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Abstract: Understanding land use practice induced increases in Escherichia (E.) coli and suspended
particulate matter (SPM) concentrations is necessary to improve water quality. Weekly stream water
samples were collected from 22 stream gauging sites with varying land use practices in a representative
contemporary mixed-land use watershed of the eastern USA. Over the period of one annual year,
Escherichia (E.) coli colony forming units (CFU per 100 mL) were compared to suspended particulate
matter (SPM) concentrations (mg/L) and land use practices. Agricultural land use sub-catchments
comprised elevated E. coli concentrations (avg. 560 CFU per 100 mL) compared to proximate mixed
development (avg. 330 CFU per 100 mL) and forested (avg. 206 CFU per 100 mL) sub-catchments.
Additionally, agricultural land use showed statistically significant relationships (p < 0.01) between
annual E. coli and SPM concentration data. Quarterly PCA biplots displayed temporal variability
in land use impacts on E. coli and SPM concentrations, with agricultural land use being closely
correlated with both pollutants during Quarters 2 and 3 but not Quarters 1 and 4. The data collected
during this investigation advance the understanding of land use impacts on fecal contamination in
receiving waters, thereby informing land use managers on the best management practices to reduce
exposure risks.

Keywords: Escherichia coli; suspended particulate matter; water quality; land use practices; experimental
watershed

1. Introduction

Fecal pollution is the greatest contributor to water borne disease human morbidity and
mortality rates globally [1]. Freshwater fecal pollution and subsequent increases in pathogenic
bacteria (e.g., Escherichia (E) coli), cause disease outbreaks, including diarrhea, urinary tract infections,
respiratory illness and pneumonia [2,3]. The World Health Organization reported that 2.2 million
deaths are caused by diarrhea annually, due to the consumption of fecal contaminated water [1].
An improved understanding of factors leading to increased fecal contamination in receiving waters
will be useful in reducing outbreaks of waterborne disease and improving water quality. Furthermore,
understanding the factors impacting the health and exposure risks of fecal pollution can be used to
decrease the threat posed by fecal organisms. For example, the environmental persistence of fecal
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microbes can be extended when occurring with suspended particulate matter (SPM) [4,5]. Therefore,
monitoring SPM in conjunction with fecal pollution can provide greater insight into water quality,
through more accurate assessments of the persistence of fecal microbes.

Suspended particulate matter (SPM), defined as heterogeneous aggregates of mineral fragments,
organic matter and microbial fractions, comprises the greatest water pollutant by volume globally [6].
Excess SPM in freshwater can impact water quality by decreasing the amount of transmitted light,
thereby restricting or eliminating the photosynthesis of aquatic plants and dramatically influencing the
aquatic food chain [7,8]. Therefore, understanding the factors influencing fluxes in SPM (e.g., land use
practices) is important from an ecosystem management perspective. Additionally, increases in SPM can
clog the gills of fish, thus lowering resistance to disease and decreasing developmental growth rates [7]
while also elevating water temperatures, thereby disrupting the metabolic processes of various aquatic
biota [8]. Thus, changes in SPM concentrations in receiving waters can entail serious consequences for
various aquatic organisms. SPM can also act as a conveyance system for other pollutants including
heavy metals, chemicals and pathogens, including fecal microbes (as discussed above) [8–12]. Insofar
as excess sediment can be harmful to aquatic ecosystems, too little sediment can also be harmful,
leading to the scouring of river channels, erosion and reduced nutrient inputs [8,13]. Consequently,
understanding the factors leading to increases or decreases of SPM in receiving waters is important
from a water quality perspective [14].

Previous work investigating fecal contamination and SPM reported statically significant, Pearson’s
product moment, correlations (r > 0.9) between the two pollutants [15]. Moreover, the strength
of the relationships between fecal pollution and SPM reported in previous work [15,16] has led to
speculation that SPM concentrations (and the turbidity caused by SPM) can potentially serve as a
proxy for fecal contamination [16]; however, this is yet to be verified. The relationship between fecal
contamination and SPM has been attributed to similar transport processes influencing both pollutants
during run-off events [17], including similar in-stream transport physics [18], and the sorption of
fecal microbes to SPM [4,5]. Additionally, certain land use practices can simultaneously elevate both
SPM and fecal microbe concentrations in receiving waters [19,20]. For example, agricultural land use
practices are commonly associated with increased fecal (e.g., E. coli) and SPM concentrations relative
to other land use types [19–22]. This is often related to the presence of livestock [23], with livestock
population density being correlated to fecal indicator organism concentration [24]. Manure application
in agricultural areas has also been linked to increased concentrations of fecal microbes in receiving
waters [4]. Conversely, agricultural practices such as soil tillage and soil exposure yield increased SPM
concentrations in the receiving waters of agricultural areas [19,21]. Differing land use practices in a
given area (watershed) can therefore account for differing E. coli and SPM concentrations in receiving
waters and should thus be accounted for when monitoring these pollutants.

Despite the progress of previous research, knowledge gaps regarding the relationship between
fecal contamination and SPM remain. For example, few studies investigated the relationships
between SPM and fecal contamination in mixed land use settings. Furthermore, the majority of
studies included limited sampling locations [20,25] and tended to occur in areas of similar land use
types [16,26], or were controlled laboratory simulations [27]. Additionally, previous work on fecal
contamination typically focused on storm events and therefore report disproportionately elevated
fecal concentrations in receiving waters [28]. Clearly, knowledge regarding fecal concentrations
outside of storm events is lacking, creating challenges for proper management practices. Similarly,
previous work investigating fecal concentrations in receiving waters typically utilized shorter (weeks
or months) sampling periods [20], which fail to account for the seasonal variability in land use
practices. For example, seasonal variability in agricultural land use practices can lead to changes in
fecal microbe concentrations in receiving water, particularly in areas where manure is applied [29].
Manure is typically only applied in specific seasons, thereby leading to corresponding increases in
the fecal contamination of associated receiving waters during these seasons [29]. Therefore, a study
design capable of distinguishing the effects of different land uses and seasonality would be useful
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for investigating fecal contamination and SPM in receiving waters and for better informing water
resource managers.

