Spatiotemporal Variation in Precipitation during Rainy Season in Beibu Gulf, South China, from 1961 to 2016
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Index Definition
2.4. Collection of Historical Precipitation Events
3. Results
3.1. Statistics of Precipitation in Rainy Season
3.2. Statistical Analysis of Incidence Rate and Contribution Rate of Precipitation Durations
3.3. Spatial Differences of Precipitation Incidence Rates and Contribution Rates
3.4. Statistic Analysis for Incidence Rate and Contribution Rate of Different Precipitation Grades
3.5. Spatial Differences of Incidence Rate and Contribution Rate of Different Precipitation Grades
3.6. Variation Tendency of Incidence Rate and Contribution Rate of Different Precipitation Durations
3.7. Variation Tendency for Incidence Rate and Contribution Rate of Different Precipitation Grades
4. Discussion
4.1. Spatiotemporal Variation in Precipitation
4.2. Implication of the Results
4.3. Limitation and Future Research
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- IPCC. Climate Change 2013: The Physical Science Basis; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Tett, S.F.B.; Stott, P.A.; Allen, M.R.; Ingram, W.J.; Mitchell, J.F.B. Causes of twentieth century temperature change near the Earth’s surface. Nature 1999, 399, 569–572. [Google Scholar] [CrossRef]
- Stott, P.A.; Tett, S.F.B.; Jones, G.S.; Allen, M.R.; Mitchell1, J.F.B.; Jenkins, G.J. External control of 20th century temperature by natural and anthropogenic forcing. Science 2000, 290, 2133–2137. [Google Scholar] [CrossRef] [Green Version]
- Hu, M.; Zhang, X.; Li, Y.; Yang, H.; Tanaka, K. Flood mitigation performance of low impact development technologies under different storms for retrofitting an urbanized area. J. Clean. Prod. 2019, 222, 373–380. [Google Scholar] [CrossRef]
- Hu, M.; Zhang, X.; Siu, Y.; Li, Y.; Tanaka, K.; Yang, H.; Xu, Y. Flood mitigation by permeable pavements in Chinese sponge city construction. Water 2018, 10, 172. [Google Scholar] [CrossRef] [Green Version]
- Huntington, T.G. Evidence for intensification of the global water cycle: Review and synthesis. J. Hydrol. 2006, 319, 83–95. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, Q.; Jiang, Z. Three Gorges Dam affects regional precipitation. Geophys. Res. Lett. 2006, 33, L13806. [Google Scholar] [CrossRef] [Green Version]
- New, M.; Todd, M.; Hulme, M.; Jones, P. Precipitation measurements and trends in the twentieth century. Int. J. Climatol. 2001, 21, 1899–1922. [Google Scholar] [CrossRef]
- Lin, R.; Zhou, T.; Qian, Y. Evaluation of global monsoon precipitation changes based on five reanalysis datasets. J. Clim. 2014, 27, 1271–1289. [Google Scholar] [CrossRef]
- Meehl, G.A.; Zwiers, F.; Evans, J.; Knutson, T.; Mearns, L.; Whetton, P. Trends in extreme weather and climate events: Issues related to modeling extremes in projections of future climate change. Bull. Am. Meteorol. Soc. 2000, 81, 427–436. [Google Scholar] [CrossRef] [Green Version]
- Wielicki, B.A.; Wong, T.; Allan, R.P.; Slingo, A.; Kiehl, J.T.; Soden, B.J.; Gordon, C.T.; Miller, A.J.; Yang, S.; Randall, D.A.; et al. Evidence for large decadal variability in the tropical mean radiative energy budget. Science 2002, 295, 841–844. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Fu, C.; Shi, C.; Chen, J.; Wu, F. Temperature dependence of global precipitation extremes. Geophys. Res. Lett. 2009, 36, L17702. [Google Scholar] [CrossRef] [Green Version]
