Analysis of Suspended Sediment in the Anavilhanas Archipelago, Rio Negro, Amazon Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Analysis
3. Results
3.1. Water Level Variability in the Negro and Branco Rivers
3.2. The Water Discharge and the Flow Velocity from the Negro River
3.3. Temporal and Spatial Variability of Suspended Sediment Concentration in the Lower Negro River
3.4. Variation of Suspended Sediment with Depth and in the Water Surface
3.5. Balance of the Suspended Discharge in the Lower Negro River
4. Discussion
4.1. Modern Hydrological Dynamics Versus the Formation of the Anavilhanas
4.2. Impacts of the Branco River Hydropower Dams on the Fluvial Environment of the Anavilhanas
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Latrubesse, E.M.; Stevaux, J.C.; Sinha, R. Tropical rivers. Geomorphology 2005, 70, 187–206. [Google Scholar] [CrossRef]
- Latrubesse, E.M. Patterns of anabranching channels: The ultimate end-member adjustment of mega rivers. Geomorphology 2008, 101, 130–145. [Google Scholar] [CrossRef]
- Gupta, A. Large Rivers, 1st ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2007. [Google Scholar] [CrossRef]
- Hinderer, M. From gullies to mountain belts: A review of sediment budgets at various scales. Sediment. Geol. 2012, 280, 21–59. [Google Scholar] [CrossRef]
- Filizola, N.; Guyot, J.L. Suspended sediment yields in the Amazon basin: An assessment using the Brazilian national data set. Hydrol. Process. 2009, 23, 3207–3215. [Google Scholar] [CrossRef]
- Filizola, N.; Guyot, J.-L. O Fluxo de Sedimentos em Suspensão nos rios da Amazônia Brasileira. Rev. Bras. Geociencias 2011, 41, 566–576. [Google Scholar] [CrossRef]
- Richey, J.E.; Hedges, J.I.; Devol, A.H.; Quay, P.D.; Victoria, R.; Martinelli, L.; Forsberg, B.R. Biogeochemistry of carbon in the Amazon River. Limnol. Oceanogr. 1990, 35, 352–371. [Google Scholar] [CrossRef]
- Moreira-Turcq, P.; Seyler, P.; Guyot, J.L.; Etcheber, H. Exportation of organic carbon from the Amazon River and its main tributaries. Hydrol. Process. 2003, 17, 1329–1344. [Google Scholar] [CrossRef]
- Latrubesse, E.M.; Stevaux, J.C. The Anavilhanas and Mariuá Archipelagos: Fluvial Wonders from the Negro River, Amazon Basin. In Landscapes and Landforms of Brazil; Vieira, B.C., Salgado, A.A.R., Santos, L.J.C., Eds.; Springer: Dordrecht, The Netherlands, 2015; pp. 157–169. [Google Scholar] [CrossRef]
- Latrubesse, E.M. Amazon lakes. In Lakes and Reservoirs; Hellström, T., Fairbridge, R.W., Bengtsson, L., Wohlfarth, B., Herschy, R.W., Hargeby, A., Blindow, I., Latrubesse, E.M., Hodgson, D.A., et al., Eds.; Springer: Berlin, Germany, 2012; pp. 13–26. [Google Scholar] [CrossRef]
- Latrubesse, E.M.; Franzinelli, E. The late Quaternary evolution of the Negro River, Amazon, Brazil: Implications for island and floodplain formation in large anabranching tropical systems. Geomorphology 2005, 70, 372–397. [Google Scholar] [CrossRef]