Previous studies have used many different study design methods, including different sampling
regimes, to advance the understanding of E. coli regimes. Study designs have included laboratory based
designs comprising simulations [30] and field based designs comprising event based sampling [31],
periodic sampling [32], stochastic sampling [33] and nested-scale experimental watersheds [20].
The nested-scale and paired experimental watershed study design is a method that has been
successfully used to quantify the effects of land use practices on receiving waters in mixed land
use settings [34–40]. Nested watershed study designs divide a larger watershed into a series of
sub-catchments to investigate the influence of land use practices on the environmental variables of
interest [35,37,41–43]. Sub-catchment delineation isolates different land use practices and hydrologic
characteristics [41]. Paired watersheds comprise at least two physiographically similar watersheds
(control and treatment) from which data are collected [41]. The study design enables the identification
of the influence and cumulative effect of various land use practices on the response variable of interest
through the quantification of the influencing processes observed at the sub-catchment scale [44].
Therefore, the approach allows for the effective disentanglement of factors (e.g., land use practices
and SPM) that influence a given response variable of interest (e.g., fecal microbe concentration),
thus providing quantitative information regarding hydrologic and water quality regimes related to
specific land-uses [41]. Given its proven application in over a century of studies, the nested-scale and
paired experimental watershed study design is an accepted optimal study design for investigating
current knowledge gaps regarding fecal contamination, SPM and land use practices.

The Appalachian region of the USA is well-suited for researching knowledge gaps concerning fecal
contamination, SPM and land use practices. The region is representative of many locations globally
given that it suffers from widespread, frequent, and problematic fecal pollution [45]. Additionally,
Appalachia is physiographically diverse, encompassing distinct Northern, Central and Southern regions,
consisting of dissimilar geographic, climatological, and ecological characteristics [46]. For example, the
temperate climate and well-distributed year-round rainfall characteristics of Central Appalachia [47] are
similar to those of areas such as Uruguay or Southern Brazil [48], and many other locations. Conceivably,
other temperate areas comprising year-round precipitation (e.g., Uruguay) will benefit from research
conducted in the Central Appalachian region as the results will be comparable and transferable.
Furthermore, water quality is a primary concern in rural Appalachia as thousands of residents are
exposed to water quality problems, specifically regarding microbial contamination [49]. Water quality
problems in rural areas are exacerbated by inadequate wastewater treatment infrastructure, isolation
due to geographically inaccessible terrain, and poverty [49]. Consequently, water quality is a primary
concern, and insight into both SPM and fecal pollution (e.g., E. coli concentrations) is necessary to
effectively inform policy makers and water resource managers regarding water quality to make the
best management practice decisions in Appalachia and physiographically similar locations globally.

The overarching objective of the current investigation was to quantify fecal contamination (E. coli
concentration) and SPM concentrations in receiving waters relative to differing land use practices
from numerous sites in a mixed-land use contemporary watershed of Appalachia. Sub-objectives
included (1) investigating the relationship between fecal microbe concentration (E. coli colony forming
units) and SPM concentrations in receiving waters, and (2) determining the influence of quarterly
(seasonal) changes on the relationship between E. coli and SPM. The study outcomes were to improve
the understanding of the influence of land use practices on both fecal contamination and SPM pollution,
providing land use managers with insight into factors influencing water quality in receiving waters.
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2. Methods

2.1. Study Site Description

This research took place in West Run Watershed (WRW) a 23 km2 mixed-land use urbanizing
watershed located in Morgantown, West Virginia, USA. West Virginia’s climate varies between cold
and humid with warm summers, to temperate and humid with hot summers [50]. In Morgantown,
WV, located in Monongalia County (and including the WRW), the climate is characterized by the lack
of a dry season, cold winters (mean monthly temperature < 0 ◦C) and warm-to-hot summers (mean
monthly temperature > 22 ◦C) [50]. Historically (1981–2010), Morgantown received approximately
1060 mm of average annual precipitation, with the coldest (January) and driest (February) months
having an average daily temperature of −0.4 ◦C and an average monthly precipitation of 66 mm,
respectively [51]. Conversely, the warmest and wettest month (July) comprised an average daily
temperature of approximately 23 ◦C and an average monthly precipitation of 117 mm [51].

West Run Creek, the primary drainage of WRW, is a third order tributary of the Monongahela
River, and includes many land use practices including agriculture, urban and forested areas [22].
Based on the 2016 National Agriculture Imagery Program (NAIP) land use and land cover data, WRW
includes 42.7% forested land use, 37.7% mixed development (urban and commercial areas) land use
and 19.4% agricultural land use practices. West Run Creek is a narrow, moderately entrenched stream
with multiple small floodplains [20,52]. The elevation of the headwaters of WRW is 420 m above mean
sea level [22]. Conversely, the elevation of the confluence of WRW with the Monongahela River is
240 m above mean sea level [20]. The watershed includes relatively rugged terrain, featuring numerous
Paleozoic era rock outcroppings [20]. The headwaters of WRW contain the most recent geological
formation (Monongahela series) [20]. Two coal formations are also present in the watershed, namely
the Upper Kittanning coal and the Pittsburg coal seam [20]. Historic mining of the Pittsburg coal seam
negatively impacted water quality in WRW, particularly in the headwaters [53].

A nested-scale and paired experimental watershed study design [35,44,54–56] comprising
twenty-two study sites (i.e., gauge sites) was implemented in 2017. Sampling sites (numbered
in downstream order) were located in West Run Creek (#3, #4, #6, #10, #13, #18, #19, #21 and #22)
and its first and second order confluence tributaries (#1, #2, #5, #7, #8, #9, # 11, #12, #14, #15, #16,
#17 and #20) and included varying land use practices (Table 1; Figure 1). Both field surveys and GIS
were used to identify the study sites and related sub-catchments. At the time of this investigation,
forested land use was the predominant land use in WRW, accounting for 42.7% of the total land use
practices in the watershed. Additionally, forested land use was the predominant land use type in
all sub-catchments except #1, #11, #15, #16 and #20. Sub-catchments #1, #15 and #20 were primarily
mixed development, whereas sub-catchments #11 and #16 where primarily agricultural (Table 1).
Conversely, 85.84% of sub-catchment #17 was forested land use, the highest among the sub-catchments.
This sub-catchment, which served as a reference sub-catchment (control) for the current work, also
comprised 9.4% agricultural and 4.8% mixed development land use practices. Sub-catchment #17 is,
therefore, considerably different to sub-catchment #12 (34.5% forested, 33.7% agriculture and 31.7%
agriculture) despite both comprising predominantly forested land use practices. In general, at the time
of the investigation, mixed development comprised the second largest percentage of land use practices
(37.7%) and agricultural land use practices accounted for the lowest percentage of land use practices
(19.4%) in WRW.
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Table 1. Land use/land cover characteristics (% cover) and total drainage area (km2) at 22 monitoring
sites in West Run Watershed (WRW), West Virginia, USA. Note: land use percentages may not sum
to 100%, as not every category is included (i.e., wetland, open water, etc.) and some categories are
combinations of others (e.g., mixed development = urban + residential). Final row (Site #22) indicates
the total values for the entire watershed.

