An Evaluation Study of the Fully Coupled WRF/WRF-Hydro Modeling System for Simulation of Storm Events with Different Rainfall Evenness in Space and Time
Abstract
:1. Introduction
- What are the different spatiotemporal storm simulation performances between WRF-only and the fully coupled WRF/WRF-Hydro in the semi-humid areas of northern China?
- Could the fully coupled system improve the precipitation spatiotemporal distribution?
- What are the differences in the variation of water cycle elements (e.g., rainfall and soil moisture) of different storm events?
2. Data and Methods
2.1. Study Area and Storm Events
2.2. Models and Calibration
2.2.1. WRF
2.2.2. WRF-Hydro
2.2.3. WRF-Hydro Calibration
2.3. Evaluation Statistics
3. Results and Discussions
3.1. Rainfall Simulations by WRF-Only and the Fully Coupled WRF/WRF-Hydro
3.1.1. The 24 h Accumulation of Rainfall
3.1.2. Indices for the Temporal Rainfall Distribution
3.1.3. Indices for the Spatial Rainfall Distribution
3.1.4. Spatial Variation of the Cumulative Rainfall
3.2. Simulations of Other Crucial Elements in the Water Cycle
3.2.1. Temporal Variation of the Water Cycle Elements
3.2.2. Spatial Variation of the Soil Moisture
3.2.3. Spatial Variation of the Cumulative Runoff
3.2.4. Spatial Variation of the Cumulative Evapotranspiration
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nasri, S.; Cudennec, C.; Albergel, J.; Berndtsson, R. Use of a geomorphological transfer function to model design floods in small hillside catchments in semiarid Tunisia. J. Hydrol. 2004, 287, 197–213. [Google Scholar] [CrossRef]
- Nikolopoulos, E.I.; Anagnostou, E.N.; Hossain, F.; Gebremichael, M.; Borga, M. Understanding the Scale Relationships of Uncertainty Propagation of Satellite Rainfall through a Distributed Hydrologic Model. J. Hydrometeorol. 2010, 11, 520–532. [Google Scholar] [CrossRef]
- Srivastava, P.K.; Han, D.; Rico-Ramirez, M.A.; Islam, T. Sensitivity and uncertainty analysis of mesoscale model downscaled hydro-meteorological variables for discharge prediction. Hydrol. Process. 2014, 28, 4419–4432. [Google Scholar] [CrossRef]
- Hanel, M.; Buishand, T.A. On the value of hourly precipitation extremes in regional climate model simulations. J. Hydrol. 2010, 393, 265–273. [Google Scholar] [CrossRef]
- Jiao, Y.; Lei, H.; Yang, D.; Huang, M.; Liu, D.; Yuan, X. Impact of vegetation dynamics on hydrological processes in a semi-arid basin by using a land surface-hydrology coupled model. J. Hydrol. 2017, 551, 116–131. [Google Scholar] [CrossRef]
- Kerandi, N.; Arnault, J.; Laux, P.; Wagner, S.; Kitheka, J.; Kunstmann, H. Joint atmospheric-terrestrial water balances for East Africa: A WRF-Hydro case study for the upper Tana River basin. Theor. Appl. Climatol. 2018, 131, 1337–1355. [Google Scholar] [CrossRef] [Green Version]
- Kurtzman, D.; Navon, S.; Morin, E. Improving interpolation of daily precipitation for hydrologic modelling: Spatial patterns of preferred interpolators. Hydrol. Process. 2010, 23, 3281–3291. [Google Scholar] [CrossRef]
- Shrestha, K.Y.; Webster, P.J.; Toma, V.E. An Atmospheric-Hydrologic Forecasting Scheme for the Indus River Basin. J. Hydrometeorol. 2014, 15, 861–890. [Google Scholar] [CrossRef]
- Wen, X.; Lu, S.; Jin, J. Integrating Remote Sensing Data with WRF for Improved Simulations of Oasis Effects on Local Weather Processes over an Arid Region in Northwestern China. J. Hydrometeorol. 2012, 13, 573–587. [Google Scholar] [CrossRef]
- Sato, T.; Kimura, F.; Kitoh, A. Projection of global warming onto regional precipitation over Mongolia using a regional climate model. J. Hydrol. 2007, 333, 144–154. [Google Scholar] [CrossRef]