- Lau, K.M.; Wu, H.T. Detecting trends in tropical rainfall characteristics, 1979–2003. Int. J. Climatol. 2007, 27, 979–988. [Google Scholar] [CrossRef] [Green Version]
- Lenderink, G.; van Meijgaard, E. Increase in hourly precipitation extremes beyond expectations from temperature changes. Nat. Geosci. 2008, 1, 511–514. [Google Scholar] [CrossRef]
- Dong, X.; Zhou, S.; Hu, Z. Characteristics of spatial and temporal variation of heavy snowfall in Northeast China in recent 50 years. Meteorol. Mon. 2010, 36, 74–79. (In Chinese) [Google Scholar]
- Chou, C.; Lan, C.W. Changes in the annual range of precipitation under global warming. J. Clim. 2012, 25, 222–235. [Google Scholar] [CrossRef] [Green Version]
- Hu, M.; Sayama, T.; Zhang, X.; Tanaka, K.; Takara, K.; Yang, H. Evaluation of low impact development approach for mitigating flood inundation at a watershed scale in China. J. Environ. Manag. 2017, 193, 430–438. [Google Scholar] [CrossRef]
- Allen, M.R.; Ingram, W.J. Constraints on future changes in climate and the hydrologic cycle. Nature 2002, 419, 224–232. [Google Scholar] [CrossRef]
- Meehl, G.A.; Stocker, T.F.; Collins, W.D.; Friedlingstein, P.; Gaye, A.; Gregory, J.M.; Kitoh, A.; Knutti, R.; Murphy, J.M.; Noda, A.; et al. Global climate projections. In Climate Change 2007: The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2007; pp. 747–845. [Google Scholar]
- Trenberth, K.E.; Jones, P.D.; Ambenje, P.; Bojariu, R.; Easterling, D.R.; Tank, A.M.G.K.; Parker, D.E.; Renwick, J.A.; Rahimzadeh, F.; Rusticucci, M.M.; et al. Observations: Surface and atmospheric climate change. In Climate Change 2007: The Physical Science Basis; Solomon, S., Qin, D., Manning, M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; pp. 236–336. [Google Scholar]
- Zhao, S.; Cong, D.; He, K.; Yang, H.; Qin, Z. Spatial-temporal variation of drought in china from 1982 to 2010 based on a modified temperature vegetation drought index (MTVDI). Sci. Rep. 2017, 7, 17473. [Google Scholar] [CrossRef]
- Alijanian, M.; Rakhshandehroo, G.R.; Mishra, A.K.; Dehghani, M. Evaluation of satellite rainfall climatology using CMORPH, PERSIANNCDR, PERSIANN, TRMM, MSWEP over Iran. Int. J. Climatol. 2017, 37, 4896–4914. [Google Scholar] [CrossRef]
- Siuki, S.K.; Saghafian, B.; Moazami, S. Comprehensive evaluation of 3-hourly TRMM and half-hourly GPM-IMERG satellite precipitation products. Int. J. Remote Sens. 2017, 38, 558–571. [Google Scholar] [CrossRef]
- Darand, M.; Amanollahi, J.; Zandkarimi, S. Evaluation of the performance of TRMM Multi-satellite Precipitation Analysis (TMPA) estimation over Iran. Atmos. Res. 2017, 190, 121–127. [Google Scholar] [CrossRef]
- Inoue, T.; Aonashi, K. A comparison of cloud and rainfall information from instantaneous visible and infrared scanner and precipitation radar observations over a frontal zone in East Asia during June 1998. J. Appl. Meteorol. 2000, 39, 2292–2301. [Google Scholar] [CrossRef]
- Fu, Y.; Lin, Y.; Liu, G.; Qiang, W. Seasonal characteristics of precipitation in 1998 over East Asia as derived from TRMM PR. Adv. Atmos. Sci. 2003, 20, 511–529. [Google Scholar] [CrossRef]
- Fisher, B.L. Climatological validation of TRMM TMI and PR monthly rain products over Oklahoma. J. Appl. Meteorol. 2004, 43, 519–535. [Google Scholar] [CrossRef]
- Chen, F.; Fu, Y.; Liu, P.; Yang, Y. Seasonal variability of storm top altitudes in the tropics and subtropics observed by TRMM PR. Atmos. Res. 2016, 169, 113–126. [Google Scholar] [CrossRef]
- Fu, Y.; Liu, G.; Wu, G.; Yu, R.; Xu, Y.; Wang, Y.; Li, R.; Liu, Q. Tower mast of precipitation over the central Tibetan Plateau summer. Geophys. Res. Lett. 2006, 33, L058025. [Google Scholar] [CrossRef] [Green Version]
