Intertwining Observations and Predictions in Vadose Zone Hydrology: A Review of Selected Studies
Abstract
:1. Introduction
2. Observation of Soil Properties: Measurements of Soil Hydraulic Characteristics and Their Variability
2.1. Basic Soil Hydraulic Characteristics Featuring in the Richards Equation
2.2. Basic Soil Hydraulic Characteristics Featuring in the Bucket Model
2.3. Simplified Estimation of the Soil Hydraulic Characteristics and Their Variability
3. Observation of Key State Variables: Soil Moisture Measurements and Space-Time Variations
- A 3D sub-system consisting of four near-surface boreholes (each 1.2 m in length) drilled at the corners of a square (each side measuring 1.15 m) centered on one of the poplars. Each of these boreholes contains 12 stainless steel electrodes, 0.10 m apart. This monitoring sub-system is complemented by 24 stainless steel electrodes inserted in the soil surface to form an equally spaced grid around the trunk of the poplar. In sum, this subsystem comprises 72 electrodes;
- A 2D subsystem consisting of two 3-m-long boreholes, spaced 1.38 m apart, each containing 24 stainless steel electrodes, with a vertical spacing of 0.12 m. Between these two boreholes, 13 equally spaced stainless steel electrodes were also inserted at the soil surface, making a total of 61 electrodes;
- A 2D subsystem consisting of two 10-m-long boreholes, spaced 5.0 m apart, each containing 24 stainless steel electrodes, with a vertical spacing of 0.4 m. Between these two boreholes, 13 equally-spaced stainless steel electrodes were also inserted at the soil surface for a total of 61 electrodes.
- at soil depths of 5–20 cm, soil texture is 42.23% sand, 45.82% silt, and 11.95% clay, whereas the oven-dry bulk density is 1.074 g/cm3;
- at soil depths of 50–75 cm, soil texture is 47.45% sand, 39.73% silt, and 12.82% clay, whereas the oven-dry bulk density is 0.993 g/cm3;
- at soil depths of 110–125 cm, soil texture is 42.55% sand, 49.69% silt, and 7.76% clay, whereas the oven-dry bulk density is 1.080 g/cm3;
- at soil depths of 162–177 cm, soil texture is 39.90% sand, 52.34% silt, and 7.76% clay, whereas the oven-dry bulk density is 1.062 g/cm3.
4. Integrating Observations and Modeling Activities: The Case of the Alento CZO
5. Concluding Remarks and Outlook
Funding
Acknowledgments
Conflicts of Interest
References
- Seibert, J.; McDonnell, J.J. On the dialog between experimentalist and modeler in catchment hydrology: Use of soft data for multicriteria model calibration. Water Resour. Res. 2002, 38, 1241. [Google Scholar] [CrossRef]
- Rinderer, M.; Seibert, J. Soil information in hydrologic models: Hard data, soft data, and the dialog between experimentalists and modelers. In Hydropedology—Synergistic Integration of Soil Science and Hydrology; Lin, H., Ed.; Elsevier Academic Press: London, UK, 2012; pp. 515–536. [Google Scholar] [CrossRef]
- United Nations General Assembly. Transforming Our World: The 2030 Agenda for Sustainable Development; A/RES/70/1; United Nations General Assembly: New York, NY, USA, 21 October 2015. [Google Scholar]
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- United Nations Economic Commission for Europe. Methodology for Assessing the Water-Food-Energy-Ecosystems Nexus in Transboundary Basins and Experiences from Its Application: Synthesis; United Nations Publication: New York, NY, USA, 2018; pp. 1–66. ISBN 978-92-1-117178-5. [Google Scholar]