- Hess, L.; Melack, J.; Novo, E.M.L.M.; Barbosa, C.C.F.; Gastil, M. Dual-season mapping of wetland inundation and vegetation for the central Amazon basin. Remote Sens. Environ. 2003, 87, 404–428. [Google Scholar] [CrossRef]
- Frappart, F.; Seyler, F.; Martinez, J.-M.; León, J.G.; Cazenave, A. Floodplain water storage in the Negro River basin estimated from microwave remote sensing of inundation area and water levels. Remote Sens. Environ. 2005, 99, 387–399. [Google Scholar] [CrossRef] [Green Version]
- Junk, W.J.; Piedade, M.T.F.; Schöngart, J.; Cohn-Haft, M.; Adeney, J.M.; Wittmann, F. A Classification of Major Naturally-Occurring Amazonian Lowland Wetlands. Wetlands 2011, 31, 623–640. [Google Scholar] [CrossRef]
- Saint-Paul, U.; Zuanon, J.; Correa, M.A.V.; García, M.; Fabré, N.N.; Berger, U.; Junk, W.J. Fish Communities in Central Amazonian White- and Blackwater Floodplains. Environ. Biol. Fishes 2000, 57, 235–250. [Google Scholar] [CrossRef]
- Chao, N. Fisheries, diversity and conservation of ornamental fish of the Rio Negro River, Brazil—A review of Project Piaba (1989–1999). In Conservation and Management of Ornamental Fish Resources of the Rio Negro Basin, Amazonia, Brazil-Project Piaba; Chao, N., Ed.; Universidade Federal do Amazonas: Manaus, Brazil, 2001; pp. 161–204. [Google Scholar]
- Ribas, C.C.; Aleixo, A.; Nogueira, A.C.R.; Miyaki, C.Y.; Cracraft, J. A palaeobiogeographic model for biotic diversification within Amazonia over the past three million years. Proc. R. Soc. B Biol. Sci. 2012, 279, 681–689. [Google Scholar] [CrossRef]
- Choueri, E.L.; Gubili, C.; Borges, S.H.; Thom, G.; Sawakuchi, A.O.; Soares, E.A.A.; Ribas, C.C. Phylogeography and population dynamics of Antbirds (Thamnophilidae) from Amazonian fluvial islands. J. Biogeogr. 2017, 44, 2284–2294. [Google Scholar] [CrossRef]
- Silva, C.L. Análise Da Tectônica Cenozóica Na Região De Manaus E Adjacências. Ph.D. Thesis, Universidade Estadual Paulista, Rio Claro, Brazil, 2005. [Google Scholar]
- Alves, N.S. Mapeamento Hidromorfodinâmico Do Complexo Fluvial De Anavilhanas: Contribuição Aos Estudos De Geomorfologia Fluvial De Rios Amazônicos. Ph.D. Thesis, Universidade de São Paulo, São Paulo, Brazil, 2013. [Google Scholar]
- Almeida-Filho, R.; Miranda, F.P. Mega capture of the Rio Negro and formation of the Anavilhanas Archipelago, Central Amazônia, Brazil: Evidences in an SRTM digital elevation model. Remote Sens. Environ. 2007, 110, 387–392. [Google Scholar] [CrossRef]
- Filizola, N.; Guyot, J.-L.; Wittmann, H.; Martinez, J.-M.; Oliveira, E. The Significance of Suspended Sediment Transport Determination on the Amazonian Hydrological Scenario. In Sediment Transport in Aquatic Environments; Andrew, J., Manning, Eds.; InTech: Rijeka, Croatia, 2011; pp. 45–64. [Google Scholar] [CrossRef] [Green Version]
- Agência Nacional de Águas. Portal HidroWeb. Available online: http://www.snirh.gov.br/hidroweb/apresentacao (accessed on 21 January 2020).
