Computational Fluid Dynamics Modeling and Field Applications of Non-Powered Hydraulic Mixing in Water Treatment Plants
Abstract
:1. Introduction
2. Methods and Modeling
2.1. Non-Powered Hydraulic Mixing Design
2.2. Computational Fluid Dynamics (CFD) Modeling Method
2.2.1. Governing Equation
2.2.2. Modeling and Mesh Creation
2.2.3. Calculation of Velocity Gradient (G) and Head-Loss Rate
2.3. Water Treatment Plants with Different Mixing Method
3. Results and Discussion
3.1. Effect of Inlet Velocity on Velocity Distribution
3.2. Effect of Inlet Velocity on the Internal Pressure
3.3. Effect of Inlet Velocity on the Turbulence Intensity
3.4. Results and Implications of Field Application in Water Treatment Plants
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shammas, N.K.; Wang, L.K. Water Engineering: Hydraulics, Distribution, and Treatment; John Wiley & Sons, Inc.: New York, NY, USA, 2016. [Google Scholar]
- Jarvis, P.; Jefferson, B.; Parsons, S.A. Breakage, regrowth, and fractal nature of natural organic matter flocs. Environ. Sci. Technol. 2005, 39, 2307–2314. [Google Scholar] [CrossRef] [PubMed]
- Park, O.Y.; Kim, D.G.; Bae, S.S.; Park, S.N.; Im, H.G. Evaluation of coagulation dispersion in pump diffusion mixer for water treatment. Korean Soc. Water Wastewater 2008, 21, 49–63. [Google Scholar]
- Saritha, V.; Srinivas, N.; Srikanth Vuppala, N.V. Analysis and optimization of coagulation and flocculation process. Appl. Water Sci. 2017, 7, 451–460. [Google Scholar] [CrossRef] [Green Version]
- Kawamura, S. Integrated Design and Operation of Water Treatment Facilities, 2nd ed.; John Wiley & Sons, Inc.: New York, NY, USA, 2000. [Google Scholar]
- Amirtharajah, A.; Mills, K.M. Rapid-mix design for mechanism of alum coagulation. J. AWWA 1992, 74, 210–216. [Google Scholar] [CrossRef]
- Rossinia, J.; Garridob, J.G.; Galluzzoa, M. Optimization of the coagulation-flocculation treatment: Influence of rapid mix parameters. Water Res. 1999, 33, 1817–1826. [Google Scholar] [CrossRef]
- Ma, J.J.; Li, G.B.; Chen, G.R.; Xu, G.O.; Cai, G.Q. Enhanced coagulation of surface waters with high organic content by permanganate peroxidation. Water Sci. Technol. Water Supply 2001, 1, 51–61. [Google Scholar] [CrossRef]
- Kan, C.; Huang, C.; Pan, J.R. Coagulation of high turbidity water: The effects rapid mixing. J. Water Supply Res. Technol. AQUA 2002, 51, 77–85. [Google Scholar] [CrossRef]
- Kan, C.; Huang, C.; Pan, J.R. Time requirement for rapid-mixing in coagulation. Colloid Surf. A Physicochem. Eng. Asp. 2002, 203, 1–9. [Google Scholar] [CrossRef]
- McCurdy, K.; Carlson, K.; Gregory, D. Floc morphology and cyclic shearing recovery: Comparison of alum and polyaluminum chloride coagulants. Water Res. 2004, 38, 486–494. [Google Scholar] [CrossRef]
- Ghafari, S.; Abdul Aziz, H.; Isac, M.H.; Zinatizadehd, A.A. Application of response surface methodology (RSM) to optimize coagulation–flocculation treatment of leachate using poly-aluminum chloride (PAC) and alum. J. Hazard. Mater. 2009, 163, 650–656. [Google Scholar] [CrossRef]