Site Mixed Development (%) Agriculture (%) Forested (%) Drainage Area (km2)

1 53.23% 38.70% 8.07% 0.30
2 13.58% 12.20% 74.21% 0.29
3 22.35% 16.17% 61.32% 1.87
4 25.88% 14.91% 59.00% 2.48
5 23.35% 25.51% 51.14% 0.38
6 23.91% 17.25% 58.70% 3.72
7 16.33% 28.60% 54.91% 0.78
8 30.78% 16.47% 52.35% 1.55
9 27.57% 19.33% 52.84% 2.29

10 24.92% 18.40% 56.49% 6.18
11 18.15% 41.87% 39.16% 1.75
12 31.77% 33.72% 34.51% 1.75
13 26.83% 25.77% 47.15% 10.53
14 16.19% 26.43% 56.92% 3.36
15 70.28% 10.31% 19.42% 0.98
16 5.38% 58.72% 35.16% 0.25
17 4.78% 9.38% 85.84% 0.75
18 25.98% 24.88% 48.86% 16.41
19 29.45% 22.45% 47.85% 18.88
20 89.16% 4.19% 6.61% 3.42
21 38.10% 19.46% 42.23% 22.93
22 37.71% 19.38% 42.66% 23.24

Water 2020, 12, x FOR PEER REVIEW 6 of 23 

 

 
Figure 1. Monitoring/sampling locations for the current investigation, with land use/land cover, in 
West Run Watershed, Morgantown, West Virginia, USA. 

2.2. Data Collection 

Climate data collected for the current work included precipitation (Campbell Scientific TE525 
Tipping Bucket Rain Gage), average air temperature, relative humidity (Campbell Scientific HC2S3 
Temperature and Relative Humidity Probe), and average wind speed (Campbell Scientific Met One 
034B Wind Set instrument). Data were recorded at a 3 m height during the study period (2 January 
2018–1 January 2019) by a climate station located within approximately 30 m of Site #13 (Figure 1).  

For the current work, weekly water grab-samples were collected as per Petersen et al. [20], 
Hubbart et al. [57], Kellner and Hubbart [43], and Zeiger and Hubbart [42,58] from each monitoring 
site (stream order ≤ 3). Water sample collection was initiated at 09:00 at Site #1 and continued in 
numerical order of sites. Sites #9 and #10 were exceptions, as they were sampled before Sites #7 and 
#8, due to their location relative to other sites (Figure 1). The proximity of Sites #9 and #10 to Site #6 
meant that overall sampling time was reduced by sampling them after Site #6, increasing the 
comparability of the samples during sample processing. The sampling period for the study (2 January 
2018–1 January 2019, thus 53 weeks) was one calendar year to account for seasonal variability in the 
E. coli concentration and SPM data. Notably, the sampling period was longer than in typical studies 
on fecal contamination [59,60], allowing for a comprehensive quantification of fecal contamination 
(E. coli) regimes at sub-catchment mixed-land-use scales. The high-resolution study design resulted 
in a total of 1166 spatio-temporally delineated fecal contamination (E. coli) concentration and SPM 
concentration values 

Following collection, the samples were transported to the Interdisciplinary Hydrology 
Laboratory, located in the Davis College of Agriculture, Natural Resources and Design at West 
Virginia University, for analyses. In the laboratory, water samples were refrigerated (at 3.3 °C), and 
gravimetric analyses (vacuum filtration) were conducted as per the American Society for Testing and 
Materials, test number D 3977-97, [61] within a few days of collection to determine the mass of 
suspended particulate matter (SPM). Additionally, fecal contamination was quantified immediately 
upon arrival at the laboratory using Escherichia (E) coli as an indicator organism, as per previous work 
[20,62]. E. coli coliform forming units (CFU) were enumerated using the U.S. Environmental 

Figure 1. Monitoring/sampling locations for the current investigation, with land use/land cover,
in West Run Watershed, Morgantown, West Virginia, USA.



Water 2020, 12, 1228 6 of 23

2.2. Data Collection

Climate data collected for the current work included precipitation (Campbell Scientific TE525
Tipping Bucket Rain Gage), average air temperature, relative humidity (Campbell Scientific HC2S3
Temperature and Relative Humidity Probe), and average wind speed (Campbell Scientific Met One
034B Wind Set instrument). Data were recorded at a 3 m height during the study period (2 January
2018–1 January 2019) by a climate station located within approximately 30 m of Site #13 (Figure 1).

For the current work, weekly water grab-samples were collected as per Petersen et al. [20],
Hubbart et al. [57], Kellner and Hubbart [43], and Zeiger and Hubbart [42,58] from each monitoring
site (stream order ≤ 3). Water sample collection was initiated at 09:00 at Site #1 and continued in
numerical order of sites. Sites #9 and #10 were exceptions, as they were sampled before Sites #7
and #8, due to their location relative to other sites (Figure 1). The proximity of Sites #9 and #10 to
Site #6 meant that overall sampling time was reduced by sampling them after Site #6, increasing the
comparability of the samples during sample processing. The sampling period for the study (2 January
2018–1 January 2019, thus 53 weeks) was one calendar year to account for seasonal variability in the
E. coli concentration and SPM data. Notably, the sampling period was longer than in typical studies
on fecal contamination [59,60], allowing for a comprehensive quantification of fecal contamination
(E. coli) regimes at sub-catchment mixed-land-use scales. The high-resolution study design resulted
in a total of 1166 spatio-temporally delineated fecal contamination (E. coli) concentration and SPM
concentration values.

Following collection, the samples were transported to the Interdisciplinary Hydrology Laboratory,
located in the Davis College of Agriculture, Natural Resources and Design at West Virginia University,
for analyses. In the laboratory, water samples were refrigerated (at 3.3 ◦C), and gravimetric analyses
(vacuum filtration) were conducted as per the American Society for Testing and Materials, test number
D 3977-97, [61] within a few days of collection to determine the mass of suspended particulate
matter (SPM). Additionally, fecal contamination was quantified immediately upon arrival at the
laboratory using Escherichia (E) coli as an indicator organism, as per previous work [20,62]. E. coli
coliform forming units (CFU) were enumerated using the U.S. Environmental Protection Agency
(EPA) approved Colilert test [63], developed by IDEXX Laboratories Inc. The applied method used an
MPN approach to estimate the E. coli CFU concentration; therefore, E. coli concentration data were
referred to as CFU, not MPN, during the investigation. The test, included in Standard Methods for
Examination of Water and Wastewater was developed to estimate fecal concentrations in water samples
without requiring sample dilution [63,64]. A combination of Colilert’s Defined Substrate Technology
nutrient-indicator (ONPG), and a selectively suppressing formulated matrix created low chances of
recording inaccurate results (chance of reporting false positives ±10%). With this test, most non-target
organisms are unable to grow given that they lack the enzyme to metabolize the provided carbon
source (ONPG) [63]. The formulated matrix selectively suppresses the few non-target organisms
that can metabolize ONPG [63]. The number of E. coli colony-forming units (CFU) per 100 mL of
sampled water was estimated using the Quanti-Tray system, comprising 96 total wells: 48 large wells
(49, including the overflow well) and 48 small wells [63]. The Colilert (ONPG) substrate was added
to 100 mL of sampled water, sealed in the Quanti-Tray, and incubated at 35 ◦C for 24 hours, as per
Colilert’s instructions [29]. Following incubation, fluorescing (positive for E. coli) wells were quantified
using a UV light and converted, with a 95% confidence interval, into a concentration of E. coli (CFU
per 100 mL) using the Quanti-Tray Most Probable Number (MPN) table. The E. coli concentration
range resultant from the Quanti-Tray/MPN table method was <1 to 1011.2 CFU. Therefore, E. coli
concentrations in excess of 1011 CFU per 100 mL could not be accurately estimated. This limitation
was an allowable shortcoming of the current work given the focus on the weekly detection of small
E. coli concentrations occurring between storm events.
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2.3. Data Analysis