- Lin, H.; Hopmans, J.W.; Richter, D.D. Interdisciplinary sciences in a global network of critical zone observatories. Vadose Zone J. 2011, 10, 781–785. [Google Scholar] [CrossRef]
- Vereecken, H.; Huisman, J.A.; Hendricks Franssen, H.J.; Brüggemann, N.; Bogena, H.R.; Kollet, S.; Javaux, M.; van der Kruk, J.; Vanderborght, J. Soil hydrology: Recent methodological advances, challenges, and perspectives. Water Resour. Res. 2015, 51, 2616–2633. [Google Scholar] [CrossRef]
- Romano, N.; Santini, A. Water retention and storage: Field. In Methods of Soil Analysis, Part 4, Physical Methods; SSSA Book Series N. 5; Dane, J.H., Topp, G.C., Eds.; Soil Science Society America: Madison, WI, USA, 2002; pp. 721–738. ISBN 0-89118-841-X. [Google Scholar] [CrossRef]
- Guswa, A.J.; Celia, M.A.; Rodriguez-Iturbe, I. Models of soil moisture dynamics in ecohydrology: A comparative study. Water Resour. Res. 2002, 38, W01166. [Google Scholar] [CrossRef]
- Porporato, A.; D’Odorico, P.; Laio, F.; Ridolfi, L.; Rodriguez-Iturbe, I. Ecohydrology of water-controlled ecosystems. Adv. Water Res. 2002, 25, 1335–1348. [Google Scholar] [CrossRef]
- Rodríguez-Iturbe, I.; Porporato, A. Ecohydrology of Water-Controlled Ecosystems: Soil Moisture and Plant Dynamics; Cambridge University Press: New York, NY, USA, 2005; pp. 1–442. [Google Scholar] [CrossRef]
- Kutilek, M.; Nielsen, D.R. Soil Hydrology; Catena Verlag: Cremlingen-Destedt, Germany, 1994; pp. 1–370. ISBN 3-923381-26-3. [Google Scholar]
- Romano, N.; Santini, A. Determining soil hydraulic functions from evaporation experiments by a parameter estimation Approach: Experimental verifications and numerical studies. Water Resour. Res. 1999, 35, 3343–3359. [Google Scholar] [CrossRef]
- Priesack, E.; Durner, W. Closed–form expression for the multi–modal unsaturated conductivity function. Vadose Zone J. 2006, 5, 121–124. [Google Scholar] [CrossRef]
- Romano, N.; Nasta, P.; Severino, G.; Hopmans, J.W. Using bimodal log-normal functions to describe soil hydraulic properties. Soil Sci. Soc. Am. J. 2011, 75, 468–480. [Google Scholar] [CrossRef]
- Hillel, D.; Krentos, V.D.; Stylianou, Y. Procedure and test of an internal drainage method for measuring soil hydraulic characteristics in situ. Soil Sci. 1972, 114, 395–400. [Google Scholar] [CrossRef]
- Hopmans, J.W.; Šimunek, J.; Romano, N.; Durner, W. Simultaneous determination of water transmission and retention properties: Inverse methods. In Methods of Soil Analysis, Part 4, Physical Methods; SSSA Book Series N. 5; Dane, J.H., Topp, G.C., Eds.; Soil Science Society America: Madison, WI, USA, 2002; pp. 963–1008. ISBN 0-89118-841-X. [Google Scholar] [CrossRef]
- Iovino, M.; Romano, N. Inverse modeling of evaporation and multistep outflow experiments for determining soil hydraulic properties: A comparison. J. Agric. Eng. 2005, 36, 57–67. [Google Scholar]
- Gardner, W.R.; Miklich, F.J. Unsaturated conductivity and diffusivity measurements by a constant flux method. Soil Sci. 1962, 93, 271–274. [Google Scholar] [CrossRef]
- Wind, G.P. Capillary conductivity data estimated by a simple method. In Water in the Unsaturated Zone; Rijtema, P.E., Wassink, H., Eds.; IASAH: Gentbrugge, Belgium, 1968; pp. 181–191. [Google Scholar]
- Peters, A.; Durner, W. Simplified evaporation method for determining soil hydraulic properties. J. Hydrol. 2008, 356, 147–162. [Google Scholar] [CrossRef]