- Weiying, X.; Baoyu, G. Influence of pH on flocs formation, breakage and fractal properties-the role of Al13 polymer. J. Water Sustain. 2011, 1, 45–57. [Google Scholar]
- Korpijärvi, J.; Laine, E.; Ahlstedt, H. Using CFD in the study of mixing in coagulation and flocculation. In Chemical Water and Wastewater Treatment VI; Hahn, H.H., Hoffmann, E., Ødegaard, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2000; pp. 89–99. [Google Scholar]
- Bochkarev, G.R.; Kurbatov, P.V. Intensification of coagulation purification of highly colored waters. J. Min. Sci. 2003, 39, 94–101. [Google Scholar] [CrossRef]
- Kim, H.C.; Lee, S. Pump diffusion flash mixing (PCFM) for improving coagulation process in drinking water treatment. Sep. Purif. Technol. 2006, 52, 117–125. [Google Scholar] [CrossRef]
- Hwang, Y.J.; Lim, S.E.; Kim, S.S.; Park, N.S.; Wang, C.K. Evaluation of head loss within in-line mixer for water treatment using CFD technique. J. Korean Soc. Water Wastewater 2009, 23, 107–112. [Google Scholar]
- Ghernaout, D.; Boucherit, A. Review of coagulation’s rapid mixing for NOM removal. J. Res. Develop. Chem. 2015, 2015, 926518. [Google Scholar] [CrossRef] [Green Version]
- Demirel, E.; Aral, M.M. Unified Analysis of Multi-Chamber Contact Tanks and Mixing Efficiency Based on Vorticity Field. Part I: Hydrodynamic Analysis. Water 2016, 8, 495. [Google Scholar] [CrossRef] [Green Version]
- Kizilaslan, A.M.; Demirel, E.; Aral, M.M. Effect of Porous Baffles on the Energy Performance of Contact Tanks in Water Treatment. Water 2018, 10, 1084. [Google Scholar] [CrossRef] [Green Version]
- Kizilaslan, M.A.; Demirel, E.; Aral, M.M. Efficiency Enhancement of Chlorine Contact Tanks in Water Treatment Plants: A Full-Scale Application. Processes 2019, 7, 551. [Google Scholar] [CrossRef] [Green Version]
- ANSYS Fluent 16.1 Users Guide; ANSYS Inc.: Canonsburg, PA, USA, 2015.
- Bird, R.B.; Stwart, W.E.; Lightfoot, E.N. Transport Phenomena; John Wiley & Sons, Inc.: New York, NY, USA, 1960. [Google Scholar]
- Bridgeman, J.; Jefferson, B.; Parsons, S.A. Computational fluid dynamics modeling of flocculation in water treatment: A review. Eng. Appl. Comput. Fluid Mech. 2009, 3, 220–241. [Google Scholar]
- Haarhoff, J. Design of around-the-end hydraulic flocculators. J. Water Supply Res. Technol. AQUA 1998, 47, 142–152. [Google Scholar] [CrossRef]
- Haarhoff, J.; van der Walt, J.J. Towards optimal design parameters for around-the-end hydraulic flocculators. J. Water Supply Res. Technol. AQUA 2001, 50, 149–159. [Google Scholar] [CrossRef]
- Kim, S.Y.; Chae, J.S.; Kim, S.Y.; Zhang, M.Y.; Ohm, T.I. A study on the applicability of coagulant mixer and analysis of the non-powered vortexes mixer using CFD. J. Korean Soc. Environ. Eng. 2017, 38, 706–713. [Google Scholar] [CrossRef]
- Bang, K.W.; Lee, J.G.; Lee, J.H. A case study on performance evaluation of the water treatment plant. J. Korean Soc. Urban Environ. 2002, 2, 87–99. [Google Scholar]
Parameters | pH | BOD a (mg/L) | TOC b (mg/L) | SS c (mg/L) | DO d (mg/L) | Chl-a e (mg/m3) | T-P f (mg/L) | T-N g (mg/L) |