Descriptive statistics were generated for E. coli and SPM concentrations and aggregated for the
study period. Average percentage differences between sites were determined by comparing the
average SPMs and average E. coli concentrations between sites. Statistical analyses were conducted
using Origin Academic 2018 (OriginLab Corporation). Normality testing was completed using the
Anderson Darling Test [65]. Land use practices were reclassified (lumped) into three major categories
prior to analysis, namely mixed development, agriculture, and forested [20]. Mixed development
constituted roads, impervious surfaces, mixed developments and barren areas. Agriculture included
low vegetation, hay pasture and cultivated crops. Forested land use included mine grass, forest,
mixed mesophytic forest, dry mesic oak forest, dry oak (pine) forest and small stream riparian habitats.
Annual data were also analyzed in four quarter data subsets, comprising all weekly samples collected
in three month blocks starting on January 1st, 2018, to analyze seasonal variation. Thus, Quarter 1
included 2 January 2018–27 March 2018 (winter), Quarter 2 included 3 April 2018–26 June 2018 (Spring),
Quarter 3 included 3 July 2018–25 September 2018 (summer), and Quarter 4 included 2 October 2018–1
January 2019 (fall). Spearman correlation tests, with a significance threshold of α = 0.05 [66], were
used to analyze the relationship between E. coli concentration, suspended sediment, and land use
practices at all twenty-two sites, as per Petersen et al. [20] for the complete annual data set and the
four quarterly data subsets. Finally, principal component analysis (PCA) was used to investigate the
relationships between E. coli concentrations, SPM and land use practices (presented in biplots) across
all 22 sampling locations for the annual data set and the four quarterly data subsets.

3. Results and Discussion

3.1. Climate during Study

Total precipitation was 1378 mm in 2018 in WRW. This was approximately 20% more precipitation
than the historic annual average (1096 mm) dating back to 2007 [67]. September (186 mm) and October
(47 mm) were the wettest and driest months, respectively, during 2018 (Figure 2). Approximately
14% of the annual precipitation was received in September. This was more than double the historic
average precipitation (80 mm) for that month [67]. The average air temperature, during the study
period was approximately 12 ◦C, which is close to the historic average of 11 ◦C [67]. July (22 ◦C) and
January (−4 ◦C) comprised the warmest and coldest average monthly temperatures, respectively, in
WRW during 2018. Relative humidity was characteristically high during 2018 (Figure 2), comprising
a yearly average of 76%. Generally, climate during the period of study (2 January 2018–1 January
2019) was predictably variable and consistent with historic trends (Figure 3), including humid and
warm weather during the summer months, with temperatures decreasing over the transition to winter
(Figure 3). As is typical of the region, there was no dry season; however, large precipitation events
during Quarters 2 (spring; e.g., May 6th: 24 mm) and 3 (summer; e.g., September 9th; 60 mm) resulted
in greater quarterly (seasonal) variation in precipitation (Figure 2) [67]. Quarters 2 and 3 (spring and
summer; 850 mm) therefore received 67% more precipitation than Quarters 1 and 4 (winter and fall;
510 mm).
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squares shows means; whiskers describe 10th and 90th percentiles; x shows maxima and minima when
above and below, respectively. Note: different box colors represent data from different sites.
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3.2. Annual Suspended Particulate Matter, E. coli Concentrations and Land Use Practices

The results showed that forested sub-catchments had the highest average (Site #7; 55% forested;
78.4 mg/L), maximum (Site #9; 53% forested; 1140 mg/L) and minimum (Site #8; 52% forested;
12.7 mg/L) SPM concentrations (Table 2; Figure 3). Notably, these sub-catchments constituted one of
the paired watersheds of the paired study design and were in close proximity to each other (Figure 1).
Consequently, these sub-catchments were subject to similar land use activities and processes leading
to elevated SPM in this region of the watershed. For example, the agricultural land use practices in
the headwaters of sub-catchments #7 and #8 (Figure 1) could have elevated the SPM in the entire
paired catchment (Sites #7, #8 and #9) as previous work has reported increased SPM in agricultural
areas [19–22]. SPM concentrations were also elevated in West Run Creek (combined average of sites in
West Run Creek, 39 mg/L) relative to sites located in the first and second order confluence tributaries
(combined average, 35 mg/L) (Table 2; Figure 3). The increased SPM in West Run Creek was attributable
to (1) the greater volumetric streamflow in West Run Creek relative to in its tributaries, as increased
streamflow can increase the SPM concentration [68]; and (2) increased SPM sources due to an increased
drainage area relative to its tributaries (23 km2 and 15 km2 respectively) (Table 1; Figure 1). Conversely,
SPM concentrations were decreased in mixed development sub-catchments (Sites #15: 70% mixed
development and #20: 89% mixed development) comprising the lowest average (6.5 mg/L), lowest
median (1 mg/L), and lowest minimum (0 mg/L) (Table 2; Figure 3). Site #15 also had low SPM
concentrations during previous work conducted in the WRW, thereby supporting the results from the
current investigation [20]. Mixed development areas can comprise decreased exposed soil surfaces
and subsequent reductions in the SPM sources relative to other land use types, which can account for
the decreased SPM concentrations [69].

Table 2. Descriptive statistics of suspended particulate matter (mg L−1) at each sampling location
(n = 22) during the study period (2 January 2018–1 January 2019) in West Run Watershed, WV, USA.
Note: all average values presented in the current work constitute arithmetic means.

