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Abstract: In curved channels, the flow characteristics, sediment transport mechanisms, and bed
evolution are more complex than in straight channels, owing to the interaction between the centrifugal
force and the pressure gradient, which results in the formation of secondary currents. Therefore, using
an appropriate numerical model that considers this fully three-dimensional effect, and subsequently,
the model calibration are substantial tasks for achieving reliable simulation results. The calibration
of numerical models as a subjective approach can become challenging and highly time-consuming,
especially for inexperienced modelers, due to dealing with a large number of input parameters with
respect to hydraulics and sediment transport. Using optimization methods can notably facilitate and
expedite the calibration procedure by reducing the user intervention, which results in a more objective
selection of parameters. This study focuses on the application of four different optimization algorithms
for calibration of a 3D morphodynamic numerical model of a curved channel. The performance of
a local gradient-based method is compared with three global optimization algorithms in terms of
accuracy and computational time (model runs). The outputs of the optimization methods demonstrate
similar sets of calibrated parameters and almost the same degree of accuracy according to the achieved
minimum of the objective function. Accordingly, the most efficient method concerning the number
of model runs (i.e., local optimization method) is selected for further investigation by setting up
additional numerical models using different sediment transport formulae and various discharge rates.
The comparisons of bed topography changes in several longitudinal and cross-sections between the
measured data and the results of the calibrated numerical models are presented. The outcomes show
an acceptable degree of accuracy for the automatically calibrated models.

Keywords: 3D hydro-morphodynamic model; automatic calibration; optimization algorithms; curved
channel; SSIIM; PEST

1. Introduction

Numerical models have become useful behavioral representatives of complex environmental
systems. In water-related domains, the growth of knowledge about the underlying processes and
recent developments regarding numerical solvers and computational techniques have increased the
performance and speed of simulations. However, a significant challenge remains for modelers
to minimize the misfit between simulation outputs and corresponding physical observations,
which is necessary to obtain a reliable predictive model [1,2]. Hydro-morphodynamic models
are characterized by a large number of input parameters dealing with a considerable amount of
uncertainty. This uncertainty arises from the sophisticated behavior of environmental fluid systems,
the simplified structure of models, implemented empirical equations, unknown boundary conditions,
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and imprecise input data. Some of the physical input parameters, which are subject to calibration, can
only be quantified at specific locations over a limited period, and for some it is not physically feasible
to measure them.

Modeling practice can be defined as a four-step task, involving model setup, calibration, validation,
and application [3]. Consequently, the model accuracy depends not only on the model structure and the
quality of input data but also on the model calibration and validation. Calibration of numerical models
is the foremost step for quantifying and accrediting computational simulations, involving two major
stages: parameter specification (i.e., selection of sensitive parameters that are subject to adjustment) and
parameter estimation (i.e., determination of optimal or quasi-optimal values of specified parameters).
Calibration is an inverse, multistep problem, with the aim of uncertainty diminution by updating the
model through subsequent comparisons between observations and computational results, in order to
achieve a good agreement with a reasonable tolerance [4]. In other words, calibration is the process
of model adaption by adjusting independent variables to gain accordance between computed and
measured distributions of dependent variables, so that the model output deviates marginally from the
real data specified in the performance criteria [5,6]. Nevertheless, even calibrated models potentially
involve a certain amount of uncertainty and seldom address the underlying deficiencies because
of both model errors (modeling assumptions, simplifications, and approximations) and data errors
(the lack of error-free measurements) [7,8]. Hence, a calibrated model needs to be validated before
applying it to practical problems to ensure reliable predictions [9–11]. On the other hand, according
to Refsgaard and Henriksen [12], a validated model operates in a precise manner with regards to
site-specific applications and predefined accuracy criteria, and thus the validity of a model is always
limited in terms of time, space, boundary conditions, and the type of application.

Model calibration can be accomplished manually, automatically, or by using a multistep method
combining the two approaches [13–15]. The most widely used trial-and-error method is not only
highly dependent on users’ knowledge of the model structure and their level of expertise, but also
on their understanding of the environmental system characteristics and the properties of measured
data [16]. The trial-and-error method follows the simple approach of manual adjustment of uncertain
or unknown parameters and the comparison of predictions with measured values, involving human
judgment to attain the best fit for model parameters [17]. As the model structure becomes complicated,
the manual calibration procedure becomes laborious, time- and cost-consuming, and for models with a
large number of uncertain or unknown variables (e.g., morphological models), sometimes impractical.
The demanding practice related to the manual method has been persuading modelers to improve
the complex inverse calibration technique based on optimization algorithms (e.g., deterministic,
metaheuristic, stochastic, or uncertainty-based). This can be done by coupling the model with an
optimization engine, with the aim of speeding up the calibration process and establishing an objective
scheme to address the “user-subjectivity” issue [18–20]. As an example of the user influence on model
calibration results, Botterweg [21] compared the outcomes of a hydrological model that was calibrated
independently by two users with an identical set of measured data and reported how different sets of
calibrated parameter values could yield reasonable results.

