Sedimentation and Transport of Different Soil Colloids: Effects of Goethite and Humic Acid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Soil Colloid, Humic Acid, and Goethite Suspensions
2.2. Settling Experiments and Model
2.3. Transport Experiments and Model
2.4. Calculation of DLVO Energy
3. Results and Discussion
3.1. Characterization of Soil Samples and Soil Colloids
3.2. Effect of Goethite and HA on the Sedimentation of Different Soil Colloids
3.3. Transport of Different Soil Colloids in the Simulated Saturated Medium
3.4. Mechanism of Sedimentation and Transport of Different Soil Colloids
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kretzschmar, R.; Schäfer, T. Metal retention and transport on colloidal particles in the environment. Elements 2005, 1, 205–210. [Google Scholar]
- Yin, X.; Gao, B.; Ma, L.Q.; Saha, U.K.; Sun, H.; Wang, G. Colloid-facilitated Pb transport in two shooting-range soils in Florida. J. Hazard. Mater. 2010, 177, 620–625. [Google Scholar]
- Chen, Y.; Ma, J.; Li, Y.; Weng, L. Enhanced cadmium immobilization in saturated media by gradual stabilization of goethite in the presence of humic acid with increasing pH. Sci. Total Environ. 2019, 648, 358–366. [Google Scholar]
- Ma, J.; Guo, H.; Lei, M.; Li, Y.; Weng, L.; Chen, Y.; Ma, Y.; Deng, Y.; Feng, X.; Xiu, W. Enhanced transport of ferrihydrite colloid by chain-shaped humic acid colloid in saturated porous media. Sci. Total Environ. 2018, 621, 1581. [Google Scholar]
- Fritzsche, A.; Rennert, T.; Totsche, K.U. Arsenic strongly associates with ferrihydrite colloids formed in a soil effluent. Environ. Pollut. 2011, 159, 1398–1405. [Google Scholar]
- Ma, J.; Guo, H.; Weng, L.; Li, Y.; Lei, M.; Chen, Y. Distinct effect of humic acid on ferrihydrite colloid-facilitated transport of arsenic in saturated media at different pH. Chemosphere 2018, 212, 794–801. [Google Scholar]
- Szabolcs, C.; Markus, F.; Harsh, J.B. Colloid stability in vadose zone Hanford sediments. Environ. Sci. Technol. 2005, 39, 1506–1512. [Google Scholar]
- Igwe, C.A.; Akamigbo, F.O.R.; Mbagwu, J.S.C. Chemical and mineralogical properties of soils in southeastern Nigeria in relation to aggregate stability. Geoderma 1999, 92, 111–123. [Google Scholar]
- Ma, J.; Lei, M.; Weng, L.; Li, Y.; Chen, Y.; Islam, M.S.; Zhao, J.; Chen, T. Fractions and colloidal distribution of arsenic associated with iron oxide minerals in lead-zinc mine-contaminated soils: Comparison of tailings and smelter pollution. Chemosphere 2019, 227, 614–623. [Google Scholar]
- Zhou, D.; Wang, D.; Cang, L.; Hao, X.; Chu, L. Transport and re-entrainment of soil colloids in saturated packed column: Effects of pH and ionic strength. J. Soils Sediments 2011, 11, 491–503. [Google Scholar]
- Zhu, X.; Chen, H.; Li, W.; He, Y.; Brookes, P.C.; White, R.; Xu, J.M. Evaluation of the stability of soil nanoparticles: The effect of natural organic matter in electrolyte solutions. Eur. J. Soil Sci. 2017, 68, 105–114. [Google Scholar]
- Yan, J.; Lazouskaya, V.; Jin, Y. Soil colloid release affected by dissolved organic matter and redox conditions. Vadose Zone J. 2016, 15, 1–10. [Google Scholar]
- Igwe, C.A.; Zarei, M.; Stahr, K. Colloidal stability in some tropical soils of southeastern Nigeria as affected by iron and aluminium oxides. Catena 2009, 77, 232–237. [Google Scholar]
- Hou, T.; Xu, R.; Tiwari, D.; Zhao, A. Interaction between electrical double layers of soil colloids and Fe/Al oxides in suspensions. J. Colloid Interface Sci. 2007, 310, 670–674. [Google Scholar]
- Barton, C.D.; Karathanasis, A.D. Influence of soil colloids on the migration of atrazine and zinc through large soil monoliths. Water Air Soil Pollut. 2003, 143, 3–21. [Google Scholar]