- Jugaru Tiron, L.; Le Coz, J.; Provansal, M.; Panin, N.; Raccasi, G.; Dramais, G.; Dussouillez, P. Flow and sediment processes in a cutoff meander of the Danube Delta during episodic flooding. Geomorphology 2009, 106, 186–197. [Google Scholar] [CrossRef] [Green Version]
- Filizola, N.; Latrubesse, E.M.; Fraizy, P.; Souza, R.; Guimarães, V.; Guyot, J.-L. Was the 2009 flood the most hazardous or the largest ever recorded in the Amazon? Geomorphology 2014, 215, 99–105. [Google Scholar] [CrossRef]
- Panagos, P.; Borrelli, P.; Meusburger, K.; Alewell, C.; Lugato, E.; Montanarella, L. Estimating the soil erosion cover-management factor at the European scale. Land Use Policy 2015, 48, 38–50. [Google Scholar] [CrossRef]
- Latrubesse, E.M.; Arima, E.Y.; Dunne, T.; Park, E.; Baker, V.R.; D’Horta, F.M.; Wight, C.; Wittmann, F.; Zuanon, J.; Baker, P.A.; et al. Damming the rivers of the Amazon basin. Nature 2017, 546, 363–369. [Google Scholar] [CrossRef]
- Forsberg, B.R.; Melack, J.M.; Dunne, T.; Barthem, R.B.; Goulding, M.; Paiva, R.C.D.; Sorribas, M.V.; Silva, U.L.; Weisser, S. The potential impact of new Andean dams on Amazon fluvial ecosystems. PLoS ONE 2017, 12, e0182254. [Google Scholar] [CrossRef]
- Finer, M.; Jenkins, C.N. Proliferation of Hydroelectric Dams in the Andean Amazon and Implications for Andes-Amazon Connectivity. PLoS ONE 2012, 7, e35126. [Google Scholar] [CrossRef] [PubMed]
- Winemiller, K.O.; McIntyre, P.B.; Castello, L.; Fluet-Chouinard, E.; Giarrizzo, T.; Nam, S.; Baird, I.G.; Darwall, W.; Lujan, N.K.; Harrison, I.; et al. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 2016, 351, 128–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stevaux, J.C.; Martins, D.P.; Meurer, M. Changes in a large regulated tropical river: The Paraná River downstream from the Porto Primavera Dam, Brazil. Geomorphology 2009, 113, 230–238. [Google Scholar] [CrossRef]
- Meade, R.; Nordin, C.F.; Curtis, W.; Rodrigues, F.C.; Vale, C.M.V.; Edmond, J.M. Transporte de sedimentos no rio Amazonas. Acta Amaz. 1979, 9, 543–547. [Google Scholar] [CrossRef]
- Observation Service SO HYBAM. Available online: http://www.ore-hybam.org (accessed on 29 December 2018).
- Wittmann, H.; von Blanckenburg, F.; Maurice, L.; Guyot, J.-L.; Filizola, N.; Kubik, P.W. Sediment production and delivery in the Amazon River basin quantified by in situ-produced cosmogenic nuclides and recent river loads. Geol. Soc. Am. Bull. 2011, 123, 934–950. [Google Scholar] [CrossRef]
- Sander, C.; Gasparetto, N.V.L.; Santos, M.L.; Carvalho, T.M. Características do transporte de sedimentos em suspensão na bacia do Rio Branco, Estado de Roraima. Acta Geográfica 2014, 8, 71–85. [Google Scholar]
- Meade, R.H.; Rayol, J.M.; Da Conceicão, S.C.; Natividade, J.R.G. Backwater effects in the Amazon River basin of Brazil. Environ. Geol. Water Sci. 1991, 18, 105–114. [Google Scholar] [CrossRef]
- Empresa de Pesquisas Energética–Usina Hidrelétrica (UHE) Bem Querer. Available online: http://www.uhebemquerer.com.br (accessed on 11 December 2018).
- Naka, L.N.; Laranjeiras, T.O.; Rodrigues Lima, G.; Plaskievicz, A.C.; Mariz, D.; Costa, B.M.; Menezes, H.S.G.; Torres, M.D.F.; Cohn-Haft, M. The Avifauna of the Rio Branco, an Amazonian evolutionary and ecological hotspot in peril. Bird Conserv. Int. 2019, 1–19. [Google Scholar] [CrossRef]
- Junk, W.J.; Wittmann, F.; Schöngart, J.; Piedade, M.T.F. A classification of the major habitats of Amazonian black-water river floodplains and a comparison with their white-water counterparts. Wetl. Ecol. Manag. 2015, 23, 677–693. [Google Scholar] [CrossRef]
- Instituto Brasileiro de Geografia e Estatística (IBGE). Mapa Geomorfologia da Amazônia Legal-Scale 1:250.000; Diretoria de Geociências: Rio de Janeiro, Brazil, 2009.
