | 0.1% | 10.7% | 42.6% | 17.6% | 29% |
River Sub-Basin | Texture Soil | Kfc | Slope (%) | Kp | ||
---|---|---|---|---|---|---|
Sandy | Silty | Clay | ||||
El Salto-Tepejí | 35 | 60 | 5 | 0.315 | 22.3 | 0.15 |
Tlautla | 28 | 68 | 4 | 0.33 | 18.66 | 0.2 |
Salado | 30 | 67 | 3 | 0.33 | 10.02 | 0.2 |
Actopan | 35 | 62 | 3 | 0.32 | 16.57 | 0.2 |
Alfajayucan | 45 | 53 | 2 | 0.30 | 14.07 | 0.2 |
Tula | 32 | 66 | 2 | 0.33 | 18.75 | 0.15 |
River Sub-Basin | Urban Areas | Agriculture | Pasture Land | Forest and Scrub | Water Bodies | Kv |
---|---|---|---|---|---|---|
El Salto-Tepejí | 8.50 | 36.00 | 33.50 | 21 | 1.15 | 0.12 |
Tlautla | 9.00 | 37.00 | 33.00 | 21 | 0.00 | 0.12 |
Salado | 21.00 | 53.00 | 5.50 | 21 | 0.00 | 0.09 |
Actopan | 7.00 | 38.00 | 8.00 | 47 | 0.00 | 0.11 |
Alfajayucan | 1.20 | 34.00 | 25.00 | 39 | 0.80 | 0.11 |
Tula | 16.00 | 49.00 | 12.00 | 21 | 1.00 | 0.10 |
River Sub-Basin | Kfc | Kp | Kv | Ci | Ce |
---|---|---|---|---|---|
El Salto-Tepejí | 0.315 | 0.15 | 0.12 | 0.59 | 0.42 |
Tlautla | 0.33 | 0.2 | 0.12 | 0.65 | 0.35 |
Salado | 0.33 | 0.2 | 0.09 | 0.62 | 0.38 |
Actopan | 0.32 | 0.2 | 0.11 | 0.63 | 0.37 |
Alfajayucan | 0.30 | 0.2 | 0.11 | 0.61 | 0.39 |
Tula | 0.33 | 0.15 | 0.10 | 0.58 | 0.42 |
River Sub-Basin | Groundwater Demand (Mm3/y) | Surface Water Demand (Mm3/y) | ||||||
---|---|---|---|---|---|---|---|---|
Population | Agriculture | Industrial | Services | Total | Agriculture | Industrial | Total | |
El Salto-Tepejí | 6.3 | 2 | 8.4 | 0.4 | 17.1 | 18.4 | 3.3 | 21.7 |
Tlautla | 1.1 | 0.3 | 1.5 | 0.1 | 3 | 5.5 | 0.8 | 6.3 |
Salado | 6.9 | 4.6 | 69.5 | 0.8 | 81.8 | 125 | 0.5 | 125.5 |
Actopan | 13.8 | 20.8 | 2.2 | 0.6 | 37.4 | 175 | 0.1 | 175.1 |
Alfajayucan | 3 | 1.7 | 0.3 | 0.1 | 5.1 | 135 | 1.6 | 136.6 |
Tula | 25.7 | 14.8 | 41.4 | 4 | 83 | 630.1 | 20.7 | 645 |
Total | 56.8 | 44.2 | 123.3 | 6 | 230.3 | 1089 | 27 | 1116 |
# | Name | Description | Source | 2017 | 2030 | 2050 | |||
---|---|---|---|---|---|---|---|---|---|
In-Flow | Out-Flow | In-Flow | Out-Flow | In-Flow | Out-Flow | ||||
1 | Steady-state | Population, industrial, and irrigation growth rates lead the water demands | Groundwater | 391.6 | 267 | 408.6 | 313 | 431 | 403 |
Surface water | 1925 | 1294 | 1931 | 1524 | 1944 | 1966 | |||
2 | Reference + climate change effect | Rain infiltration and runoff gradually decrease 6.5% in 2050 | Groundwater | 371 | 267 | 363 | 313 | 353 | 403 |
Surface water | 1914 | 1294 | 1908 | 1524 | 1900 | 1966 | |||
3 | Wastewater splits to other state + new irrigation technologies | Wastewater inflow falls 31% in 2020 and irrigation demand gradually decreases 45% in 2050 | Groundwater | 341 | 267 | 350 | 310 | 350 | 370 |
Surface water | 1670 | 1294 | 1338 | 830 | 1338 | 667 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chamizo-Checa, S.; Otazo-Sánchez, E.; Gordillo-Martínez, A.; Suárez-Sánchez, J.; González-Ramírez, C.; Muñoz-Nava, H. Megacity Wastewater Poured into A Nearby Basin: Looking for Sustainable Scenarios in A Case Study. Water 2020, 12, 824. https://doi.org/10.3390/w12030824
Chamizo-Checa S, Otazo-Sánchez E, Gordillo-Martínez A, Suárez-Sánchez J, González-Ramírez C, Muñoz-Nava H. Megacity Wastewater Poured into A Nearby Basin: Looking for Sustainable Scenarios in A Case Study. Water. 2020; 12(3):824. https://doi.org/10.3390/w12030824
Chicago/Turabian StyleChamizo-Checa, Silvia, Elena Otazo-Sánchez, Alberto Gordillo-Martínez, Juan Suárez-Sánchez, César González-Ramírez, and Hipólito Muñoz-Nava. 2020. "Megacity Wastewater Poured into A Nearby Basin: Looking for Sustainable Scenarios in A Case Study" Water 12, no. 3: 824. https://doi.org/10.3390/w12030824
APA StyleChamizo-Checa, S., Otazo-Sánchez, E., Gordillo-Martínez, A., Suárez-Sánchez, J., González-Ramírez, C., & Muñoz-Nava, H. (2020). Megacity Wastewater Poured into A Nearby Basin: Looking for Sustainable Scenarios in A Case Study. Water, 12(3), 824. https://doi.org/10.3390/w12030824