- Ryan, J.N.; Gschwend, P.M. Colloid mobilization in two Atlantic coastal plain aquifers: Field studies. Water Resour. Res. 1990, 26, 307–322. [Google Scholar]
- Frenkel, H.; Levy, G.J.; Fey, M.V. Organic and inorganic anion effects on reference and soil clay critical flocculation concentration. Soil Sci. Soc. Am. J. 1992, 56, 1762–1766. [Google Scholar]
- Wang, X.; Zhang, D.; Qian, H.; Liang, Y.; Pan, X.; Gadd, G.M. Interactions between biogenic selenium nanoparticles and goethite colloids and consequence for remediation of elemental mercury contaminated groundwater. Sci. Total Environ. 2018, 613–614, 672–678. [Google Scholar]
- Ji, Y.; Luo, W.; Lu, G.; Fan, C.; Tao, X.; Ye, H.; Xie, Y.; Shi, Z.; Yi, X.; Dang, Z. Effect of phosphate on amorphous iron mineral generation and arsenic behavior in paddy soils. Sci. Total Environ. 2019, 657, 644–656. [Google Scholar]
- Wang, D.; Shen, C.; Jin, Y.; Su, C.; Chu, L.; Zhou, D. Role of solution chemistry in the retention and release of graphene oxide nanomaterials in uncoated and iron oxide-coated sand. Sci. Total Environ. 2017, 579, 776–785. [Google Scholar]
- Oriekhova, O.; Stoll, S. Heteroaggregation of CeO2 nanoparticles in presence of alginate and iron (III) oxide. Sci. Total Environ. 2019, 648, 1171–1178. [Google Scholar]
- Wang, D.; Jin, Y.; Jaisi, D.P. Effect of size-selective retention on the cotransport of hydroxyapatite and goethite nanoparticles in saturated porous media. Environ. Sci. Technol. 2015, 49, 8461–8470. [Google Scholar]
- Hunter, R.J.; White, L.R. Foundations of Colloid Science; Clarendon Press: Oxford, UK, 1987. [Google Scholar]
- Kretzschmar, R.; Holthoff, H.; Sticher, H. Influence of pH and humic acid on coagulation kinetics of kaolinite: A dynamic light scattering study. J. Colloid Interface Sci. 1998, 202, 95–103. [Google Scholar]
- Suarez, D.L.; Rhoades, J.D.; Lavado, R.; Grieve, C.M. Effect of pH on saturated hydraulic conductivity and soil dispersion. Soil Sci. Soc. Am. J. 1984, 48, 50–55. [Google Scholar]
- Kosmulski, M. IEP as a parameter characterizing the pH-dependent surface charging of materials other than metal oxides. Adv. Colloid Interface Sci. 2012, 171–172, 77–86. [Google Scholar]
- Deng, Y.; Li, Y.; Li, X.; Sun, Y.; Ma, J.; Lei, M.; Weng, L. Influence of calcium and phosphate on pH dependency of arsenite and arsenate adsorption to goethite. Chemosphere 2018, 199, 617–624. [Google Scholar]
- Wang, D.; Zhang, W.; Zhou, D. Antagonistic effects of humic acid and iron oxyhydroxide grain-coating on biochar nanoparticle transport in saturated sand. Environ. Sci. Technol. 2013, 47, 5154–5161. [Google Scholar]
- Roy, S.B.; Dzombak, D.A. Chemical factors influencing colloid-facilitated transport of contaminants in porous media. Environ. Sci. Technol. 1997, 31, 656–664. [Google Scholar]
- Saiers, J.E.; Hornberger, G.M. The role of colloidal kaolinite in the transport of cesium through laboratory sand columns. Water Resour. Res. 1996, 32, 33–41. [Google Scholar]
- Shani, C.; Weisbrod, N.; Yakirevich, A. Colloid transport through saturated sand columns: Influence of physical and chemical surface properties on deposition. Colloids Surf. A 2008, 316, 142–150. [Google Scholar]
- Valdrighi, M.M.; Pera, A.; Agnolucci, M.; Frassinetti, S.; Lunardi, D.; Vallini, G. Effects of compost-derived humic acids on vegetable biomass production and microbial growth within a plant (Cichorium intybus)-soil system: A comparative study. Agric. Ecosyst. Environ. 1996, 58, 133–144. [Google Scholar]
- Venema, P.; Hiemstra, T.; Weidler, P.G.; Riemsdijk, W.H.V. Intrinsic proton affinity of reactive surface groups of metal (hydr)oxides: Application to iron (hydr)oxides. J. Colloid Interface Sci. 1998, 198, 282–295. [Google Scholar]
