Analysis of the Bioaugmentation Potential of Pseudomonas putida OR45a and Pseudomonas putida KB3 in the Sequencing Batch Reactors Fed with the Phenolic Landfill Leachate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Bacterial Strains
2.3. Composition of the Phenolic Landfill Leachate
2.4. The Experimental Set-Up and Batch Bioaugmentation Experiment
2.5. Determining the Concentration of Selected Phenolic Compounds in Wastewater
2.6. Determining the Selected Physicochemical Parameters of the AS and Wastewater Quality
2.7. Enumeration of Total Heterotrophic Bacteria in the AS
2.8. Measuring the Enzymatic Activity of the AS
2.9. Determining the Specific Oxygen Uptake Rate in the Bioreactors
2.10. Determining the ATP Concentration in the AS
2.11. Assessing the Functional Capacity of Microorganisms in the AS
2.12. Statistical Analysis
3. Results
3.1. The impact of Wastewater Composition and Bioaugmentation on the Operational Parameters of the Bioreactors and Effluent Quality
3.2. The Impact of Wastewater Composition and Bioaugmentation on the Biomass Concentration and Number of Heterotrophic Bacteria in the AS
3.3. The Impact of Wastewater Composition and Bioaugmentation on the Enzymatic Activity of the Bioreactors
3.4. The Impact of Wastewater Composition and Bioaugmentation on the Functional Capacity of Microorganisms in the AS
3.5. Bioaugmentation Potential Analysis of P. putida OR45a, P. putida KB3, and their Consortium
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- European Commission. Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on Waste and Repealing Certain Directives (Text with EEA Relevance); OJ L 312; European Commission: Brussel, Belgium, 2008; pp. 3–30. [Google Scholar]
- Renou, S.; Givaudan, J.G.; Poulain, S.; Dirassouyan, F.; Moulin, P. Landfill leachate treatment: Review and opportunity. J. Hazard. Mater. 2008, 150, 468–493. [Google Scholar] [CrossRef] [PubMed]
- Brennan, R.B.; Healy, M.G.; Morrison, L.; Hynes, S.; Norton, D.; Clifford, E. Suitability of Municipal Wastewater Treatment Plants for the Treatment of Landfill Leachate; EPA Research Report (2013-W-FS-13); Environmental Protection Agency: Wexford, Ireland, 2017. [Google Scholar]
- Moody, C.M.; Townsend, T.G. A comparison of landfill leachates based on waste composition. Waste Manag. 2017, 63, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Da Costa, F.M.; Daflon, S.D.A.; Bila, D.M.; da Fonseca, F.V.; Campos, J.C. Evaluation of the biodegradability and toxicity of landfill leachates after pretreatment using advanced oxidative processes. Waste Manag. 2018, 76, 606–613. [Google Scholar] [CrossRef] [PubMed]
- Aziz, S.Q.; Aziz, H.A.; Yusoff, M.S.; Mohaheri, S. Removal of phenol and other pollutants from different landfill leachates using powdered activated carbon SBR supplemented technology. Environ. Monit. Assess. 2012, 184, 6147–6158. [Google Scholar] [CrossRef]
- Kapelewska, J.; Kotowska, U.; Wiśniewska, K. Determination of personal care products and hormones in leachate and groundwater from Polish MSW landfills by ultrasound-assisted emulsification microextraction and GC-MS. Environ. Sci. Pollut. Res. Int. 2016, 23, 1642–1652. [Google Scholar] [CrossRef] [Green Version]
- Lippi, M.; Bellas, M.B.R.G.; Mendez, G.P.; Cardoso, R.A.F. State of art of landfill leachate treatment: Literature review and critical evaluation. Ciência e Natura J. 2018, 40. [Google Scholar] [CrossRef]
- Kalka, J. Landfill leachate toxicity removal in combined treatment with municipal wastewater. Sci. World J. 2012, 2012, 202897. [Google Scholar] [CrossRef] [Green Version]