- Franzinelli, E.; Igreja, H. Modern sedimentation in the Lower Negro River, Amazonas State, Brazil. Geomorphology 2002, 44, 259–271. [Google Scholar] [CrossRef]
- Goulding, M.; Leal Carvalho, M.; Ferreira, E. Río Negro, Rich Life in Poor Water: Amazonian Diversity and Foodchain Ecology as Seen through Fish Communities; SPB Academic Publishing: The Hague, The Netherlands, 1989. [Google Scholar]
- Quesada, C.A.; Lloyd, J.; Anderson, L.O.; Fyllas, N.M.; Schwarz, M.; Czimczik, C.I. Soils of Amazonia with particular reference to the RAINFOR sites. Biogeosciences 2011, 8, 1415–1440. [Google Scholar] [CrossRef] [Green Version]
- RSIS Ramsar Information Sheet. Anavilhanas National Park, Brazil. Available online: https://rsis.ramsar.org/ris/2296 (accessed on 2 March 2018).
- Salati, E.; Marques, J. Climatology of the Amazon region. In The Amazon Limnology and Landscape Ecology of Mighty Tropical River and Its Basins; Sioli, H., Ed.; Monographiae Biologicae; Springer: Dordrecht, The Netherlands, 1984; Volume 56, pp. 85–126. ISBN 978-94-009-6544-7. [Google Scholar] [CrossRef]
- Montero, J.C.; Latrubesse, E.M. The igapó of the Negro River in central Amazonia: Linking late-successional inundation forest with fluvial geomorphology. J. S. Am. Earth Sci. 2013, 46, 137–149. [Google Scholar] [CrossRef]
- Sioli, H. The Amazon and its main affluents: Hydrography, morphology of the river courses, and river types. In Amazon Limnology and Landscape Ecology of Mighty Tropical River and Its Basins; Sioli, H., Ed.; Springer: Dordrecht, The Netherlands, 1984; pp. 127–165. [Google Scholar] [CrossRef]
- Filizola, N.P.; Seyler, F.; Helena Mourão, M.; Arruda, W.; Spínola, N.; Guyot, J.-L. Study of the Variability in Suspended Sediment Discharge at Manacapuru, Amazon River, Brazil. Lat. Am. J. Sedimentol. Basin Anal. 2009, 16, 93–99. [Google Scholar]
- THEIA Hydroweb. Available online: http://hydroweb.theia-land.fr/ (accessed on 21 January 2020).
- Chapman, D. Water Quality Assessments-A Guide to Use of Biota, Sediments and Water in Environmental Monitoring-Second Edition; E & FN Spon: London, UK, 1992. [Google Scholar]
- Molinier, M.; Guyot, J.-L.; Oliveira, E.; Guimaraes, V. Les régimes hydrologiques de l’Amazone et de ses affluents. In L’hydrologie Tropicale: Géosciences et Outil Pour le Développement: Mélanges à la Mémoire de Jean Rodier; Chevallier, P., Pouyaud, B., Eds.; IAHS: Paris, France, 1996; Volume 238, pp. 209–222. [Google Scholar]
- Park, E.; Latrubesse, E.M. Modeling suspended sediment distribution patterns of the Amazon River using MODIS data. Remote Sens. Environ. 2014, 147, 232–242. [Google Scholar] [CrossRef]
- Barbosa, C.C.F.; de Moraes Novo, E.M.L.; Melack, J.M.; Gastil-Buhl, M.; Filho, W.P. Geospatial analysis of spatiotemporal patterns of pH, total suspended sediment and chlorophyll-a on the Amazon floodplain. Limnology 2010, 11, 155–166. [Google Scholar] [CrossRef]