- Welch, R.M.; Kuo, K.S.; Sengupta, S.K.; Wielicki, B.A.; Parker, L. Marine stratocumulus cloud fields off the coast of southern California observed using Landsat imagery. I: Structural characteristics. J. Appl. Meteorol. 1988, 27, 341–362. [Google Scholar] [CrossRef] [Green Version]
- Niu, G.Y.; Yang, Z.L.; Mitchell, K.E.; Chen, F.; Ek, M.B.; Barlage, M.; Kumar, A.; Manning, K.; Niyogi, D.; Rosero, E. The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res. Atmos. 2011, 116, 1248–1256. [Google Scholar] [CrossRef] [Green Version]
- Van Den Broeke, M.S.; Kalin, A.; Alavez, J.A.T.; Oglesby, R.; Hu, Q. A warm-season comparison of WRF coupled to the CLM4.0, Noah-MP, and Bucket hydrology land surface schemes over the central USA. Theor. Appl. Climatol. 2018, 134, 801–816. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.; Lakhtakia, M.N.; Yarnal, B.; White, R.A.; Miller, D.A.; Frakes, B.; Barron, E.J.; Duffy, C.; Schwartz, F.W. Simulating the river-basin response to atmospheric forcing by linking a mesoscale meteorological model and hydrologic model system. J. Hydrol. 1999, 218, 72–91. [Google Scholar] [CrossRef]
- Zabel, F.; Mauser, W. 2-way coupling the hydrological land surface model PROMET with the regional climate model MM5. Hydrol. Earth Syst. Sci. 2013, 17, 1705–1714. [Google Scholar] [CrossRef] [Green Version]
- Zhongbo, Y.U.; Pollard, D.; Cheng, L.I. On continental-scale hydrologic simulations with a coupled hydrologic model. J. Hydrol. 2006, 331, 110–124. [Google Scholar] [CrossRef]
- Maxwell, R.M.; Chow, F.K.; Kollet, S.J. The groundwater–land-surface–atmosphere connection: Soil moisture effects on the atmospheric boundary layer in fully-coupled simulations. Adv. Water Res. 2007, 30, 2447–2466. [Google Scholar] [CrossRef] [Green Version]
- Kollet, S.J.; Maxwell, R.M. Integrated surface–groundwater flow modeling: A free-surface overland flow boundary condition in a parallel groundwater flow model. Adv. Water Res. 2006, 29, 945–958. [Google Scholar] [CrossRef] [Green Version]
- Xue, M.; Droegemeier, K.K.; Wong, V. The Advanced Regional Prediction System (ARPS)–A multi-scale nonhydrostatic atmospheric simulation and prediction model. Part I: Model dynamics and verification. Meteorol. Atmos. Phys. 2000, 75, 161–193. [Google Scholar] [CrossRef]
- Maxwell, R.M.; Lundquist, J.K.; Mirocha, J.D.; Smith, S.G.; Tompson, A.F.B. Development of a Coupled Groundwater-Atmosphere Model. Mon. Weather Rev. 2011, 139, 96–116. [Google Scholar] [CrossRef]
- Gochis, D.J.; Yu, W.; Yates, D.N. The WRF-Hydro Model Technical Description and User’s Guide, Version 3.0. NCAR Technical Document. 120 pages. Available online: https://ral.ucar.edu/projects/wrf_hydro/technical-description-user-guide (accessed on 24 April 2020).
- Lu, L.; Gochis, D.J.; Sobolowksi, S.; Mesquita, M.D.S. Evaluating the present annual water budget of a Himalayan headwater river basin using a high-resolution atmosphere-hydrology model. J. Geophys. Res. Atmos. 2017, 122, 4786–4807. [Google Scholar] [CrossRef]
- Lin, P.R.; Rajib, M.A.; Yang, Z.L.; Somos-Valenzuela, M.; Merwade, V.; Maidment, D.R.; Wang, Y.; Chen, L. Spatiotemporal Evaluation of Simulated Evapotranspiration and Streamflow over Texas Using the WRF-Hydro-RAPID Modeling Framework. J. Am. Water Resour. As. 2018, 54, 40–54. [Google Scholar] [CrossRef]
- Xiang, T.T.; Vivoni, E.R.; Gochis, D.J.; Mascaro, G. On the diurnal cycle of surface energy fluxes in the North American monsoon region using the WRF-Hydro modeling system. J. Geophys. Res. Atmos. 2017, 122, 9024–9049. [Google Scholar] [CrossRef]