- Seow, T.W.; Lim, C.K. A mini review on landfill leachate treatment technologies. Int. J. Appl. Environ. Sci. 2015, 10, 1967–1979. [Google Scholar]
- Luo, H.; Zheng, Y.; Cheng, Y.; He, D.; Pan, X. Recent advances in municipal landfill leachate: A review focusing on its characteristics, treatment, and toxicity assessment. Sci. Total Environ. 2020, 703, 135468. [Google Scholar] [CrossRef]
- Michalska, J.; Greń, I.; Żur, J.; Wasilkowski, D.; Mrozik, A. Impact of the biological cotreatment of the Kalina pond leachate on laboratory sequencing batch reactor operation and activated sludge quality. Water 2019, 11, 1539. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.Q.; Yang, G.F.; Zhang, L.; Zhang, Z.Z.; Ming, G.; Jin, R.C. Bioaugmentation as a useful strategy for performance enhancement in biological wastewater treatment undergoing different stresses: Application and mechanisms. Crit. Rev. Env. Sci. Tech. 2017, 47, 1877–1899. [Google Scholar] [CrossRef]
- Dueholm, M.S.; Marques, I.G.; Karst, S.M.; D’Imperio, S.; Tale, V.P.; Lewis, D.; Nielsen, P.H.; Nielsen, J.L. Survival and activity of individual bioaugmentation strains. Bioresour. Technol. 2015, 186, 192–199. [Google Scholar] [CrossRef]
- Nzila, A.; Razzak, S.A.; Zhu, J. Bioaugmentation: An emerging strategy of industrial wastewater treatment for reuse and discharge. Int. J. Environ. Res. Public Health 2016, 13, 846. [Google Scholar] [CrossRef] [PubMed]
- Quan, X.; Shi, H.; Liu, H.; Wang, J.; Qian, Y. Removal of 2,4-dichlorophenol in a conventional activated sludge system through bioaugmentation. Process Biochem. 2004, 39, 1701–1707. [Google Scholar] [CrossRef]
- Jiang, H.L.; Tay, J.H.; Maszenian, A.M.; Tay, S.T.L. Enhanced phenol biodegradation and aerobic granulation by two coaggregating bacterial strains. Environ. Sci. Technol. 2006, 40, 6137–6142. [Google Scholar] [CrossRef] [PubMed]
- Brenner, K.; You, L.; Arnold, F.H. Engineering microbial consortia: A new frontier in synthetic biology. Trends Biotechnol. 2008, 26, 483–489. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Yang, J.; Teng, F.; Feng, L.; Fang, X.; Ren, H. Bioaugmentation treatment of mature landfill leachate by new isolated ammonia nitrogen and humic acid resistant microorganism. J. Microbiol. Biotechnol. 2014, 24, 987–997. [Google Scholar] [CrossRef]
- Rojo, F. Carbon catabolite repression in Pseudomonas: Optimizing metabolic versatility and interactions with the environment. FEMS Microbiol. Rev. 2010, 34, 658–684. [Google Scholar] [CrossRef] [Green Version]
- Nogales, J.; Mueller, J.; Gudmundsson, S.; Canalejo, F.J.; Duque, E.; Monk, J.; Feist, A.M.; Ramos, J.L.; Niu, W.; Palsson, B.O. High-quality genome-scale metabolic modelling of Pseudomonas putida highlights its broad metabolic capabilities. Environ. Microbiol. 2020, 22, 255–269. [Google Scholar] [CrossRef] [Green Version]
- Paliwal, V.; Raju, S.C.; Modak, A.; Phale, P.S.; Purohit, H.J. Pseudomonas putida CSV86: A candidate genome for genetic bioaugmentation. PLoS ONE 2014, 9, e84000. [Google Scholar] [CrossRef]
- Yu, F.B.; Ali, S.W.; Guan, L.B.; Li, S.P.; Zhou, S. Bioaugmentation of a sequencing batch reactor with Pseudomonas putida ONBA-17, and its impact on reactor bacterial communities. J. Hazard. Mater. 2010, 176, 20–26. [Google Scholar] [CrossRef]
- Monsalvo, V.M.; Tobajas, M.; Mohedano, A.F.; Rodriguez, J.J. Intensification of sequencing batch reactors by cometabolism and bioaugmentation with Pseudomonas putida for the biodegradation of 4-chlorophenol. J. Chem. Technol. Biot. 2012, 87, 1270–1275. [Google Scholar] [CrossRef]