- Hou, A.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The global precipitation measurement mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [Google Scholar] [CrossRef]
- Iguchi, T.; Kozu, T.; Meneghini, R. Rain-profiling algorithm for the TRMM precipitation radar. J. Appl. Meteorol. 2000, 39, 2038–2052. [Google Scholar] [CrossRef]
- Liu, G.; Fu, Y. The characteristics of tropical precipitation profiles as inferred from satellite radar measurements. J. Meteorol. Soc. Jpn. 2001, 79, 131–143. [Google Scholar] [CrossRef] [Green Version]
- Schumacher, C.; Houze, R.A., Jr. Stratiform rain in the tropics as seen by the TRMM precipitation radar. J. Clim. 2003, 16, 1739–1756. [Google Scholar] [CrossRef]
- Barros, A.P.; Joshi, M.; Putkonen, J.; Burbank, D.W. A study of the 1999 monsoon rainfall in a mountainous region in central Nepal using TRMM products and rain gauge observations. Geophys. Res. Lett. 2000, 27, 3683–3686. [Google Scholar] [CrossRef]
- Berg, W.; Kummerow, C.; Morales, C.A. Differences between East and West Pacific rainfall systems. J. Clim. 2002, 15, 3659–3672. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.; Liu, G. Possible misidentification of rain type by TRMM PR over Tibetan Plateau. J. Appl. Meteorol. Climatol. 2007, 46, 667–672. [Google Scholar] [CrossRef]
- Liu, Q.; Fu, Y. Comparison of radiative signals between precipitating and non-precipitating clouds in frontal and typhoon domains over East Asia. Atmos. Res. 2010, 96, 436–446. [Google Scholar] [CrossRef]
- Li, R.; Min, Q.; Fu, Y. 1997/98 El Niño-induced changes in rainfall vertical structure in the East Pacific. J. Clim. 2011, 24, 6373–6391. [Google Scholar] [CrossRef]
- Liu, P.; Li, C.; Wang, Y.; Fu, Y. Climatic characteristics of convective and stratiform precipitation over the tropical and subtropical areas as derived from TRMM PR. Sci. Chin. Earth Sci. 2013, 56, 375–385. [Google Scholar] [CrossRef]
- Fu, Y.; Qin, F. Summer daytime precipitation in ice, mixed, and water phase as viewed by PR and VIRS in tropics and subtropics. In SPIE Asia–Pacific Remote Sensing; SPIE: Beijing, China, 2014; p. 925906. [Google Scholar] [CrossRef]
- Kozu, T.; Kawanishi, T.; Kuroiwa, H.; Kojima, M.; Oikawa, K.; Kumagai, H.; Okamoto, K.; Okumura, M.; Nakatsuka, H.; Nishikawa, K. Development of precipitation radar onboard the Tropical Rainfall Measuring Mission (TRMM) satellite. IEEE Trans. Geosci. Remote Sens. 2001, 39, 102–116. [Google Scholar] [CrossRef]
- Hamada, A.; Takayabu, Y. Improvements in detection of light precipitation with the global precipitation measurement dual-frequency precipitation radar (GPM DPR). J. Atmos. Ocean. Technol. 2016, 33, 653–667. [Google Scholar] [CrossRef]
- Chandrasekar, V.; Le, M. Evaluation of profile classification module of GPM-DPR algorithm after launch. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 5174–5177. [Google Scholar] [CrossRef]
- Toyoshima, K.; Masunaga, H.; Furuzawa, F.A. Early evaluation of Kuand Ka-band sensitivities for the Global Precipitation Measurement (GPM) Dual-frequency Precipitation Radar (DPR). SOLA 2015, 11, 14–17. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Zipser, E.J. The global distribution of largest, deepest, and most intense precipitation systems. Geophys. Res. Lett. 2015, 42, 3591–3595. [Google Scholar] [CrossRef] [Green Version]