Site Number
#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11

Avg. 15.6 53.0 34.5 22.2 15.2 31.3 78.4 61.1 66.4 55.7 42.9
Med. 10.3 39.3 20.3 10.3 11.3 14.3 30.7 28.7 31.7 33.3 23.0
Min. 3.0 17.3 11.0 0.3 0.7 3.0 0.7 12.7 11.7 16.0 0.3
Max. 126.7 528.7 357.0 332.3 125.3 569.7 928.3 803.3 1140.0 642.0 417.3

Std. Dev. 20.8 69.8 57.5 49.5 19.0 79.9 176.5 123.5 159.7 93.3 77.2

Site Number
#12 #13 #14 #15 #16 #17 #18 #19 #20 #21 #22

Avg. 35.0 40.1 29.1 6.5 21.1 14.4 38.2 46.1 17.7 41.9 42.0
Med. 11.3 23.3 14.7 1.0 5.0 6.0 18.7 15.0 1.0 12.3 11.8
Min. 0.7 3.7 3.3 0.0 0.3 1.0 1.0 1.0 0.0 0.3 2.0
Max. 819.3 316.0 370.7 144.7 376.0 277.3 456.7 603.3 590.0 502.0 518.0

Std. Dev. 116.4 62.0 59.7 21.5 59.3 38.6 75.3 103.7 83.3 101.1 99.1

The study results showed that E. coli concentrations were the highest at sub-catchments comprising
the greatest percentage agricultural land use area (Site #16: 59% agricultural). These results are similar
to those of previous investigations in WRW reporting increased E. coli concentrations in agricultural
land use sub-catchments [20]. This predominantly agricultural sub-catchment comprised the highest
average (560 CFU per 100 mL) and median (575 CFU per 100 mL) (Table 3; Figure 4) E. coli concentrations
over the period of investigation. Previous investigations in the USA (California and Ohio) reported
increased fecal contamination with agricultural land use practices [31,70], and a significant correlation
(p < 0.04) between agricultural land use and E. coli concentrations [20], thereby supporting the results
recorded during the current work. The lowest E. coli concentrations were recorded at two forested
sites (Site #2: 74% forested and Site #5: 51% forested) comprising the lowest median (3 CFU per
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100 mL) and average (34 CFU per 100 mL) amongst the sites respectively (Table 3; Figure 5). These
two sites, and the forested sub-catchments comprising one of the paired watersheds (Sites #7, #8
and #9) located in the headwaters of WRW (Figure 1), were heavily impacted by acid mine drainage
(AMD) from historic mining activities [20,22,53], which likely, at least in part, explains the low E. coli
concentrations observed at these sites. This is an important finding given that previous studies showed
that AMD lowers the pH of receiving waters [71] and that the current results indicate that AMD may
also lower E. coli concentrations. Forested sites generally had lower E. coli concentrations (e.g., Site
#17: 86% forested; average E. coli concentration: 206 CFU per 100 mL) during the study period than
sites comprising other land use practices (e.g., Site # 20: 89% mixed development; average E. coli
concentration: 415 CFU per 100 mL) (Figure 4). These results align well with previous studies reporting
decreased fecal contamination in forested areas [70] and are attributable to the increased quality of
receiving waters in forested areas [72]. Consequently, both forested land use practices and AMD
lowered E. coli concentrations in WRW during the investigation. Notably, the low average E. coli
concentrations recorded during the study period (2 January 2018–1 January 2019), specifically in the
headwaters, affirms the study objective of analyzing samples collected between storm events that
comprise lower E. coli concentrations. Additionally, in no other study has there been such high spatial
and temporal resolution sampling over a full annual year. This allowed for a more comprehensive
analysis of E. coli concentration regimes and relationships with SPM and land use, including accounting
for seasonality, than is available in the literature surrounding contemporary mixed land use watersheds.
The current study therefore lends greatly needed confirmation through high spatial and temporal
resolution of previous studies.

Table 3. Descriptive statistics of E. coli concentration (CFU per 100 mL) at each sampling location
(n = 22) during the study period (2 January 2018–1 January 2019) in West Run Watershed, WV, USA.

Site Number
#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11

Avg. 170 38 397 429 34 269 84 89 127 210 98
Med. 66 3 260 361 4 194 20 32 25 93 16
Min. 0 0 15 107 0 2 0 0 0 3 0
Max. 1011 961 1011 1011 914 1011 1011 1011 1011 1011 870

Std. Dev. 251 139 315 249 129 276 179 180 241 273 202

Site Number
#12 #13 #14 #15 #16 #17 #18 #19 #20 #21 #22

Avg. 234 215 457 330 560 206 324 466 415 471 452
Med. 88 91 299 211 575 93 218 436 299 397 397
Min. 0 0 0 5 22 3 0 1 23 2 3
Max. 1011 1011 1011 1011 1011 1011 1011 1011 1011 1011 1011

Std. Dev. 305 266 406 293 373 288 342 339 340 342 345
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Figure 4. Box and whisker plot of E. coli concentration (CFU per 100 mL) at each sampling location
(n = 22) during the study period (2 January 2018–1 January 2019) in West Run Watershed, Morgantown,
West Virginia, USA. Boxes delineate 25th and 75th percentiles; lines denote medians; squares show
means; whiskers describe 10th and 90th percentiles; x shows maxima and minima when above and
below, respectively. Note: different box colors represent data from different sites.

E. coli concentrations showed a general increase from the headwaters of WRW to the confluence
of the Monongahela River, with larger average concentrations typically being observed in the lower
portions of the watershed (Figure 5). In the current work, AMD may account for the lower E. coli
concentrations in the upper watershed (as discussed above). However, in the lower elevations of WRW,
land use practices may be the predominant factor influencing E. coli concentrations. For example,
in West Run Creek (Sites #13–#21), there was a notable increase in cumulative E. coli concentrations
and a simultaneous increase in agricultural and mixed development land use practices (Figure 6).
Previous work reported on the increased fecal contamination associated with increased agricultural and
urban areas [31,70,73,74], commonly attributed to increased sources (livestock and manure) [23] and
increased (concentrated flow) run-off during precipitation events, respectively [73], and urban stream
syndrome [75], thereby supporting the results from the current investigation. The inter-site relationship
between E. coli concentrations and SPM was not clearly discernable based on average values (Figure 5)
or cumulative values in West Run Creek (Figure 6), as increases in SPM were not always accompanied
by similar increases or decreases in E. coli between the different sampling locations. A potential
explanation for these results may be that SPM and E. coli concentrations are affected by different
factors at different sites (e.g., geochemistry, land use and antecedent soil water conditions). Thus, in
WRW, there may exist a spatial disconnect regarding the factors influencing E. coli concentrations and
subsequently impacting the relationship between E. coli and SPM in the watershed. To account for the
spatial disconnect, site specific analysis of E. coli and SPM correlations, including separate analysis
for different time periods in the year (quarters), was required to improve the current understanding
regarding this relationship and to assess the use of SPM as a proxy for fecal contamination.
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Figure 6. Land use percentage relative to cumulative annual E. coli concentration (CFU per 100 mL)
and SPM concentration (mg/L) at West Run Creek monitoring sites (n = 9) during the study period
(2 January 2018–1 January 2019) in West Run Watershed, Morgantown, West Virginia, USA. Note: West
Run Creek included the following site numbers: #3, #4, #6, #10, #13, #18, #19, #21 and #22.