- Surkatti, R.; El-Naas, M. Biological treatment of wastewater contaminated with p-cresol using Pseudomonas putida immobilized in polyvinyl alcohol (PVA) gel. J. Water Process Eng. 2014, 1, 84–90. [Google Scholar] [CrossRef]
- Michalska, J.; Piński, A.; Żur, J.; Mrozik, A. Selecting bacteria candidates for the bioaugmentation of activated sludge to improve the aerobic treatment of landfill leachate. Water 2020, 12, 140. [Google Scholar] [CrossRef] [Green Version]
- Steiner, C.; Nolte, H.; Azzizan, A.; Krüger, M.; Deneckec, M.; Rehoreka, A. Quantitative proteomics for monitoring microbial dynamics in activated sludge from landfill leachate treatment. Environ. Sci. Water Res. Technol. 2019, 5, 268–276. [Google Scholar] [CrossRef]
- EN ISO 5667-13:2011. Water Quality—Sampling—Guidance on Sampling of Sludges; International Organization for Standardization: Geneva, Switzerland, 2011. [Google Scholar]
- EN ISO 19458:2007P. Water Quality—Sampling for Microbiological Analysis; International Organization for Standardization: Geneva, Switzerland, 2007. [Google Scholar]
- Michalska, J.; Wojcieszyńska, D.; Greń, I. Investigation of functional diversity and activated sludge condition using Biolog® system. ACEE J. 2016, 1, 119–126. [Google Scholar] [CrossRef] [Green Version]
- Chojniak, J.; Wasilkowski, D.; Płaza, G.; Mrozik, A.; Brigmon, R. Application of Biolog microarrays techniques for characterization of functional diversity of microbial community in phenolic-contaminated water. Int. J. Environ. Res. 2015, 9, 785–794. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater; American Public Health Association, American Water Works Association, Water Environment Federation: Washington, DC, USA, 1999. [Google Scholar]
- PN-ISO 6439:1994. Water Quality—Determination of Phenol Index—4-Aminoantipyrine Spectrometric Methods after Distillation; Polish Committee for Standardization: Warsaw, Poland, 1994. (In Polish) [Google Scholar]
- Goodner, K.L. Estimating Turbidity (NTU) from Absorption Data; Synergy Inspring Taste, Sensus Technical Note (SEN-TN-0010); Synergy Flavors: Hamilton, OH, USA, 2009; pp. 1–3. [Google Scholar]
- Singh, R.P.; Nath, S.; Prasad, S.C.; Nema, A.K. Selection of suitable aggregation function for estimation of aggregate pollution index for river Ganges in India. J. Environ. Eng. 2008, 134, 689–701. [Google Scholar] [CrossRef] [Green Version]
- EN ISO 8199:2010. Water Quality—General Requirements and Guidance for Microbiological Examinations by Culture; International Organization for Standardization: Geneva, Switzerland, 2010. [Google Scholar]
- Miksch, K. Application of dehydrogenase activity determinations in biodegradation of refinery sewage. Gas Water Civ. Technol. 1977, 51, 234–235. [Google Scholar]
- Schumacher, T.E.; Eynard, A.; Chintala, R. Rapid cost-effective analysis of microbial activity in soils using modified fluorescein diacetate method. Environ. Sci. Pollut. Res. 2015, 22, 4759–4762. [Google Scholar] [CrossRef] [PubMed]
- Yan, C.S. Research Method for Soil Fertility; Agriculture Press: Beijing, China, 1988; pp. 277–279. [Google Scholar]
- Lim, J.W.; Tan, J.Z.; Seng, C.E. Performance of phenol-acclimated activated sludge in the presence of various phenolic compound. Appl. Water Sci. 2013, 3, 515–525. [Google Scholar] [CrossRef] [Green Version]
- Järvik, O.; Kamenev, S.; Kasemets, K.; Kamenev, I. Effect of ozone on viability of activated sludge detected by Oxygen Uptake Rate (OUR) and adenosine-5′-triphosphate (ATP) measurement. Ozone Sci. Eng. 2010, 32, 408–416. [Google Scholar] [CrossRef]