- Tang, G.; Wan, W.; Zeng, Z.; Xiaolin, G.; Na, L.; Di, L.; Yang, H. An overview of the Global Precipitation Measurement (GPM) mission and its latest development. Remote Sens. Technol. Appl. 2015, 30, 607–615. (In Chinese) [Google Scholar] [CrossRef]
- Shimozuma, T.; Seto, S. Evaluation of KUPR algorithm in matchup cases of GPM and TRMM. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 5134–5137. [Google Scholar] [CrossRef]
- Tang, G.; Ma, Y.; Long, D.; Zhong, L.; Hong, Y. Evaluation of GPM Day-1 IMERG and TMPA Version-7 legacy products over Mainland China at multiple spatiotemporal scales. J. Hydrol. 2016, 533, 152–167. [Google Scholar] [CrossRef]
- Zhang, A.; Fu, Y. The structural characteristics of precipitation cases detected by dual-frequency radar of GPM satellite. Chin. J. Atmos. Sci. 2018, 42. (In Chinese) [Google Scholar] [CrossRef]
- Brommer, D.M.; Cerveny, R.S.; Balling, R.C. Characteristics of long-duration precipitation events across the United States. Geophys. Res. Lett. 2007, 34, 2–6. [Google Scholar] [CrossRef]
- Zolina, O.; Simmer, C.; Gulev, S.K. Changing structure of European precipitation: Longer wet periods leading to more abundant rainfalls. Geophys. Res. Lett. 2010, 37, L06704. [Google Scholar] [CrossRef]
- Moberg, A.; Jones, P.D.; Lister, D.; Walther, A.; Brunet, M.; Jacobeit, J.; Alexander, L.V.; Della-Marta, P.M.; Luterbacher, J.; Yiou, P.; et al. Indices for daily temperature and precipitation extremes in Europe analyzed for the period 1901–2000. J. Geophys. Res. Atmos. 2006, 111, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Ye, Y.; Liang, L.; Gong, J.; Jiang, Y.; Wang, H. Spatiotemporal variability characteristics of precipitation structure across the upper Yangtze River basin, China. Ad. Water Sci. 2014, 25, 164–171. (In Chinese) [Google Scholar] [CrossRef]
- Song, Y.; Zhou, S.; Wang, C.; Li, Y.; Huang, Y. Temporal Evolution Characteristics of Summer Graded Precipitation over the East of Northwest China during 1965–2014. J. Desert Res. 2018, 38, 182–191. (In Chinese) [Google Scholar] [CrossRef]
- Song, X.; Zhang, J.; Liu, J. Spatiotemporal variation characteristics of precipitation pattern in Beijing. Shuili Xuebao 2015, 46, 525–535. (In Chinese) [Google Scholar] [CrossRef]
- Han, J.Y.; Baik, J.J.; Lee, H. Urban impacts on precipitation. Asia-Pac. J. Atmos. Sci. 2014, 50, 17–30. [Google Scholar] [CrossRef]
- Yao, C.; Yang, S.; Qian, W.; Lin, Z.; Wen, M. Regional summer precipitation events in Asia and their changes in the past decades. J. Geophys.Res. 2008, 113, D17107. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Zhang, Q.; Chen, Y. Changing spatiotemporal patterns of precipitation extremes in China during 2071–2100 based on Earth System Models. J. Geophys. Res. Atmos. 2013, 118, 12537–12555. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, C.; Chen, X.; Zhang, Z. Statistical behaviors of precipitation regimes in China and their links with atmospheric circulation 1960–2005. Int. J. Climatol. 2011, 31, 1665–1678. [Google Scholar] [CrossRef]
- Allan, R.P.; Soden, B.J. Atmospheric warming and the amplification of precipitation extremes. Science 2008, 321, 1481–1484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Wang, B.; Cane, M.A. Divergent global precipitation changes induced by natural versus anthropogenic forcing. Nature 2013, 493, 656–659. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Long, A.; Yu, F. Study on theoretical method of social water cycle Ι: Definition and dynamical mechanism. Shuili Xuebao 2011, 42, 379–387. (In Chinese) [Google Scholar] [CrossRef]