3.3. Quarterly Suspended Particulate Matter, E. coli Concentrations and Land Use Practices

Average E. coli and SPM concentration data showed notable temporal variation during 2018, based
on quarterly analysis (Figure 7). E. coli concentrations were elevated during Quarter 2 (spring; 3 April
2018–26 June 2018) and Quarter 3 (summer; 3 July 2018–25 September 2018) of 2018, coinciding with the
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warmer spring and summer months (average maximum daily temperatures: Quarters 2 and 3 = 26 ◦C;
Quarters 1 and 4 = 9 ◦C) of the year and higher stream flows induced by larger and more frequent
precipitation events (Figure 3). Previous work noted correlations between elevated air temperatures
and E. coli concentrations in freshwater [74], thereby supporting the results from the current work
reporting greater E. coli concentrations during warmer months. Furthermore, the second and third
quarters included some of the largest precipitation events of 2018 (Figure 3). These precipitation
events could, at least in part, account for the elevated E. coli concentrations recorded during this time
period, as previous work linked precipitation events to elevated E. coli concentrations in receiving
waters [32,74]. Conversely, the highest average SPM concentrations were recorded during Quarters 1
(winter) and 2 (spring), with average concentrations decreasing during the second half of the year
(Figure 7). The high SPM recorded during this time period may be attributable to decreased vegetation
cover throughout WRW, leading to increased exposed soil surfaces, owing to the seasonal changes in
vegetation (i.e., many plant species senesce during the cold winter months) [76,77]. Once vegetation
throughout WRW increases during Quarter 3 (summer), exposed soil surfaces and sources of SPM
become more limited. Quarter 4 (fall) comprised low E. coli and SPM concentrations. During this time
period, WRW received less precipitation than in the preceding quarters (Figure 2), which could have
limited the transport of pollutants (i.e., E. coli and SPM) to receiving waters [78]. Additionally, E. coli
concentrations in the receiving water could have been suppressed by the colder temperatures [79] and
decreased nutrient availability owing to the drier antecedent conditions and greater infiltration [77,80].
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Figure 7. Quarterly average E. coli concentration (CFU per 100 mL) and SPM concentration (mg/L)
at each sampling location (n = 22) during the study period (1/2/18–1/1/19) in West Run Watershed,
Morgantown, West Virginia, USA. Note: (A) represents Quarter 1 (winter: 2 January 2018–27 March
2018); (B) represents Quarter 2 (spring: 3 April 2018–26 June 2018); (C) represents Quarter 3 (summer:
3 July 2018–25 September 2018); (D) represents Quarter 4 (fall: 2 October 2018–1 January 2019).

3.4. Non-Parametric Statistical Results

Normality test results indicated that the E. coli concentration data were non-normally distributed,
thus Spearman correlation coefficients (nonparametric version of the Pearson product moment
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correlation) were used to quantify the relationships between E. coli concentration, SPM concentration,
and land use at each site. E. coli concentrations and SPM concentrations were not significantly correlated
at all sites; however, nine of the 22 sites (Sites #4, #7, #8, #9, #11, #15, #16, #17 and #20) did have
significant correlations (Table 4). Notably, Sites #7, #8 and #9, which had the highest SPM during the
investigation (Table 2; Figure 3), displayed statistically significant positive correlations (p < 0.01 for all
three sites) between E. coli concentrations and SPM concentrations. Based on these relationships, SPM
may serve as a relatively accurate proxy for E. coli concentrations in similarly physiographic catchments.
Mixed development and forested sub-catchments did not display consistent significant correlations
(p < 0.05) between E. coli and SPM concentrations. For example, Sites #15 (70.3% mixed development)
and #17 (85.8% forested) both comprised statistically significant relationships between SPM and E. coli
concentrations (p < 0.01and p < 0.05, respectively) despite comprising different predominant land
use practices. However, Site #1 (53.2% mixed development) and Site #5 (51.1 % forested) displayed
statistically insignificant correlations, despite including approximately similar dominant land use
practices to Sites #15 and #17. As discussed in the preceding sections, AMD in the headwaters of
WRW could be affecting E. coli concentrations, thereby creating inconsistency in the correlations
between the E. coli and SPM concentrations. Therefore, the E. coli and SPM correlation results imply a
spatial disconnect in terms of the influence of land use practices—in particular, mixed devolvement
and forested areas—on the use of SPM as a proxy for fecal contamination. Notably, it seems likely,
based on these results, that legacy effects (AMD) of historic land use practices (coal mining) may be
impacting E. coli concentrations and affecting the observed relationships between E. coli and SPM
concentrations. Conversely, both of the predominantly agricultural sites (Site #11 and #16) displayed
significant correlations between SPM concentrations and E. coli concentrations, supporting previous
work that reported elevated E. coli and SPM concentrations in the receiving waters of agricultural
areas [19,20]. Therefore, in agricultural areas, SPM could be implemented as a proxy for E. coli with
greater accuracy and less difficulty than in other land use areas.

Table 4. Results of Spearman’s correlation test, including annual E. coli concentration (CFU per 100 mL)
and annual SPM concentration (mg/L) at each sampling location (n = 22) during the study period
(2 January 2018–1 January 2019) in West Run Watershed, WV, USA. Note: bold values indicate significant
correlations (p < 0.05).

Site Number
#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11

SCC 0.19 0.18 0.04 0.30 −0.11 0.04 0.46 0.52 0.73 0.24 0.56
p-value 0.17 0.19 0.77 0.03 0.42 0.78 <0.01 <0.01 <0.01 0.09 <0.01

Site Number
#12 #13 #14 #15 #16 #17 #18 #19 #20 #21 #22

SCC 0.00 0.13 −0.25 0.42 0.64 0.27 0.02 −0.14 0.55 0.01 0.17
p-value 0.99 0.34 0.07 <0.01 <0.01 0.05 0.88 0.33 <0.01 0.94 0.24

SCC = Spearman correlation coefficient.