- Iden, S.C.; Durner, W. Free-Form estimation of soil hydraulic properties using Wind’s method. Eur. J. Soil Sci. 2008, 59, 1228–1240. [Google Scholar] [CrossRef]
- Schindler, U.; von Unold, G.; Durner, W.; Müller, L. Evaporation method for measuring unsaturated hydraulic properties of soils: Extending the range. Soil Sci. Soc. Am. J. 2010, 74, 1071–1083. [Google Scholar] [CrossRef]
- Romano, N.; Nasta, P.; Bogena, H.; De Vita, P.; Stellato, L.; Vereecken, H. Monitoring hydrological processes for land and water resources management in a Mediterranean ecosystem: The Alento River catchment observatory. Vadose Zone J. 2018, 17. [Google Scholar] [CrossRef] [Green Version]
- Romano, N.; Nasta, P. How effective is bimodal soil hydraulic characterization? Functional evaluations for predictions of soil water balance. Eur. J. Soil Sci. 2016, 67, 523–535. [Google Scholar] [CrossRef] [Green Version]
- Vachaud, G.; Dancette, C.; Sonko, S.; Thony, J.L. Méthodes de caractérisation hydrodynamique in situ d’un sol non saturé. Application à deux types de sol du Sénégal en veu de la détermination des termes du bilan hydrique. Ann. Agron. 1978, 29, 1–36. [Google Scholar]
- Dane, J.H.; Hruska, S. In-situ determination of soil hydraulic properties during drainage. Soil Sci. Soc. Am. J. 1983, 47, 619–624. [Google Scholar] [CrossRef]
- Romano, N. Use of an inverse method and geostatistics to estimate soil hydraulic conductivity for spatial variability analysis. Geoderma 1993, 60, 169–186. [Google Scholar] [CrossRef]
- Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed.; Cambridge University Press: New York, NY, USA, 1992. [Google Scholar]
- Vrugt, J.A.; Bouten, W.; Gupta, H.V.; Hopmans, J.W. Toward improved identifiability of soil hydraulic parameters: On the selection of a suitable parametric model. Vadose Zone J. 2003, 2, 98–113. [Google Scholar] [CrossRef]
- Ritchie, J.T. Soil water availability. Plant Soil 1981, 58, 327–338. [Google Scholar] [CrossRef]
- Logsdon, S. Should upper limit of available water be based on field capacity? Agrosyst. Geosci. Environ. 2019, 2, 190066. [Google Scholar] [CrossRef]
- Romano, N.; Palladino, M.; Chirico, G.B. Parameterization of a bucket model for soil-vegetation-atmosphere modeling under seasonal climatic regimes. Hydrol. Earth Syst. Sci. 2011, 15, 3877–3893. [Google Scholar] [CrossRef] [Green Version]
- Twarakavi, N.K.C.; Sakai, M.; Šimunek, J. An objective analysis of the dynamic nature of field capacity. Water Resour. Res. 2009, 45, W10410. [Google Scholar] [CrossRef]
- Nasta, P.; Romano, N. Use of a flux-based field capacity criterion to identify effective hydraulic parameters of layered soil profiles subjected to synthetic drainage experiments. Water Resour. Res. 2016, 52, 566–584. [Google Scholar] [CrossRef] [Green Version]
- Pachepsky, Y.A.; Rawls, W.J.; Lin, H.S. Hydropedology and pedotransfer functions. Geoderma 2006, 131, 308–316. [Google Scholar] [CrossRef]
- Nasta, P.; Palladino, M.; Sica, B.; Pizzolante, A.; Trifuoggi, M.; Toscanesi, M.; Giarra, A.; D’Auria, J.; Nicodemo, F.; Mazzitelli, C.; et al. Evaluating pedotransfer functions for predicting soil bulk density using hierarchical mapping information in Campania, Italy. Geoderma Reg. 2020, 21, e00267. [Google Scholar] [CrossRef]
- Romano, N.; Palladino, M. Prediction of soil water retention using soil physical data and terrain attributes. J. Hydrol. 2008, 265, 56–75. [Google Scholar] [CrossRef]