- Dong, X.; Xue, F.; Zhang, H.; Zeng, Q. Evaluation of surface air temperature change over China and the globe during the twentieth century in IAP AGCM4.0. Atmos. Ocean. Sci. Lett. 2012, 5, 435–438. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Song, X.; Wang, G. Development and challenges of urban hydrology in a changing environment I: Hydrological response to urbanization. Ad. Water Sci. 2014, 25, 594–605. (In Chinese) [Google Scholar] [CrossRef]
- Wu, S.; Liang, J. Spatiotemporal Characteristics of the Drought and Flood during the Rainy Season in South China. J. Trop. Meteorol. 1992, 8, 87–92. [Google Scholar] [CrossRef]
- Zhou, S.; Xu, S.; Huang, F. Secular Variation Features of Agricultural Climate Resources in Guangxi. Chin. Agric. Sci. Bull. 2011, 27, 168–173. (In Chinese) [Google Scholar]
- Qin, W.; Li, Y.; Liao, X. Impact of the Madden-Julian Oscillation activity on the phase precipitation in Guangxi. J. Meteorol. Res. Appl. 2015, 36, 25–30. (In Chinese) [Google Scholar] [CrossRef]
- Huang, G.; Wang, W.; Li, Q. Opening and Development of the Beibu Gulf Economic Zone. Res. Sci. 2009, 31, 164–170. (In Chinese) [Google Scholar]
- Wang, Y. “The Belt and Road Initiative” Promotes Inclusive Growth. The People’s Daily, 7 September 2016. (In Chinese) [Google Scholar]
- Zhang, Q.; Zhou, Y.; Vijay, P.; Li, J. Scaling and clustering effects of extreme precipitation distributions. J. Hydrol. 2012, 454–455, 187–194. [Google Scholar] [CrossRef]
- Yang, P.; Ren, G.; Hou, W.; Liu, W. Spatial and diurnal characteristics of summer rainfall over Beijing Municipality based on a high-density AWS dataset. Int. J. Climatol. 2013, 33, 2769–2780. [Google Scholar] [CrossRef]
- Yin, S.; Gao, G.; Li, W.; Chen, D.; Hao, L. Long-term precipitation change by hourly data in Haihe River Basin during 1961–2004. Sci. Chin. Earth Sci. 2012, 42, 256–266. [Google Scholar] [CrossRef]
- Liu, B.; Chen, C.; Lian, Y. Long-term change of wet and dry climatic conditions in the southwest karst area of China. Glob. Planet. Chang. 2015, 127, 1–11. [Google Scholar] [CrossRef]
- Qiao, L.; Li, Y.; Fu, J.; Tian, C.; Bi, B.; Zhou, Q. The China National Standardization Management Committee; Grade of precipitation (GB/T28592-2012); Standards Press: Beijing, China, 2012. (In Chinese) [Google Scholar]
- Mann, H.B. Non-parametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Hamed, K.H. Trend detection in hydrologic data: The Mann-Kendall trend test under the scaling hypothesis. J. Hydrol. 2008, 349, 350–363. [Google Scholar] [CrossRef]
- Song, X.; Zhang, J.; AghaKouchak, A.; Roy, S.S.; Xuan, Y.; Wang, G.; He, R.; Wang, X.; Liu, C. Rapid urbanization and changes in trends and spatiotemporal characteristics of precipitation in the Beijing metropolitan area. J. Geophys. Res. Atmos. 2014, 119, 11250–11271. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, J.M.; Dzerdzeevskii, B.; Flohn, H. Climate Change, WHO Technical Note 79; World Meteorological Organization: Geneva, The Switzerland, 1966; p. 79. [Google Scholar]
- Wen, K.; Yang, N. The Meteorology Disaster Almanac over China (Guangxi); Wen, K., Yang, N., Eds.; China Meteorological Press: Beijing, China, 2007; Chapter 1; pp. 14–119. (In Chinese) [Google Scholar]
- He, J.; Xie, M.; Huang, Z.; Li, L.; Huang, X.; Zhou, M. Material statistics of Climate Change in Guangxi. J. Meteorol. Res. Appl. 2016, 37, 11–15. (In Chinese) [Google Scholar]
- Zhou, L. Information construction on flood disasters statistics in Guangxi Province. Chin. Flood Drought Manag. 2017, 27, 92–97. (In Chinese) [Google Scholar] [CrossRef]