---|---|---|---|---|---|---|---|---|
Values | 7.9 | 0.91 | 2.40 | 1.90 | 10.4 | 10.6 | 0.012 | 1.19 |
Inlet (m/s) | 1st Layer (m/s) | 2nd Layer (m/s) | 3rd Layer (m/s) | Outlet (m/s) | Ratio of Outlet to Inlet Velocity |
---|---|---|---|---|---|
0.2 | 0.11 | 0.07 | 0.08 | 0.09 | 0.45 |
0.3 | 0.15 | 0.10 | 0.11 | 0.14 | 0.47 |
0.4 | 0.20 | 0.14 | 0.15 | 0.18 | 0.45 |
0.5 | 0.25 | 0.17 | 0.19 | 0.23 | 0.46 |
0.6 | 0.31 | 0.21 | 0.23 | 0.29 | 0.48 |
0.7 | 0.39 | 0.26 | 0.28 | 0.32 | 0.53 |
Inlet (m/s) | Inlet Pressure (Pa) | Outlet Pressure (Pa) | Pressure Loss (Pa) | Head Loss Rate (%) |
---|---|---|---|---|
0.2 | 58.15 | 5.56 | 52.59 | 1.75 |
0.3 | 134.25 | 12.02 | 122.23 | 4.07 |
0.4 | 238.46 | 21.40 | 217.07 | 7.24 |
0.5 | 372.48 | 33.45 | 339.03 | 11.30 |
0.6 | 536.35 | 48.16 | 488.19 | 16.27 |
0.7 | 711.55 | 68.44 | 643.11 | 21.44 |
Inlet Velocity (m/s) | Inlet Turbulence Intensity (%) | Outlet Turbulence Intensity (%) |
---|---|---|
0.2 | 0.98 | 3.03 |
0.3 | 1.45 | 4.74 |
0.4 | 1.91 | 6.28 |
0.5 | 2.37 | 7.83 |
Water Quality Parameters | Standard | 2014 | 2015 | 2016 | |||
---|---|---|---|---|---|---|---|
A | B | A | B | A | B | ||
Turbidity | Less than 0.5 NTU a | 0.05 | 0.05 | 0.07 | 0.08 | 0.04 | 0.05 |
pH | 5.8–8.5 | 7.1 | 7.1 | 6.9 | 7.0 | 7.1 | 7.0 |
Ammonia nitrogen | Less than 0.5 mg/L | ND b | ND | ND | ND | ND | ND |
Total phosphorous | Less than 0.01 mg/L | ND | ND | ND | ND | ND | ND |
Chlorine ion | Less than 250 mg/L | 18 | 19 | 22 | 22 | 19 | 21 |
Total trihalomethane | Less than 0.1 mg/L | 0.018 | 0.016 | 0.023 | 0.031 | 0.034 | 0.036 |
Residual chlorine | Less than 4.0 mg/L | 0.73 | 0.74 | 0.86 | 0.88 | 0.78 | 0.53 |
Various bacteria | Less than 100 CFU/mL | 0 | 0 | 0 | 0 | 0 | 0 |
Total coliform | No detection/100mL | ND | ND | ND | ND | ND | ND |
Fluorine | Less than 1.5 mg/L | ND | ND | ND | ND | ND | ND |
Aluminum | Less than 0.2 mg/L | 0.03 | 0.03 | ND | 0.02 | ND | 0.02 |
Inspection judgment | Suitability | Suitability | Suitability |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ohm, T.I.; Cae, J.S.; Zhang, M.Y.; Joo, J.C. Computational Fluid Dynamics Modeling and Field Applications of Non-Powered Hydraulic Mixing in Water Treatment Plants. Water 2020, 12, 939. https://doi.org/10.3390/w12040939
Ohm TI, Cae JS, Zhang MY, Joo JC. Computational Fluid Dynamics Modeling and Field Applications of Non-Powered Hydraulic Mixing in Water Treatment Plants. Water. 2020; 12(4):939. https://doi.org/10.3390/w12040939
Chicago/Turabian StyleOhm, Tea In, Jong Seong Cae, Meng Yu Zhang, and Jin Chul Joo. 2020. "Computational Fluid Dynamics Modeling and Field Applications of Non-Powered Hydraulic Mixing in Water Treatment Plants" Water 12, no. 4: 939. https://doi.org/10.3390/w12040939
APA StyleOhm, T. I., Cae, J. S., Zhang, M. Y., & Joo, J. C. (2020). Computational Fluid Dynamics Modeling and Field Applications of Non-Powered Hydraulic Mixing in Water Treatment Plants. Water, 12(4), 939. https://doi.org/10.3390/w12040939