- Marinho, T.; Filizola, N.; Martinez, J.-M.; Armijos, E.; Nascimento, A. Suspended Sediment Variability at the Solimões and Negro Confluence between May 2013 and February 2014. Geosciences 2018, 8, 265. [Google Scholar] [CrossRef] [Green Version]
- Filizola, N.P. Transfert Sédimentaire Actuel Par les Fleuves Amazoniens. PhD Thesis, Universite Toulouse III-Paul Sabatier, Toulouse, France, 2003. [Google Scholar]
- Fassoni-Andrade, A.C.; Paiva, R.C.D. Mapping spatial-temporal sediment dynamics of river-floodplains in the Amazon. Remote Sens. Environ. 2019, 221, 94–107. [Google Scholar] [CrossRef]
- Scabin, A.B.; Costa, F.R.C.; Schöngart, J. The spatial distribution of illegal logging in the Anavilhanas archipelago (Central Amazonia) and logging impacts on species. Environ. Conserv. 2012, 39, 111–121. [Google Scholar] [CrossRef]
- Allard, T.; Ponthieu, M.; Weber, T.; Filizola Jr, N.; Guyot, J.-L.; Benedetti, M. Nature and properties of suspended solids in the Amazon Basin. Bull. La Soc. Geol. Fr. 2002, 173, 67–75. [Google Scholar] [CrossRef]
- Tricart, J. Types de lits fluviaux em Amazonie Bresilienne. Ann. Georgr. 1977, 437, 1–54. [Google Scholar] [CrossRef]
- Leenheer, J.A.; Santos, H.M. Considerações sobre os processos de sedimentação na água preta ácida do rio Negro (Amazônia Central). Acta Amaz. 1980, 10, 343–357. [Google Scholar] [CrossRef] [Green Version]
- Sioli, H. Amazônia: Fundamentos De Ecologia Da Maior Região Das Florestas Tropicais; Vozes: Petrópolis, Brazil, 1991. [Google Scholar]
- Cremon, É.H.; Rossetti, D.D.F.; Sawakuchi, A.O.; Cohen, M.C.L. The role of tectonics and climate in the late Quaternary evolution of a northern Amazonian River. Geomorphology 2016, 271, 22–39. [Google Scholar] [CrossRef]
- Barbosa, R.O. Estudos Sedimentológicos E Estratigráficos Dos Depósitos Sedimentares Quartenários Do Arquipélago De Anavilhanas, Município De Novo Airão (Amazônia Central). Master’s Thesis, Universidade Federal do Amazonas, Manaus, Brazil, 2015. [Google Scholar]
- Cunha, D.F. Da Evolução Sedimentar Do Arquipélago De Anavilhanas No Baixo Rio Negro, Amazônia Central. Master’s Thesis, Universidade de São Paulo, São Paulo, Brazil, 2017. [Google Scholar]
- Rodríguez-Zorro, P.A.; Turcq, B.; Cordeiro, R.C.; Moreira, L.S.; Costa, R.L.; McMichael, C.H.; Behling, H. Forest stability during the early and late Holocene in the igapó floodplains of the Rio Negro, northwestern Brazil. Quat. Res. 2018, 89, 75–89. [Google Scholar] [CrossRef]
- Cordeiro, R.C.; Turcq, P.F.M.; Turcq, B.J.; Moreira, L.S.; Rodrigues, R.C.; da Costa, R.L.; Sifeddine, A.; Simões Filho, F.F.L. Acumulação de carbono em lagos amazônicos como indicador de eventos paleoclimáticos e antrópicos. Oecologia Aust. 2008, 12, 130–154. [Google Scholar] [CrossRef]