- Wen, K.; Yang, N. The Meteorology Disaster Almanac over China (Guangxi); Wen, K., Yang, N., Eds.; China Meteorological Press: Beijing, China, 2007; Chapter 2; pp. 120–198. (In Chinese) [Google Scholar]
- Zhang, Q.; Zhang, W.; Chen, D.; Jiang, T. Flood, drought and typhoon disasters during the last half-century in the Guangdong province, China. Nat. Hazards 2011, 57, 267–278. [Google Scholar] [CrossRef]
- Yu, L.; Zhai, R.; Lu, Y.; Guo, S.; Qu, L.; Cen, X.; Zhang, K.; Huang, P.; Shang, X.; Zhou, S. Effects of typhoon and the mesoscale warm eddy on the near-inertial oscillations in the northern of the South China Sea. Haiyang Xuebao 2020, 42, 1–11. (In Chinese) [Google Scholar] [CrossRef]
- Yang, H. China must continue the momentum of green law. Nature 2014, 509, 535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, N.; Yang, H.; Wang, L.; Huang, X.; Zeng, C.; Wu, H.; Ma, X.; Song, X.; Wei, Y. Optimization of industry structure based on water environmental carrying capacity under uncertainty of the huai river basin within shandong province, china. J. Clean. Prod. 2016, 112, 4594–4604. [Google Scholar] [CrossRef]
- Chen, Y.; Zhai, P. Changing structure of wet periods across southwest China during 1961–2012. Clim. Res. 2014, 61, 123–131. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, Q.; Chen, X. Changing Properties of Precipitation Structure during 1961–2005 across the Huaihe Basin. J. Wuhan Univ. (Nat. Sci. Ed.) 2015, 61, 247–254. (In Chinese) [Google Scholar] [CrossRef]
- Chen, X.; Shang, K.; Wang, S.; Yang, D. Analysis on the Spatiotemporal Characteristics of Precipitation under Different Intensities in China in Recent 50 Years. Arid Zone Res. 2010, 27, 766–772. (In Chinese) [Google Scholar] [CrossRef]
- You, Q.; Kang, S.; Aguilar, E.; Pepin, N.; Flügel, W.; Yan, Y.; Xu, Y.; Zhang, Y.; Huang, J. Changes in daily climate extremes in China and their connection to the large scale atmospheric circulation during 1961–2003. Clim. Dyn. 2011, 36, 2399–2417. [Google Scholar] [CrossRef]
- Yang, L.; Zhao, J.; Feng, G. Characteristics and differences of summertime moisture transport associated with four rainfall patterns over eastern China monsoon region. Chin. J. Atmos. Sci. 2018, 42, 81–95. (In Chinese) [Google Scholar] [CrossRef]
- Zhao, H.; Yao, Y.; Jin, X.; Wang, C. Structure Characteristics of Precipitation in Guangxi Region during 1960–2017. Water Res. Power 2018, 36, 1–4. (In Chinese) [Google Scholar]
- Yan, Z.; Yang, C. GeograPhic Patterns of Extreme Climate Changes in China during 1951–1997. Clim. Environ. Res. 2000, 5, 265–272. (In Chinese) [Google Scholar] [CrossRef]
- Zhai, P.; Liao, Z.; Chen, Y.; Yu, R.; Yuan, Y.; Lu, H. A review on changes in precipitation persistence and phase under the background of global warming. Acta Meteorol. Sin. 2017, 75, 527–538. (In Chinese) [Google Scholar] [CrossRef]
- Bai, A.; Zhai, P.; Liu, X. Climatology and trends of wet spells in China. Theor. Appl. Climatol. 2007, 88, 139–148. [Google Scholar] [CrossRef]
- Lu, H.; Chen, S.; Guo, Y.; He, H.; Xu, S. Spatiotemporal Variation Characteristics of Extremely Heavy Precipitation Frequency over South China in the Last 50 Years. J. Trop. Meteorol. 2012, 28, 219–227. (In Chinese) [Google Scholar] [CrossRef]
- He, B.; Zhai, P. Characteristics of the persistent and non-persistent extreme precipitation in China from 1961 to 2016. Clim. Chang. Res. 2018, 14, 437–444. (In Chinese) [Google Scholar] [CrossRef]