- Pistelok, F.; Pohl, A.; Wiera, B.; Stuczyński, T. Using the ATP test in wastewater treatment in the Silesia province. Environ. Prot. Eng. 2016, 42, 17–32. [Google Scholar] [CrossRef]
- Nowak, A.; Mrozik, A. Degradation of 4-chlorophenol and microbial diversity in soil inoculated with single Pseudomonas sp. CF600 and Stenotrophomonas maltophilia KB2. J. Environ. Manag. 2018, 215, 216–229. [Google Scholar] [CrossRef] [PubMed]
- Tajarudin, H.A.B.; Othman, M.F.B.; Serri, N.A.B.; Tamat, M.R.B. Biological treatment technology for landfill leachate. In Waste Management: Concepts, Methodologies, Tools, and Applications; IGI Global: Hershey, PA, USA, 2020; pp. 775–806. [Google Scholar]
- Hong, E.; Yeneh, A.M.; Kayaalp, A.; Sen, T.K.; Ang, H.M.; Kayaalp, M. Rheological characteristic of municipal thickened excess activated sludge (TEAS): Impacts of pH, temperature, solid concentration and polymer dose. Res. Chem. Intermediat. 2016, 42, 6567–6585. [Google Scholar] [CrossRef] [Green Version]
- Li, X.Z.; Zhao, Q.L. Inhibition of microbial activity of activated sludge by ammonia in leachate. Environ. Int. 1999, 25, 961–968. [Google Scholar] [CrossRef] [Green Version]
- Dadrasnia, A.; Azirun, M.S.; Ismail, S.B. Optimal reduction of chemical oxygen demand and NH3-N from landfill leachate using a strongly resistant novel Bacillus salmalaya strain. BCM Biotechnol. 2017, 17, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Tchobanoglous, G.; Burton, F.L.; Stensel, H.D. Wastewater Engineering: Treatment and Reuse; Metcalf & Eddy, McGraw-Hill Education: New York, NY, USA, 2004. [Google Scholar]
- Zubrowska-Sudol, M.; Walczak, J. Effects of mechanical disintegration of activated sludge on the activity of nitrifying and denitrifying bacteria and phosphorus accumulating organisms. Water Res. 2014, 61, 200–209. [Google Scholar] [CrossRef]
- Young, J. Oxygen Uptake Rate as a Monitoring and Control Parameter for Activated Sludge Processes. In Proceedings of the 1999 WEF/Indiana WPCA/Purdue University Conference on Industrial Waste, Alexandria, VA, USA, 21–22 May 1999. [Google Scholar]
- Drewnowski, J. The impact of slowly biodegradable organic compounds on the oxygen uptake rate in activated sludge systems. Water Sci. Technol. 2014, 69, 1136–1144. [Google Scholar] [CrossRef]
- Eichner, C.A.; Erb, R.W.; Timmis, K.N.; Wagner-Döbler, I. Thermal gradient gel electrophoresis analysis of bioprotection from pollutant shocks in the activated sludge microbial community. Appl. Environ. Microbiol. 1999, 65, 102–109. [Google Scholar] [CrossRef] [Green Version]
- Contreras, E.M.; Albertario, M.E.; Bertola, N.C.; Zaritzky, N.E. Modelling phenol biodegradation by activated sludges evaluated through respirometric techniques. J. Hazard. Mater. 2008, 158, 366–374. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Lu, Z.; Min, H.; Gao, H.; Zhu, F. The effect of tetrahydrofuran on the enzymatic activity and microbial community in activated sludge from a sequencing batch reactor. Ecotoxicology 2011, 21, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Lu, Z.; Zhu, F.; Min, H.; Bian, C. Successful bioaugmentation of an activated sludge reactor with Rhodococcus sp. YYL for efficient tetrahydrofuran degradation. J. Hazard. Mater. 2013, 261, 550–558. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Wen, X.; Zhang, B.; Yang, Y. Diversity and assembly patterns of activated sludge microbial communities: A review. Biotechnol. Adv. 2018, 36, 1038–1047. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, R.; Liu, C.; Chen, L. Bioaugmentation with isolated strains for the removal of toxic and refractory organics from coking wastewater in a membrane bioreactor. Biodegradation 2015, 26, 465–474. [Google Scholar] [CrossRef]