Explanatory variables that account for the maximal variance in a data set can be identified via
principle component analysis (PCA), through the computation of multiple principal components
and their respective Eigenvalues [81]. Components comprising the highest Eigenvalues are assumed
principal components, given that Eigenvalues represent the variance of the data in that direction [81].
A principle component is a linear function of the variables in an original data set that successively
maximize variance and that are uncorrelated with each other [82]. Multiple principal components
are typically calculated and ranked based on their Eigenvalues as most data cannot be well-described
by a single principal component [81]. For the current work, the results showed three principal
components with Eigenvalues exceeding 1 (an accepted threshold of importance [22,83]), including
Principal Component 1 (Eigenvalue = 1.83), Principal Component 2 (Eigenvalue = 1.22) and Principal
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Component 3 (Eigenvalue = 1.17). These three principle components explained approximately 85%
of the cumulative variance of the data set. Conversely, Principal Components 4 and 5 accounted
for approximately 16% and 0% of the variance of the data set. For the current work, the principle
component biplots showed distinct spatial distributions for study sites along Principal Components
1 and 2 (Figure 8). The idealized biplot vector space defined by Principal Components 1 and 2 is
characterized by the grouping of the sites. Given these results, it can be concluded that land use
practices are the primary factors influencing the grouping of the data in the biplot, given the similarity
of the sites in terms of geology, topography and climate, and their close proximity to each other [52].
The strongest correlation illustrated by the biplot is between SPM concentration and agricultural land
use practices (Figure 8). However, E. coli concentration is also closely related to both, attributable
to agricultural land use practices (i.e., the rearing of livestock, manure application, soil tillage and
increased exposed soil surfaces), as discussed in the preceding sections and reported by previous
investigations [19–23]. Ultimately, the PCA results were analogous to the Spearman correlation
coefficient results, indicating that SPM could potentially serve as proxy for E. coli in agricultural areas,
especially during periods with lower levels of fecal contamination between storm events.
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Figure 8. Results of principal component analysis, including biplots, for extracted principal components
of annual E. coli concentration (CFU per 100 mL) and annual SPM concentration (mg/L) at 22 monitoring
sites (indicated by the different colors) during the study period (2 January 2018–1 January 2019) in West
Run Watershed, West Virginia, USA.

The Spearman correlation test results based on the quarterly analysis of data indicated predictable
temporal variation in the correlation between E. coli and SPM concentrations, with only Site #9 showing
significant correlations (p < 0.05) throughout all four quarters (p < 0.01 Quarters 1 to 3; p = 0.02
Quarter 4) (Table 5). Quarter 1 displayed the most significant correlations (10; Site #2, #7, #8, #9,
#10, #11, #12, #13, #15, and #18), whereas Quarter 4 had the fewest significant correlations (two; Site
#9 and #16) (Table 5). The temporal variation can be explained by the different impacts seasonal
variation have on E. coli and SPM concentrations. For example, as discussed above, SPM concentrations
will be influenced by changes in vegetation, with elevated concentrations typically occurring when
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vegetation cover decreases and decreasing as vegetation cover increases [76,77]. Therefore, elevated
SPM concentrations can be expected during and immediately after the cold winter months, with
decreased concentrations during the warmer summer months. Conversely, previous work linked
elevated E. coli concentrations with warmer water (and air) temperatures [84–86]. Consequently E. coli
concentrations can be expected to be elevated during the warmer summer months and decrease during
the colder winter months. Ultimately, there is a temporal (seasonal) difference between periods of
elevated SPM and E. coli concentrations. For example, Quarter 3 included the highest average (424 CFU
per 100 mL) E. coli concentrations across all 22 sampling locations, while Quarter 1 comprised the
lowest average (187 CFU per 100 mL) E. coli concentration. Thus, between Quarter 1 and 3 there was
more than a 100% increase in average E. coli concentrations across the 22 sampling sites. Conversely,
Quarter 1 had the highest average (55.7 mg/L) SPM across all 22 sampling locations, while Quarter 4
comprised the lowest average (18.2 mg/L) SPM. Consequently, there was more than a 65% decrease in
average SPM, across the 22 sampling locations, between Quarter 1 and Quarter 4. These temporal
differences, driven by changes in precipitation [78], antecedent conditions [87], seasonal land cover [76]
or land use practices [29] may account for the variable E. coli and SPM concentrations correlations
identified in Table 5.

Table 5. Results of Spearman’s correlation test, including quarterly E. coli concentration (CFU per
100 mL) and quarterly SPM concentration (mg/L) at each sampling location (n = 22) during the study
period (2 January 2018–1 January 2019) in West Run Watershed, WV, USA. Note: Quarter 1 represents 2
January 2018–27 March 2018; Quarter 2 represents 3 April 2018–26 June 2018; Quarter 3 represents 3
July 2018–25 September 2018; Quarter 4 represents 2 October 2018–1 January 2019. Bold values indicate
significant correlations (p < 0.05).

Site Number
#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11

Quarter 1 SCC 0.40 0.60 0.26 0.48 0.52 0.35 0.76 0.70 0.73 0.63 0.69
p-value 0.18 0.03 0.39 0.09 0.09 0.23 <0.01 0.01 <0.01 0.02 0.01

Quarter 2 SCC 0.19 0.18 0.03 0.26 −0.04 0.07 0.78 0.88 0.78 0.51 0.93
p-value 0.53 0.56 0.91 0.38 0.89 0.81 <0.01 <0.01 <0.01 0.08 <0.01

Quarter 3 SCC −0.05 −0.40 0.32 0.50 0.76 0.69 −0.27 0.58 0.79 0.25 0.54
p-value 0.88 0.17 0.29 0.08 <0.01 0.01 0.37 0.04 <0.01 0.42 0.06

Quarter 4 SCC −0.30 −0.32 −0.39 −0.04 −0.02 −0.01 −0.08 −0.09 0.62 −0.22 0.51
p-value 0.31 0.27 0.17 0.89 0.95 0.98 0.78 0.75 0.02 0.45 0.06

Site Number
#12 #13 #14 #15 #16 #17 #18 #19 #20 #21 #22

Quarter 1 SCC 0.63 0.62 −0.16 0.60 0.36 0.10 0.68 0.16 0.35 0.12 0.40
p-value 0.02 0.02 0.59 0.03 0.22 0.74 0.01 0.61 0.24 0.69 0.19

Quarter 2 SCC 0.17 0.44 0.58 0.71 0.91 0.42 0.54 0.24 0.75 0.39 0.37
p-value 0.57 0.13 0.04 0.01 <0.01 0.15 0.06 0.43 <0.01 0.19 0.22

Quarter 3 SCC 0.60 0.45 0.22 0.29 0.72 0.68 0.51 0.34 0.58 0.38 0.40
p-value 0.03 0.13 0.47 0.33 0.01 0.01 0.07 0.26 0.04 0.19 0.18

Quarter 4 SCC 0.09 −0.16 −0.39 −0.28 0.56 0.07 −0.31 −0.18 0.38 0.19 0.28
p-value 0.75 0.58 0.17 0.33 0.04 0.82 0.27 0.53 0.19 0.53 0.34