- Romano, N. Spatial structure of PTF estimates. In Development of Pedotransfer Functions in Soil Hydrology; Pachepsky, Y.A., Rawls, W.J., Eds.; Elsevier Science BV: Amsterdam, The Netherlands, 2004; pp. 295–319. ISBN 0-444-51705-7. [Google Scholar]
- Pringle, M.J.; Romano, N.; Minasny, B.; Chirico, G.B.; Lark, R.M. Spatial evaluation of pedotransfer functions using wavelet analysis. J. Hydrol. 2007, 333, 182–198. [Google Scholar] [CrossRef]
- Nasta, P.; Vrugt, J.A.; Romano, N. Prediction of the saturated hydraulic conductivity from Brooks and Corey’s water retention parameters. Water Resour. Res. 2013, 49, 2918–2925. [Google Scholar] [CrossRef] [Green Version]
- Pollacco, J.A.; Nasta, P.; Soria-Ugalde, J.M.; Angulo-Jaramillo, R.; Lassabatere, L.; Mohanty, B.P.; Romano, N. Reduction of feasible parameter space of the inverted soil hydraulic parameters sets for Kosugi model. Soil Sci. 2013, 178, 267–280. [Google Scholar] [CrossRef] [Green Version]
- Ghanbarian, B.; Hunt, A.G.; Skaggs, T.H.; Jarvis, N. Upscaling soil saturated hydraulic conductivity from pore throat characteristics. Adv. Water Res. 2017, 104, 105–113. [Google Scholar] [CrossRef] [Green Version]
- Heuvelink, G.B.M.; Pebesma, E.J. Spatial aggregation and soil process modelling. Geoderma 1999, 89, 47–65. [Google Scholar] [CrossRef]
- Sinowski, W.; Scheinost, A.C.; Auerswald, K. Regionalization of soil water retention curves in a highly variable soilscape: II. Comparison of regionalization procedures using a pedotranfer function. Geoderma 1997, 78, 145–160. [Google Scholar] [CrossRef]
- Picciafuoco, T.; Morbidelli, R.; Flammini, A.; Saltalippi, C.; Corradini, C.; Strauss, P.; Blöschl, G. A pedotransfer function for field-scale saturated hydraulic conductivity of a small watershed. Vadose Zone J. 2019, 18. [Google Scholar] [CrossRef] [Green Version]
- Szatmári, G.; Pásztor, L. Comparison of various uncertainty modelling approaches based on geostatistics and machine learning algorithms. Geoderma 2019, 337, 1329–1340. [Google Scholar] [CrossRef]
- Romano, N. Soil moisture at local scale: Measurements and simulations. J. Hydrol. 2014, 516, 6–20. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Corti, T.; Davin, E.L.; Hirschi, M.; Jaeger, E.B.; Lehner, I.; Orlowsky, B.; Teuling, A.J. Investigating soil moisture-climate interactions in a changing climate: A review. Earth Sci. Rev. 2010, 99, 125–161. [Google Scholar] [CrossRef]
- Babaeian, E.; Sadeghi, M.; Jones, S.B.; Montzka, C.; Vereecken, H.; Tuller, M. Ground, proximal, and satellite remote sensing of soil moisture. Rev. Geophys. 2019, 57, 530–616. [Google Scholar] [CrossRef] [Green Version]
- Topp, G.C.; Ferré, P.A. The soil solution phase: Water Content. In Methods of Soil Analysis, Part 4, Physical Methods; SSSA Book Series N. 5; Dane, J.H., Topp, G.C., Eds.; Soil Science Society America: Madison, WI, USA, 2002; pp. 417–545. ISBN 0-89118-841-X. [Google Scholar] [CrossRef]
- Vereecken, H.; Huisman, J.A.; Bogena, H.R.; Vanderborght, J.; Vrugt, J.A.; Hopmans, J.W. On the value of soil moisture measurements in vadose zone hydrology: A review. Water Resour. Res. 2008, 44, W00D06. [Google Scholar] [CrossRef] [Green Version]
- Palladino, M.; Sica, B.; Chiavarini, S.; Rimauro, J.; Salluzzo, A.; Mary, B.; Boaga, J.; Cassiani, G.; Romano, N. On reducing VOCs concentration from groundwater for irrigation purposes: A detailed monitoring program to test the stripping efficiency of a sprinkler system. In Proceedings of the IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), Portici (Naples), Italy, 24–26 October 2019; pp. 286–290. [Google Scholar]