- Senatore, A.; Mendicino, G.; Gochis, D.J.; Yu, W.; Yates, D.N.; Kunstmann, H. Fully coupled atmosphere-hydrology simulations for the central Mediterranean: Impact of enhanced hydrological parameterization for short and long time scales. J. Adv. Model. Earth Syst. 2015, 7, 1693–1715. [Google Scholar] [CrossRef]
- Xiang, T.; Vivoni, E.; Gochis, D. Influence of Initial Soil Moisture and Vegetation Conditions on Monsoon Precipitation Events in Northwest Mexico. Atmosfera 2017, 31. [Google Scholar] [CrossRef] [Green Version]
- Wehbe, Y.; Temimi, M.; Weston, M.; Chaouch, N.; Branch, O.; Schwitalla, T.; Wulfmeyer, V.; Zhan, X.; Liu, J.; Al Mandous, A. Analysis of an extreme weather event in a hyper-arid region using WRF-Hydro coupling, station, and satellite data. Nat. Hazards Earth Syst. Sci. 2019, 19, 1129–1149. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Bray, M.; Han, D. Sensitivity of the Weather Research and Forecasting (WRF) model to downscaling ratios and storm types in rainfall simulation. Hydrol. Process. 2012, 26, 3012–3031. [Google Scholar] [CrossRef]
- Tian, J.; Liu, J.; Wang, J.; Li, C.; Yu, F.; Chu, Z. A spatio-temporal evaluation of the WRF physical parameterisations for numerical rainfall simulation in semi-humid and semi-arid catchments of Northern China. Atmos. Res. 2017, 191, 141–155. [Google Scholar] [CrossRef]
- Cardoso, R.M.; Soares, P.M.M.; Miranda, P.M.A.; Belo-Pereira, M. WRF high resolution simulation of Iberian mean and extreme precipitation climate. Int. J. Climatol. 2013, 33, 2591–2608. [Google Scholar] [CrossRef]
- Qian, Y.; Ghan, S.J.; Leung, L.R. Downscaling hydroclimatic changes over the Western US based on CAM subgrid scheme and WRF regional climate simulations. Int. J. Climatol. 2009, 30. [Google Scholar] [CrossRef]
- Toride, K.; Iseri, Y.; Duren, A.M.; England, J.F.; Kavvas, M.L. Evaluation of physical parameterizations for atmospheric river induced precipitation and application to long-term reconstruction based on three reanalysis datasets in Western Oregon. Sci. Total Environ. 2018, 658, 570–581. [Google Scholar] [CrossRef]
- Wang, X.; Barker, D.M.; Snyder, C.; Hamill, T.M. A Hybrid ETKF–3DVAR data assimilation scheme for the WRF model. Part I: Observing system simulation experiment. Mon. Weather Rev. 2007, 136, 5116–5131. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.; Noh, Y.; Dudhia, J. A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef] [Green Version]
- Kain, J.S. The Kain-Fritsch Convective Parameterization: An Update. J. Appl. Meteorol. 2004, 43, 170–181. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Farley, R.D.; Orville, H.D. Bulk Parameterization of the Snow Field in a Cloud Model. J. Appl. Meteorol. 1983, 22, 1065–1092. [Google Scholar] [CrossRef] [Green Version]
- Skamarock, W. A Description of the Advanced Research WRF Version 3. NCAR Tech. Note; NCAR/TN-475+ STR; University Corporation for Atmospheric Research: Boulder, CO, USA, 2008. [Google Scholar] [CrossRef] [Green Version]
- Ek, M.B.; Mitchell, K.E.; Lin, Y.Y.; Rogers, E.; Grunmann, P.; Koren, V.; Gayno, G.; Tarpley, J.D. Implementation of Noah land surface model advances in the National Centres for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res. 2003, 108, 8851. [Google Scholar] [CrossRef]
- Warrach-Sagi, K.; Schwitalla, T.; Wulfmeyer, V.; Bauer, H.-S. Evaluation of a climate simulation in Europe based on the WRF–NOAH model system: Precipitation in Germany. Clim. Dyn. 2013, 41, 755–774. [Google Scholar] [CrossRef] [Green Version]
- Research Applications Laboratory of National Center for Atmospheric Research. Available online: https://ral.ucar.edu/projects/wrf_hydro/overview (accessed on 22 April 2020).