- Ma, J.; Guo, H.; Lei, M.; Wan, X.; Zhang, H.; Feng, X.; Wei, R.; Tian, L.; Han, X. Blocking effect of colloids on arsenate adsorption during co-transport through saturated sand columns. Environ. Pollut. 2016, 213, 638–647. [Google Scholar]
- Chappell, M.A.; George, A.J.; Dontsova, K.M.; Porter, B.E.; Price, C.L.; Zhou, P.; Morikawa, E.; Kennedy, A.J.; Steevens, J.A. Surfactive stabilization of multi-walled carbon nanotube dispersions with dissolved humic substances. Environ. Pollut. 2009, 157, 1081–1087. [Google Scholar]
- Lin, D.; Ji, J.; Long, Z.; Yang, K.; Wu, F. The influence of dissolved and surface-bound humic acid on the toxicity of TiO2 nanoparticles to Chlorella sp. Water Res. 2012, 46, 4477–4487. [Google Scholar]
- Long, Z.; Ji, J.; Yang, K.; Lin, D.; Wu, F. Systematic and quantitative investigation of the mechanism of carbon nanotubes toxicity toward algae. Environ. Sci. Technol. 2012, 46, 8458–8466. [Google Scholar]
- Ma, S.; Zhou, K.; Yang, K.; Lin, D. Heteroagglomeration of oxide nanoparticles with algal cells: Effects of particle type, ionic strength and pH. Environ. Sci. Technol. 2015, 49, 932–939. [Google Scholar]
- Qian, X.; Ma, J.; Weng, L.; Chen, Y.; Ren, Z.; Li, Y. Influence of agricultural organic inputs and their aging on the transport of ferrihydrite nanoparticles: From enhancement to inhibition. Sci. Total Environ. 2020, 719, 137440. [Google Scholar]
- Bradford, S.A.; Simunek, J.; Bettahar, M.; van Genuchten, M.T.; Yates, S.R. Modeling colloid attachment, straining, and exclusion in saturated porous media. Environ. Sci. Technol. 2003, 37, 2242–2250. [Google Scholar]
- Yu, B.; Jia, S.Y.; Liu, Y.; Wu, S.H.; Han, X. Mobilization and re-adsorption of arsenate on ferrihydrite and hematite in the presence of oxalate. J. Hazard. Mater. 2013, 262, 701–708. [Google Scholar]
- Zhao, W.; Walker, S.L.; Huang, Q.; Cai, P. Adhesion of bacterial pathogens to soil colloidal particles: Influences of cell type, natural organic matter, and solution chemistry. Water Res. 2014, 53, 35–46. [Google Scholar]
- Yu, Z.; Zhang, J.; Zhang, C.; Xin, X.; Li, H. The coupling effects of soil organic matter and particle interaction forces on soil aggregate stability. Soil Tillage Res. 2017, 174, 251–260. [Google Scholar]
- Gregory, J. Approximate expression for retarded van der Waals interaction. J. Colloid Interface Sci. 1981, 83, 138–145. [Google Scholar]
- Jekel, M. The stabilization of dispersed mineral particles by adsorption of humic substances. Water Res. 1986, 20, 1543–1554. [Google Scholar]
- Kretzschmar, R.; Robarge, W.P.; Amoozegar, A. Influence of natural organic matter on colloid transport through saprolite. Water Resour. Res. 1995, 31, 435–445. [Google Scholar]
- Shang, S.; Wang, F.; Li, C. Study on stability and mobility of soil colloids based on physicochemical property (in Chinese). Soils 2010, 42, 1015–1019. [Google Scholar]
- Esfandyari Bayat, A.; Junin, R.; Derahman, M.N.; Samad, A.A. TiO(2) nanoparticle transport and retention through saturated limestone porous media under various ionic strength conditions. Chemosphere 2015, 134, 7–15. [Google Scholar]
- Yang, W.; Wang, Y.; Shang, J.; Liu, K.; Sharma, P.; Liu, J.; Li, B. Antagonistic effect of humic acid and naphthalene on biochar colloid transport in saturated porous media. Chemosphere 2017, 189, 556–564. [Google Scholar]
- Walsch, J.; Dultz, S. Effects of pH, Ca- and SO4-concentration on surface charge and colloidal stability of goethite and hematite—Consequences for the adsorption of anionic organic substances. Clay Miner. 2018, 45, 1–13. [Google Scholar]