- Lai, L.; Huang, X.; Yang, H.; Chuai, X.; Zhang, M.; Zhong, T.; Chen, Z.; Chen, Y.; Wang, X.; Thompson, J.R. Carbon emissions from land-use change and management in China between 1990 and 2010. Sci. Adv. 2016, 2, e1601063. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Huang, X.; Chuai, X.; Yang, H.; Lai, L.; Tan, J. Impact of land use type conversion on carbon storage in terrestrial ecosystems of China: A spatial-temporal perspective. Sci. Rep. 2015, 5, 10233. [Google Scholar] [CrossRef]
- Yang, H.; Xia, J.; Thompson, J.R.; Flower, R.J. Urban construction and demolition waste and landfill failure in Shenzhen, China. Waste Manag. 2017, 63, 393–396. [Google Scholar] [CrossRef]
- Yang, H.; Flower, R.J.; Thompson, J.R. Sustaining China’s water resources. Science 2013, 339, 141. [Google Scholar] [CrossRef]
- Yang, H.; Huang, X.; Thompson, J.R.; Flower, R.J. Enforcement key to China’s environment. Science 2015, 347, 834–835. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Huang, X.; Yang, H.; Zhong, T. Environmental effects of land-use/cover change caused by urbanization and policies in southwest china karst area–a case study of Guiyang. Habitat Int. 2014, 44, 339–348. [Google Scholar] [CrossRef]
- Yang, H.; Wright, J.A.; Gundry, S.W. Boost water safety in rural China. Nature 2012, 484, 318. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Wu, W.; He, D.; Li, Y.; Ji, X. Hydrological Simulation Using TRMM and CHIRPS Precipitation Estimates in the Lower Lancang-Mekong River Basin. Chin. Geogr. Sci. 2019, 29, 13–25. [Google Scholar] [CrossRef] [Green Version]
- Ren, L.; Wei, L.; Jiang, S.; Shi, J.; Yuan, F.; Zhang, L.; Liu, R. Drought monitoring utility assessment of CHIRPS and GLEAM satellite products in China. Trans. Chin. Soc. Agric. Eng. 2019, 35, 146–154. [Google Scholar] [CrossRef]
Stations | Time | Precipitation (mm) | Duration (d) | Death Tolls | Crop Areas Affected (km2) | Roads Affected (km) | Losses * (Million RMB Yuan) | References |
---|---|---|---|---|---|---|---|---|
Longzhou | 23–24 July 1986 | 166.5 | 2 | 4 | 120 | 19 | 110 | [79] |
Tiandeng | 3 June 1973 | 192.3 | 1 | 5 | 25 | >200 | 25 | [79] |
Chongzuo | 16 September 1984 | 80.3 | 1 | 0 | 27 | >100 | 35 | [79] |
Dongxing | 4–8 August 1995 | 601.9 | 5 | 5 | 89 | >400 | 430 | [79] |
Mashan | 5 July 2014 | 358.0 | 1 | 4 | \ | 45 | 384 | [80] |
Nanning | 29–30 August 1988 | 158.1 | 2 | 8 | 373 | 76 | 130 | [79] |
Qinzhou | 17–19 August 1996 | 183.9 | 3 | 6 | 305 | 157 | 130 | [79] |
Beihai | 20–21 July 1994 | 245.1 | 2 | 6 | \ | >200 | 350 | [79] |
Hengxian | 17–27 August 1979 | 263.1 | ≥10 | 0 | 367 | \ | 30 | [79] |
Bobai | 19–24 July 1994 | 506.3 | 6 | 36 | 400 | >300 | 1630 | [79] |
Yulin | 9–11 May 2014 | 273.4 | 3 | 2 | \ | \ | 370 | [81] |
Rongxian | 18–19 April 1996 | 128.7 | 2 | 1 | 30.7 | 300 | 50 | [79] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Yang, H.; Wei, X. Spatiotemporal Variation in Precipitation during Rainy Season in Beibu Gulf, South China, from 1961 to 2016. Water 2020, 12, 1170. https://doi.org/10.3390/w12041170
Liu Z, Yang H, Wei X. Spatiotemporal Variation in Precipitation during Rainy Season in Beibu Gulf, South China, from 1961 to 2016. Water. 2020; 12(4):1170. https://doi.org/10.3390/w12041170
Chicago/Turabian StyleLiu, Zhanming, Hong Yang, and Xinghu Wei. 2020. "Spatiotemporal Variation in Precipitation during Rainy Season in Beibu Gulf, South China, from 1961 to 2016" Water 12, no. 4: 1170. https://doi.org/10.3390/w12041170
APA StyleLiu, Z., Yang, H., & Wei, X. (2020). Spatiotemporal Variation in Precipitation during Rainy Season in Beibu Gulf, South China, from 1961 to 2016. Water, 12(4), 1170. https://doi.org/10.3390/w12041170