- Schaake, J.C.; Koren, V.I.; Duan, Q.-Y.; Mitchell, K.; Chen, F. Simple water balance model for estimating runoff at different spatial and temporal scales. J. Geophys. Res. Atmos. 1996, 101, 7461–7475. [Google Scholar] [CrossRef]
- Downer, C.W.; Ogden, F.L.; Martin, W.D.; Harmon, R.S. Theory, development, and applicability of the surface water hydrologic model CASC2D. Hydrol. Process. 2002, 16, 255–275. [Google Scholar] [CrossRef]
- Wigmosta, M.S.; Lettenmaier, D.P. A comparison of simplified methods for routing topographically driven subsurface flow. Water Resour. Res. 1999, 35, 255–264. [Google Scholar] [CrossRef]
- Gochis, D.J.; Chen, F. Hydrological Enhancements to the Community Noah Land Surface Model; University Corporation for Atmospheric Research: Boulder, CO, USA, 2002. [Google Scholar] [CrossRef]
- Naabil, E.; Lamptey, B.L.; Arnault, J.; Olufayo, A.; Kunstmann, H. Water resources management using the WRF-Hydro modelling system: Case-study of the Tono dam in West Africa. J. Hydrol. 2017, 12, 196–209. [Google Scholar] [CrossRef]
- Ryu, Y.; Lim, Y.J.; Ji, H.S.; Park, H.H.; Chang, E.C.; Kim, B.J. Applying a coupled hydrometeorological simulation system to flash flood forecasting over the Korean Peninsula. Asia Pac. J. Atmos. Sci. 2017, 53, 421–430. [Google Scholar] [CrossRef]
- Yucel, I.; Onen, A.; Yilmaz, K.K.; Gochis, D.J. Calibration and evaluation of a flood forecasting system: Utility of numerical weather prediction model, data assimilation and satellite-based rainfall. J. Hydrol. 2015, 523, 49–66. [Google Scholar] [CrossRef] [Green Version]
- Sivapalan, M.; Bloschl, G. Transformation of point rainfall to areal rainfall: Intensity-duration- frequency curves. J. Hydrol. 1998, 204, 150–167. [Google Scholar] [CrossRef]
- Jolliffe, I.T.; Stephenson, D.B. Forecast Verification: A Practitioner’s Guide in Atmospheric Science, 2nd ed.; Academic Press: Burlington, MA, USA, 2003. [Google Scholar] [CrossRef]
- Wilks, D.S. Statistical Methods in Atmospheric Science, 2nd ed.; Academic Press: Burlington, MA, USA, 2006. [Google Scholar] [CrossRef]
- Oki, T.; Musiake, K.; Matsuyama, H.; Masuda, K. Global atmospheric water balance and runoff from large river basins. Hydrol. Process. 1995, 9, 655–678. [Google Scholar] [CrossRef]
- Findell, K.L.; Eltahir, E.A.B. Atmospheric Controls on Soil Moisture–Boundary Layer Interactions. Part I: Framework Development. J. Hydrometeorol. 2003, 4, 552–569. [Google Scholar] [CrossRef]
- Koster, R.D.; Dirmeyer, P.A.; Zhichang, G.; Gordon, B.; Edmond, C.; Peter, C.; Gordon, C.T.; Shinjiro, K.; Eva, K.; David, L. Regions of strong coupling between soil moisture and precipitation. Science 2004, 305, 1138–1140. [Google Scholar] [CrossRef] [Green Version]
- Brooks, P.D.; Chorover, J.; Fan, Y.; Godsey, S.E.; Maxwell, R.M.; McNamara, J.P.; Tague, C. Hydrological partitioning in the critical zone: Recent advances and opportunities for developing transferable understanding of water cycle dynamics. Water Resour. Res. 2015, 51, 6973–6987. [Google Scholar] [CrossRef] [Green Version]
- Pielke, R.A., Sr. Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convective rainfall. Rev. Geophys. 2001, 39, 151–177. [Google Scholar] [CrossRef]
- Arnault, J.; Rummler, T.; Baur, F.; Lerch, S.; Wagner, S.; Fersch, B.; Zhang, Z.; Kerandi, N.; Keil, C.; Kunstmann, H. Precipitation sensitivity to the uncertainty of terrestrial water flow in WRF-Hydro: An ensemble analysis for Central Europe. J. Hydrometeorol. 2018, 19, 1007–1025. [Google Scholar] [CrossRef]
- Fersch, B.; Senatore, A.; Adler, B.; Arnault, J.; Mauder, M.; Schneider, K.; Völksch, I.; Kunstmann, H. High-resolution fully-coupled atmospheric–hydrological modeling: A cross-compartment regional water and energy cycle evaluation. Hydrol. Earth Syst. Sci. Discuss. 2019, 478, 1–37. [Google Scholar] [CrossRef] [Green Version]