The varying correlations displayed in Table 5 constitute important results regarding the use of
SPM as a proxy for E. coli. Temporal changes in correlation significance indicate that SPM cannot be
a consistently accurate proxy for fecal contamination throughout all the quarters (seasons) of a year.
Even agricultural sub-catchments displayed insignificant correlations during certain quarters (Quarter
3 and 4 for Site #11 and Quarter 1 for Site #16), despite being significantly correlated for the annual
time period. These results differ from previous investigations that showed strong correlations between
E. coli and SPM concentrations [15,16], particularly small SPM particles [22]. However, these studies
did not comprise high frequency or sufficiently long sampling regimes that would allow for quarterly
(seasonal) analysis. Therefore, the current work is among the first to include seasonal analysis of the
relationship (correlation) between E. coli and SPM concentrations in receiving waters.
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Similarly to in the annual results, Quarter 1 (winter) had three principal components with
Eigenvalues exceeding 1 (Eigenvalues = 1.86, 1.35 and 1.20, respectively), which accounted for 88%
of the cumulative variance in the data. Quarters 2 and 3 also included three principal components
with Eigenvalues exceeding 1 (1.85, 1.29 and 1.15; and 1.88, 1.22 and 1.16, respectively). The principal
components explained 86% of the variance in Quarter 2 and 85% of that in Quarter 3. Two principal
components, accounting for 63% of the data variance, were identified for Quarter 4, comprising
Eigenvalues of 1.95 and 1.21. The quarterly PCA results illustrated the correlation between agricultural
land use and E. coli and SPM during Quarters 2 (spring) and 3 (summer) (Figure 9). The agricultural
land use impacts on E. coli and SPM concentrations during these quarters were subjected to the largest
precipitation events during the study period (Figure 3). Precipitation has been reported to exacerbate
the impact of land use practices on receiving waters [19,74,88]; therefore, land use impacts (particularly
agriculture) were elevated during Quarters 2 (spring) and 3 (summer). The elevated impacts of land
use practices during precipitation events are attributable to the increased transport of both E. coli and
SPM during runoff events and subsequent increased E. coli and SPM concentrations in the receiving
waters [88]. Conversely, during Quarters 1 (winter) and 4 (fall), none of the land use classes were
closely correlated with either SPM or E. coli concentrations (Figure 9). Small and fewer precipitation
events during Quarters 1 (winter) and 4 (fall) (Figure 3) may account for these results as fewer runoff

events would lead to decreased concentrations of E. coli and SPM in the associated receiving waters [88].
The reduced precipitation during Quarters 1 and 4 would also have led to drier antecedent soil water
conditions [89], leading to greater infiltration during subsequent precipitation events [90], further
reducing the transport of both E. coli and SPM to the receiving waters. These results highlight the varied
seasonality of land use impacts on E. coli and SPM concentrations and thus advance the science-based
understanding of temporal fluctuations in E. coli concentration regimes.
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Figure 9. Results of principal component analysis, including biplots, for extracted principal components
of quarterly E. coli concentration (CFU per 100 mL) and quarterly SPM concentration (mg/L) at each
sampling location (n = 22) during the study period (2 January 2018–1 January 2019) in West Run
Watershed, WV, USA. Note: (A) represents Quarter 1 (winter: 2 January 2018–27 March 2018);
(B) represents Quarter 2 (spring: 3 April 2018–26 June 2018); (C) represents Quarter 3 (summer: 3 July
2018–25 September 2018); (D) represents Quarter 4 (fall: 2 October 2018–1 January 2019).
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3.5. Study Implications and Future Work

The scale-nested experimental watershed study design and the high spatial and temporal sampling
period implemented during the current work allowed for the collection of a unique data set. PCA
biplots illustrated the close correlation between agricultural land use practices and both E. coli and
SPM concentrations, relative to mixed development and forested land use practices. Additionally,
spatial and temporal variability in the significant correlations between E. coli and SPM concentrations
indicated that SPM would not be a suitable proxy for fecal contamination. The recorded lack of
consistent E. coli and SPM relationships constitutes an important result for the development of accurate
predictive fecal pollution models. The investigation emphasized the efficacy of the nested-scale
experimental watershed study design to elucidate land use influences on fecal pollution in receiving
waters. Future work should expand on the results from the current investigation by attempting to
determine the precise tipping points associated with different land use practices’ influence on E. coli
and SPM concentrations. Implementing a similar study design, as in the current work, in mixed land
use watersheds not impacted by legacy land use impacts (e.g., AMD) could provide useful information
regarding the precise tipping points for various land use practices. Furthermore, due to the results of
the current investigation indicating that E. coli concentrations are not solely influenced by land use
practices and given the previously reported influence of physicochemical parameters (e.g., pH and
water temperature) on E. coli [84–86], future work should focus on the identification of additional
variables (e.g., physicochemical and geochemical) influencing E. coli concentrations in receiving waters.
The incorporation of a multi-year study period would also allow future work to expand on the results
of this study to account for annual variations in climate.

4. Conclusions

A 22-site, nested-scale, experimental watershed study design was implemented to investigate
E. coli concentrations in a mixed land use watershed in the Appalachian region of the eastern United
States. Specific focus was given to the relationship between E. coli concentrations, SPM concentrations
and land use practices, including an evaluation of the potential use of SPM concentrations as a proxy for
E. coli concentrations. Agricultural land use sub-catchments comprised elevated E. coli concentrations
(avg. 560 CFU per 100 mL) compared to adjacent mixed development (avg. 330 CFU per 100 mL)
and forested (avg. 206 CFU per 100 mL) sub-catchments. Annual E. coli and SPM concentration data
displayed a statically significant relationship (p < 0.01) in agricultural areas. However, quarterly SCC
analysis highlighted fluctuations between significance (p < 0.05) and insignificance (p > 0.05) in the
correlations between E. coli and SPM concentrations across all land use classes. Therefore, SPM lacked
the consistent significant correlations with E. coli concentrations required to be a suitable proxy for fecal
contamination. The annual PCA results illustrated the influence of agricultural land use practices on
both E. coli and SPM concentrations, serving as validation for previous investigations, which typically
included less temporally and spatially robust sampling regimes. The quarterly PCA results highlighted
the seasonal variability of land use impacts on both E. coli and SPM concentrations, with Quarters 2
and 3’s biplots displaying greater correlations between agricultural land use practices, E. coli and SPM
concentrations than Quarters 1 and 2. Combined, Quarters 2 and 3 received 67% more precipitation
(850 mm) than Quarters 1 and 2 (510 mm), accounting for the temporal variation in land use impacts
depicted by the quarterly biplots. Ultimately, the current investigation advances the understanding
of the influence of land use practices on E. coli and SPM concentrations, thereby contributing to the
current understanding of fecal contamination regimes in contemporary mixed land use watersheds.
The results better inform model builders, policy makers and land use managers regarding the factors
influencing freshwater fecal contamination, thereby aiding in effective decision making and effective
water quality management.
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