- Costa, R.L. Paleohidrologia Do Lago Acarabixi, Médio Rio Negro, Am, Durante O Holoceno. Master’s Thesis, Universidade Federal Fluminense: Niterói, Rio de Janeiro, Brazil, 2006. [Google Scholar]
- Silva, V.C. Acumulação De Carbono E Interpretações Paleohidrológicas Do Lago Do Boto–Arquipélago De Anavilhanas Durante O Holoceno Superior. Master’s Thesis, Universidade Federal do Amazonas, Manaus, Brazil, 2019. [Google Scholar]
- Soares, E.A.A.; Tatumi, S.H.; Riccomini, C. OSL age determinations of Pleistocene fluvial deposits in Central Amazonia. An. Acad. Bras. Cienc. 2010, 82, 691–699. [Google Scholar] [CrossRef]
- Sant’Anna, L.G.; Soares, E.A.D.A.; Riccomini, C.; Tatumi, S.H.; Yee, M. Age of depositional and weathering events in Central Amazonia. Quat. Sci. Rev. 2017, 170, 82–97. [Google Scholar] [CrossRef]
- Nanson, G.C. Anabranching and Anastomosing Rivers. In Treatise on Geomorphology; Shroder, J.F., Ed.; Academic Press: San Diego, CA, USA, 2013; pp. 330–345. [Google Scholar] [CrossRef]
- Holanda, J.L.R.; Marmos, J.L.; Maia, M.A.M. Geodiversidade do Estado de Roraima, 1st ed.; Holanda, J.L.R., Marmos, J.L., Maia, M.A.M., Eds.; CPRM: Manaus, Brazil, 2014; ISBN 978-85-7499-162-7. [Google Scholar]
- Fearnside, P.M. Dams in the Amazon: Belo Monte and Brazil’s Hydroelectric Development of the Xingu River Basin. Environ. Manag. 2006, 38, 16–27. [Google Scholar] [CrossRef] [PubMed]
- Assahira, C.; Piedade, M.T.F.; Trumbore, S.E.; Wittmann, F.; Cintra, B.B.L.; Batista, E.S.; de Resende, A.F.; Schöngart, J. Tree mortality of a flood-adapted species in response of hydrographic changes caused by an Amazonian river dam. For. Ecol. Manag. 2017, 396, 113–123. [Google Scholar] [CrossRef]
- Ferrante, L.; Fearnside, P.M. Brazil’s new president and ‘ruralists’ threaten Amazonia’s environment, traditional peoples and the global climate. Environ. Conserv. 2019, 46, 261–263. [Google Scholar] [CrossRef]
- Laranjeiras, T.O.; Naka, L.N.; Cohn-Haft, M. Using river color to predict Amazonian floodplain forest avifaunas in the world’s largest blackwater river basin. Biotropica 2019, 51, 330–341. [Google Scholar] [CrossRef]
Field Cruise | Date | Station | ||||
---|---|---|---|---|---|---|
RN-1 | RN-2 | RN-3 | RN-4 | RN-5 | ||
Water discharge (m3·s−1) | ||||||
I | 16 November | 17,676 | 8177 | 641 | 9234 | * |
II | 17 January | 30,960 | 14,692 | 2110 | 16,091 | * |
III | 17 March | 26,125 | 13,106 | 2070 | 12,924 | 29,328 |
IV | 17 May | 40,626 | 19,104 | 2936 | 19,019 | 49,529 |
V | 17 July | 48,248 | 22,797 | 3807 | 21,976 | 60,524 |
VI | 17 October | 20,425 | 9767 | 772 | 10,685 | 22,405 |
VII | 17 November | 18,253 | 8847 | 816 | 9488 | 18,863 |
VIII | 18 November | 14,484 | 6644 | 647 | 7432 | 13,155 |
IX | 19 May | 24,345 | 12,181 | 1985 | 11,622 | 31,380 |
X | 19 July | 47,376 | 23,639 | 3443 | 24,946 | 63,356 |
XI | 19 September | 35,472 | 15,733 | 2089 | 16,158 | 41,256 |