Event ID | Catchment | Rainfall Window | Accumulated 24 h Rainfall (mm) | Spatial Cv | Temporal Cv | Type Label |
---|---|---|---|---|---|---|
1 | Fuping | 07/29/2007 20:00 to 07/30/2007 20:00 | 63.4 | 0.400 | 0.601 | 1 |
2 | Fuping | 07/30/2012 10:00 to 07/31/2012 10:00 | 50.5 | 0.193 | 1.082 | 2 |
3 | Fuping | 08/11/2013 07:00 to 08/12/2013 07:00 | 30.9 | 0.740 | 2.393 | 3 |
4 | Zijingguan | 08/10/2008 00:00 to 08/11/2008 00:00 | 45.5 | 0.459 | 1.378 | |
5 | Zijingguan | 07/21/2012 04:00 to 07/22/2012 04:00 | 172.2 | 0.610 | 1.887 | |
6 | Zijingguan | 06/06/2013 22:00 to 06/07/2013 22:00 | 52.1 | 0.426 | 1.887 |
Subject | Chosen Option | Subject | Chosen Option |
---|---|---|---|
Driving data | 6 h FNL | Pressure | 50 hPa |
Integration time-step | 6 s for Dom3 | Projection resolution | Lambert |
WRF output interval | 1 h | Longwave radiation | RRTM |
Fuping domain center | 39°04′15″N, 113°59′26″E | Shortwave radiation | Dudhia |
Zijinguan domain center | 39°25′59″N, 114°46′01″E | Land surface | Noah |
Horizontal grid number | 26×28, 42×48, 84×96 | Microphysics | Purdue–Lin (Lin) |
Horizontal resolution | 9 km, 3 km, 1 km | Cumulus convection | Kain–Fritsch (KF)/Explicit |
Vertical discretization | 40 layers | Planetary boundary layer | Yonsei University (YSU) |
Subject | Chosen Option |
---|---|
Forcing input interval | 1 h |
Subgrid size | 100 m |
Routing model time step | 6 s |
Aggregation factor | 10 |
Subsurface routing | On |
Overland flow routing | On |
Channel routing | On with the steepest descent |
Baseflow bucket model | Off |
Index | Range | Optimal Value | Meaning |
---|---|---|---|
CSI | 0–1 | 1 | Proportion of correctly simulated rainfall frequency to all possible rainfall situations |
POD | 0–1 | 1 | Proportion of observed rainfall being correctly simulated |
FAR | 0–1 | 0 | Proportion of false positives in simulated rainfall events. |
RMSE | 0–∞ | 0 | Mean square error of the simulations |
MBE | −∞–∞ | 0 | Average error of the simulations |
Simulation/Observation | Yes | No |
---|---|---|
Yes | NA | NB |
No | NC | ND |
Type of Storms | Obs (mm) | Sim(a) (mm) | Sim(b) (mm) | RE (a) | RE (b) | ARE (a) | ARE (b) | |
---|---|---|---|---|---|---|---|---|
Type 1 | Event 1 | 63.38 | 72.18 | 65.82 | 0.139 | 0.038 | 0.139 | 0.038 |
Type 2 | Event 2 | 50.48 | 28.51 | 29.33 | 0.435 | 0.419 | 0.435 | 0.419 |
Type 3 | Event 3 | 30.82 | 14.41 | 17.75 | 0.532 | 0.424 | 0.515 | 0.477 |
Event 4 | 49.76 | 23.13 | 28.11 | 0.535 | 0.435 | |||
Event 5 | 172.17 | 66.13 | 59.03 | 0.616 | 0.657 | |||
Event 6 | 52.06 | 32.46 | 31.6 | 0.377 | 0.393 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Liu, J.; Li, C.; Liu, Y.; Yu, F.; Yu, E. An Evaluation Study of the Fully Coupled WRF/WRF-Hydro Modeling System for Simulation of Storm Events with Different Rainfall Evenness in Space and Time. Water 2020, 12, 1209. https://doi.org/10.3390/w12041209
Wang W, Liu J, Li C, Liu Y, Yu F, Yu E. An Evaluation Study of the Fully Coupled WRF/WRF-Hydro Modeling System for Simulation of Storm Events with Different Rainfall Evenness in Space and Time. Water. 2020; 12(4):1209. https://doi.org/10.3390/w12041209
Chicago/Turabian StyleWang, Wei, Jia Liu, Chuanzhe Li, Yuchen Liu, Fuliang Yu, and Entao Yu. 2020. "An Evaluation Study of the Fully Coupled WRF/WRF-Hydro Modeling System for Simulation of Storm Events with Different Rainfall Evenness in Space and Time" Water 12, no. 4: 1209. https://doi.org/10.3390/w12041209
APA StyleWang, W., Liu, J., Li, C., Liu, Y., Yu, F., & Yu, E. (2020). An Evaluation Study of the Fully Coupled WRF/WRF-Hydro Modeling System for Simulation of Storm Events with Different Rainfall Evenness in Space and Time. Water, 12(4), 1209. https://doi.org/10.3390/w12041209