- Perri, M.T.; De Vita, P.; Masciale, R.; Portoghese, I.; Chirico, G.B.; Cassiani, G. Time-lapse Mise-á-la-Masse measurements and modeling for tracer test monitoring in a shallow aquifer. J. Hydrol. 2018, 561, 461–477. [Google Scholar] [CrossRef]
- Nasta, P.; Schönbrodt-Stitt, S.; Bogena, H.R.; Kurtenbach, M.; Ahmadian, N.; Vereecken, H.; Conrad, C.; Romano, N. Integrating ground-based and remote sensing-based monitoring of near-surface soil moisture in a Mediterranean environment. In Proceedings of the IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), Portici (Naples), Italy, 24–26 October 2019; pp. 274–279. [Google Scholar]
- Manfreda, S.; McCabe, M.F.; Miller, P.E.; Lucas, R.; Pajuelo Madrigal, V.; Mallinis, G.; Ben Dor, E.; Helman, D.; Estes, L.; Ciraolo, G.; et al. On the use of unmanned aerial systems for environmental monitoring. Remote Sens. 2018, 10, 641. [Google Scholar] [CrossRef] [Green Version]
- Nasta, P.; Palladino, M.; Ursino, N.; Saracino, A.; Sommella, A.; Romano, N. Assessing long-term impact of land-use change on hydrological ecosystem functions in a Mediterranean upland agro-forestry catchment. Sci. Total Environ. 2017, 605–606, 1070–1082. [Google Scholar] [CrossRef] [PubMed]
- Nasta, P.; Kamai, T.; Chirico, G.B.; Hopmans, J.W.; Romano, N. Scaling soil water retention functions using particle-size distribution. J. Hydrol. 2009, 374, 223–234. [Google Scholar] [CrossRef]
- Nasta, P.; Romano, N.; Chirico, G.B. Functional evaluation of a simplified scaling method for assessing the spatial variability of the soil hydraulic properties at hillslope scale. Hydrol. Sci. J. 2013, 58, 1059–1071. [Google Scholar] [CrossRef] [Green Version]
- Nasta, P.; Sica, B.; Mazzitelli, C.; Di Fiore, P.; Lazzaro, U.; Palladino, M.; Romano, N. How effective is information on soil-landscape units for determining spatio-temporal variability of near-surface soil moisture? J. Agric. Eng. 2018, 49, 174–182. [Google Scholar] [CrossRef]
- Ellison, D.; Futter, M.N.; Bishop, K. On the forest cover-water yield debate: From demand- to supply-side thinking. Glob. Chang. Biol. 2012, 18, 806–820. [Google Scholar] [CrossRef] [Green Version]
- Ursino, N.; Romano, N. Wild forest fire regime following land abandonment in the Mediterranean region. Geophys. Res. Lett. 2014, 41, 8359–8368. [Google Scholar] [CrossRef]
- Šimůnek, J.; van Genuchten, M.T.; Šejna, M. Recent developments and applications of the HYDRUS computer software packages. Vadose Zone J. 2015, 15. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romano, N. Intertwining Observations and Predictions in Vadose Zone Hydrology: A Review of Selected Studies. Water 2020, 12, 1107. https://doi.org/10.3390/w12041107
Romano N. Intertwining Observations and Predictions in Vadose Zone Hydrology: A Review of Selected Studies. Water. 2020; 12(4):1107. https://doi.org/10.3390/w12041107
Chicago/Turabian StyleRomano, Nunzio. 2020. "Intertwining Observations and Predictions in Vadose Zone Hydrology: A Review of Selected Studies" Water 12, no. 4: 1107. https://doi.org/10.3390/w12041107
APA StyleRomano, N. (2020). Intertwining Observations and Predictions in Vadose Zone Hydrology: A Review of Selected Studies. Water, 12(4), 1107. https://doi.org/10.3390/w12041107