- Fang, F.; Han, H.; Zhao, Q.; Xu, C.; Zhang, L. Bioaugmentation of biological contact oxidation reactor (BCOR) with phenol-degrading bacteria for coal gasification wastewater (CGW) treatment. Bioresour. Technol. 2013, 150, 314–320. [Google Scholar] [CrossRef]
- Archibald, M.; Méthot, M.; Young, F.; Paice, M.G. A simple system to rapidly monitor activated sludge health and performance. Water Res. 2001, 35, 2543–2553. [Google Scholar] [CrossRef]
- Kargi, F.; Uygur, A. Improved nutrient removal from saline wastewater in an SBR by Halobacter supplemented activated sludge. Environ. Eng. Sci. 2005, 22, 170–176. [Google Scholar] [CrossRef]
Phenolic Compound | Concentration (mg/L) |
---|---|
phenol | 327 |
3-methylphenol | 356 |
4-methylphenol | 356 |
3-ethylphenol | 129 |
2,4-dimethylphenol | 60 |
3,4-dimethylphenol | 281 |
2,3,5-trimethylphenol | 292 |
Bioreactor | L | LOR45a | LKB3 | LOr45a+KB3 |
Time (days/stage) | Concentration of Phenolic Compounds Determined with 4-Aminoantypyrine (mg/L) | |||
0 (onset of the stage I) | 71.01 ± 3.06 a | 72.04 ± 1.95 a | 72.64 ± 2.18 a | 76.12 ± 4.23 a |
32 (end of the stage I) | 17.17 ± 2.00 a | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b |
32 (onset of the stage II) | 126.32 ± 9.05 a | 105.55 ± 0.10 b | 108.13 ± 1.65 b | 111.11 ± 3.18 b |
64 (end of the stage II) | 53.13 ± 4.65 a | 10.77 ± 0.50 b | 0.00 ± 0.00 c | 3.97 ± 6.02 d |
64 (onset of the stage III) | 316.19 ± 10.03 a | 244.00 ± 3.82 b | 233.01 ± 0.12 c | 245.50 ± 2.27 b |
96 (end of the stage III) | 173.80 ± 8.95 a | 37.24 ± 5.07 b | 10.13 ± 1.03 c | 29.04 ± 1.16 b |
Bioreactor | L | LOR45a | LKB3 | LOr45a+KB3 |
Time (days/stage) | Concentration of Phenolic Compounds Determined by the HPLC (mg/L) | |||
0 (onset of the stage I) | 52.11 ± 6.64 a | 55.06 ± 3.82 a | 49.86 ± 1.37 a | 52.44 ± 2.28 a |
32 (end of the stage I) | 14.94 ± 0.53 a | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b |
32 (onset of the stage II) | 89.22 ± 4.55 a | 75.00 ± 0.0.78 b | 79.60 ± 0.34 b | 74.84 ± 2.34 b |
64 (end of the stage II) | 39.78 ± 2.22 a | 9.66 ± 0.79 b | 0.00 ± 0.00 c | 5.13 ± 0.21 d |
64 (onset of the stage III) | 218 ± 5.13 a | 189.50 ± 3.60 b | 184.97 ± 2.99 b | 202.00 ± 8.02 c |
96 (end of the stage III) | 108.68 ± 9.02 a | 19.15 ± 0.39 b | 9.55 ± 0.12 c | 19.74 ± 7.00 b |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michalska, J.; Piński, A.; Żur, J.; Mrozik, A. Analysis of the Bioaugmentation Potential of Pseudomonas putida OR45a and Pseudomonas putida KB3 in the Sequencing Batch Reactors Fed with the Phenolic Landfill Leachate. Water 2020, 12, 906. https://doi.org/10.3390/w12030906
Michalska J, Piński A, Żur J, Mrozik A. Analysis of the Bioaugmentation Potential of Pseudomonas putida OR45a and Pseudomonas putida KB3 in the Sequencing Batch Reactors Fed with the Phenolic Landfill Leachate. Water. 2020; 12(3):906. https://doi.org/10.3390/w12030906
Chicago/Turabian StyleMichalska, Justyna, Artur Piński, Joanna Żur, and Agnieszka Mrozik. 2020. "Analysis of the Bioaugmentation Potential of Pseudomonas putida OR45a and Pseudomonas putida KB3 in the Sequencing Batch Reactors Fed with the Phenolic Landfill Leachate" Water 12, no. 3: 906. https://doi.org/10.3390/w12030906
APA StyleMichalska, J., Piński, A., Żur, J., & Mrozik, A. (2020). Analysis of the Bioaugmentation Potential of Pseudomonas putida OR45a and Pseudomonas putida KB3 in the Sequencing Batch Reactors Fed with the Phenolic Landfill Leachate. Water, 12(3), 906. https://doi.org/10.3390/w12030906