- Fang, J.; Shijirbaatar, A.; Lin, D.H.; Wang, D.J.; Shen, B.; Sun, P.D.; Zhou, Z.Q. Stability of co-existing ZnO and TiO2 nanomaterials in natural water: Aggregation and sedimentation mechanisms. Chemosphere 2017, 184, 1125–1133. [Google Scholar]
- Yan, C.; Cheng, T.; Shang, J. Effect of bovine serum albumin on stability and transport of kaolinite colloid. Water Res. 2019, 155, 204–213. [Google Scholar]
- Tama, K.; El-Swaify, S.A. Charge, colloidal and structural stability interrelationships for oxidic soils. In Modification of Soil Structure; John Wiley & Sons: New York, NY, USA, 1978; pp. 41–49. [Google Scholar]
- Seta, A.K.; Karathanasis, A.D. Stability and transportability of water-dispersible soil colloids. Soil Sci. Soc. Am. J. 1997, 61, 604–611. [Google Scholar]
- Shen, C.; Li, B.; Wang, C.; Huang, Y.; Jin, Y. Surface roughness effect on deposition of nano- and micro-sized colloids in saturated columns at different solution ionic strengths. Vadose Zone J. 2011, 10, 1071–1081. [Google Scholar]
- Tombácz, E.; Libor, Z.; Illés, E.; Majzik, A.; Klumpp, E. The role of reactive surface sites and complexation by humic acids in the interaction of clay mineral and iron oxide particles. Org. Geochem. 2004, 35, 257–267. [Google Scholar]
Colloid/Collector | pH | Hydrodynamic Size (nm) | Zeta Potential (mV) |
---|---|---|---|
BSc | 4 | 398.0 | −16.5 |
7 | 453.9 | −22.1 | |
9 | 380.1 | −39.9 | |
FSc | 4 | 806.9 | −14.2 |
7 | 473.3 | −17.7 | |
9 | 535.7 | −17.6 | |
YSc | 4 | 425.7 | −21.0 |
7 | 579.1 | −29.7 | |
9 | 424.4 | −35.1 | |
BSc-GTc | 4 | 398.9 | −17.4 |
7 | 398.8 | −26.4 | |
9 | 509.6 | −32.3 | |
FSc-GT | 4 | 1863.8 | −13.9 |
7 | 453.3 | −17.3 | |
9 | 567.4 | −19.2 | |
YSc-GTc | 4 | 1890.7 | −20.0 |
7 | 479.3 | −27.2 | |
9 | 483.7 | −34.7 | |
BSc-HA | 4 | 498.0 | −20.5 |
7 | 432.0 | −31.1 | |
9 | 392.8 | −34.3 | |
FSc-HA | 4 | 396.8 | −16.9 |
7 | 426.0 | −19.3 | |
9 | 644.7 | −22.9 | |
YSc-HA | 4 | 561.3 | −24.1 |
7 | 419.9 | −34.8 | |
9 | 409.4 | −37.9 | |
Quartz sand | 7 | - | −34.5 |
GT coad sand | 7 | - | 15.2 |
GT-HA coad sand | 7 | - | −39.2 |
Item | Black Soil | Fluvo-Aquic Soil | Yellow Soil | |
---|---|---|---|---|
Soil | pH | 5.73 | 7.68 | 5.91 |
TOC (g kg−1) | 38.8 | 13.7 | 14.6 | |
CEC (cmol kg−1) | 44.0 | 10.8 | 8.1 | |
Al (g kg−1) | 68.3 | 72.5 | 100.8 | |
Ca (g kg−1) | 8.4 | 29.3 | 1.7 | |
Fe (g kg−1) | 35.1 | 23.4 | 20.5 | |
Sand (63~2000 μm) % | 10.8 | 20.9 | 16.4 | |
Silt (4~63 μm) % | 88.9 | 79.0 | 83.2 | |
Clay (<4 μm) % | 0.36 | 0.17 | 0.38 | |
Soil colloidal suspension(pH = 7) | Colloid concentration (g L−1) | 0.88 | 0.34 | 0.63 |
DOC (mg L−1) | 10.6 | 2.1 | 2.5 | |
Conductivity (μS cm−1) | 7.4 | 85.2 | 10.8 | |
Soil colloid (pH = 7) | Al (g kg−1) | 82.6 | 90.4 | 143.9 |
Ca (g kg−1) | 10.3 | 51.1 | 4.5 | |
Fe (g kg−1) | 49.9 | 58.1 | 59.5 | |
K (g kg−1) | 11.1 | 27.2 | 13.7 | |
Mg (g kg−1) | 12.9 | 23.2 | 3.7 | |
Na (g kg−1) | 2.2 | 5.1 | 4.9 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Ma, J.; Wu, X.; Weng, L.; Li, Y. Sedimentation and Transport of Different Soil Colloids: Effects of Goethite and Humic Acid. Water 2020, 12, 980. https://doi.org/10.3390/w12040980
Chen Y, Ma J, Wu X, Weng L, Li Y. Sedimentation and Transport of Different Soil Colloids: Effects of Goethite and Humic Acid. Water. 2020; 12(4):980. https://doi.org/10.3390/w12040980
Chicago/Turabian StyleChen, Yali, Jie Ma, Xiaojuan Wu, Liping Weng, and Yongtao Li. 2020. "Sedimentation and Transport of Different Soil Colloids: Effects of Goethite and Humic Acid" Water 12, no. 4: 980. https://doi.org/10.3390/w12040980
APA StyleChen, Y., Ma, J., Wu, X., Weng, L., & Li, Y. (2020). Sedimentation and Transport of Different Soil Colloids: Effects of Goethite and Humic Acid. Water, 12(4), 980. https://doi.org/10.3390/w12040980