XII | 19 November | 23,801 | 10,344 | 999 | 12,458 | 24,238 |
XIII | 19 December | 24,717 | 11,313 | 1357 | 12,617 | 24,918 |
Mean flow velocity (m·s−1) | ||||||
I | 16 November | 0.55 | 0.52 | 0.28 | 0.48 | * |
II | 17 January | 0.70 | 0.59 | 0.45 | 0.62 | * |
III | 17 March | 0.51 | 0.48 | 0.36 | 0.48 | 0.33 |
IV | 17 May | 0.70 | * | * | * | * |
V | 17 July | 0.87 | 0.76 | 0.58 | 0.78 | 0.63 |
VI | 17 October | 0.66 | 0.61 | 0.35 | 0.57 | 0.31 |
VII | 17 November | 0.57 | 0.46 | 0.30 | 0.49 | 0.27 |
VIII | 18 November | 0.47 | 0.38 | 0.24 | 0.40 | 0.20 |
IX | 19 May | 0.35 | 0.42 | 0.32 | 0.40 | 0.34 |
X | 19 July | 0.84 | 0.78 | 0.54 | 0.74 | 0.69 |
XI | 19 September | 0.77 | 0.69 | 0.49 | 0.70 | 0.69 |
XII | 19 November | * | 0.55 | 0.34 | 0.57 | 0.51 |
XIII | 19 December | 0.57 | 0.55 | 0.38 | 0.54 | 0.33 |
Station | Stream Power (W·m−1) | Width (m) | Specific Stream Power (W·m2) |
---|---|---|---|
RN-1 | 3600 | 2662 | 1.35 |
RN-2 | 1704 | 1267 | 1.34 |
RN-3 | 229 | 431 | 0.53 |
RN-4 | 1784 | 1138 | 1.57 |
RN-5 | 4328 | 2452 | 1.76 |
Field Cruise | Date | Station | |||
---|---|---|---|---|---|
RN-1 | RN-2 | RN-4 | RN-5 | ||
I | 16 November | 4.19 | 3.77 | 4.61 | * |
II | 17 January | 3.31 | 1.60 | 3.67 | * |
III | 17 March | 0.92 | 0.36 | 0.54 | 0.48 |
IV | 17 May | 3.82 | 3.13 | 3.15 | 1.15 |
V | 17 July | 6.35 | 0.56 | 6.60 | 0.79 |
VI | 17 October | 0.44 | 1.28 | 4.46 | 1.93 |
VII | 17 November | 2.37 | 4.78 | 2.18 | 1.86 |
VIII | 18 November | 4.82 | 6.15 | 10.47 | 2.88 |
IX | 19 May | 1.42 | 1.23 | 1.67 | 1.19 |
X | 19 July | 2.71 | 1.05 | 3.13 | 1.43 |
XI | 19 September | 4.32 | 2.40 | 6.05 | 1.36 |
XII | 19 November | 3.72 | 2.59 | 6.18 | 3.24 |
XIII | 19 December | 4.25 | 1.49 | 5.80 | * |
Section | Mean Qs (Ton·Day−1) | Qs Year (Ton·Year−1) | ε (%) | Δ (%) |
---|---|---|---|---|
RN-1 | 8600 | 3.14 × 106 | ±22 | |
RN-2 | 2316 | 0.85 × 106 | ±16 | −38 |
RN-4 | 5351 | 1.95 × 106 | ±16 | −73 |
RN-5 | 3908 | 1.43 × 106 | ±17 | −55 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marinho, R.R.; Filizola Junior, N.P.; Cremon, É.H. Analysis of Suspended Sediment in the Anavilhanas Archipelago, Rio Negro, Amazon Basin. Water 2020, 12, 1073. https://doi.org/10.3390/w12041073
Marinho RR, Filizola Junior NP, Cremon ÉH. Analysis of Suspended Sediment in the Anavilhanas Archipelago, Rio Negro, Amazon Basin. Water. 2020; 12(4):1073. https://doi.org/10.3390/w12041073
Chicago/Turabian StyleMarinho, Rogério Ribeiro, Naziano Pantoja Filizola Junior, and Édipo Henrique Cremon. 2020. "Analysis of Suspended Sediment in the Anavilhanas Archipelago, Rio Negro, Amazon Basin" Water 12, no. 4: 1073. https://doi.org/10.3390/w12041073
APA StyleMarinho, R. R., Filizola Junior, N. P., & Cremon, É. H. (2020). Analysis of Suspended Sediment in the Anavilhanas Archipelago, Rio Negro, Amazon Basin. Water, 12(4), 1073. https://doi.org/10.3390/w12041073