Principally, automated calibration consists of three elements: an objective function to assess
the differences between model outputs and observations, an optimization algorithm for sequential
adjustment of preselected model parameters with regard to the reduction of the objective function’s
value, and a convergence criterion [22–24]. Optimization algorithms can be categorized into two
classes: global methods based on sampling the proposed values of parameters over the entire
space, and local methods based on point estimation by finding the optimum point where no further
progress can be achieved in the adjacent space of the parameter. Regarding the local methods,
which are computationally efficient and need far fewer model runs, the initial values should be
chosen carefully, as model calibration proceeds from this point towards the gradient descent of the
objective function. If nonlinearity affects the model, there is no assurance that the inverse problem
is unimodal, which means local methods can be simply trapped in local minima points instead
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of finding the global minimum. Therefore, since the calibration process is strongly dependent on
the initial starting point, it is required that the user continuously assesses results, adjusts starting
values, and restarts the model [25–27]. “Equifinality”, as described by Beven [28,29], should also
be considered regarding the automated calibration, which may propose the same model prediction
by using different parameter sets (also see Straten and Keesman [30] for the term “equally possible”
parameter sets). In other words, uncertainty-based calibration methods such as Generalized Likelihood
Uncertainty Estimation (GLUE) [31–33] or the Metropolis–Hastings algorithm of Markov Chain Monte
Carlo (MCMC) method [34], which sample different parameter combinations to produce a calibrated
probability distribution, detect several feasible parameter sets, unlike the other methods, which focus
on pinpointing a single optimal solution [35].

The performance of autocalibration techniques has been extensively studied for environmental
models in the fields of hydrology and groundwater over several decades. However, in the field of
fluvial hydraulics, there are relatively few studies available in the literature regarding the application
of automated inverse methods for calibrating hydro-morphodynamic models [36–42]. In the present
study, a 3D hydro-morphodynamic model of a 180◦ curved channel is developed according to a
physical model and calibrated against the measured bed elevations of 54 points along different
longitudinal and cross-sections. The model calibration is carried out with a local optimization method
(Gauss–Marquardt–Levenberg method), using the Parameter ESTimation (PEST) package [43] and
three population-based global optimization algorithms: Particle Swarm Optimization (PSO) [44],
Shuffled Complex Evolution (SCE-UA) [45], and Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) [46]. The used methodology is further explained in Section 2. This work aims to evaluate the
efficiency of the automatic calibration procedure based on the local optimization method as compared
to the global methods, with the main objective of predicting a single set of optimal parameter values
for the model, which is presented in Section 3.1. Further, in order to test the performance of the
most efficient method, different experimental runs with various discharge rates are used to set up
and calibrate additional models, presented in Section 3.2. Finally, the results are summarized and
conclusions are presented in Section 4.

2. Methodology

2.1. Experimental Data

Yen and Lee [47] conducted a series of experiments to investigate the bed topography evolution and
transverse sediment sorting in a 180◦ curved channel under unsteady flow conditions. The rectangular
U-shaped channel measured 1 m in width and had a 4 m central radius. Two straight up- and
downstream reaches measuring 11.5 m in length were attached to the bend to ensure uniform and
fully turbulent flow. A 20 cm flat layer of nonuniform sand with a median diameter of d50 = 1 mm
and a geometric standard deviation of ơg = 2.5 was placed on the bed, having a final slope of 2%�.
Further details regarding the sediment characteristics can be seen in Table 1, which also includes the
fall velocity of particles calculated according to the empirical equation of Ferguson and Church [48],
by assuming ρs = 2650 kg/m3 as the density of sediments. The base flow rate for all experiments was
set to Q0 = 0.02 m3/s, according to the incipient motion of sediment particles, with a flow depth of
h0 = 5.44 cm. During the experiments, the discharge was linearly increased up to a maximum value
and then progressively lowered to the base flow discharge (triangular-shaped hydrograph). In total,
five different experiments were conducted with different durations and peak discharge values.

Table 1. Sediment characteristics of the experiments that were applied in the numerical model.

Sediment Size Classes

Size (mm) 0.25 0.42 0.84 1.19 2.00 3.36 4.76 8.52
Proportion (%) 6.55 10.56 25.36 15.06 20.11 13.02 4.88 4.46

Cumulative proportion (%) 6.55 17.11 42.47 57.53 77.64 90.66 95.54 100
Fall velocity (m/s) 0.03 0.06 0.11 0.14 0.20 0.26 0.32 0.43
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2.2. Numerical Model

Due to the three-dimensional nature of the flow field in bends caused by the interaction of
centrifugal force and the lateral pressure gradient, which results in a helical flow structure, the use
of a 3D numerical model is imperative. In the present study, the fully three-dimensional numerical
model SSIIM 2 (Sediment Simulation In Intakes with Multiblock option) [49] is employed to simulate
hydraulics and morphological bed changes. This Computational Fluid Dynamics (CFD) code has been
successfully used to model several cases with different scales in the fields of hydraulic and sedimentation
engineering by many researchers [50–61]. The numerical model SSIIM 2 solves the Reynolds-averaged
Navier–Stokes (RANS) equations together with the continuity equation (Equations (1) and (2)) on an
adaptive three-dimensional non-orthogonal and unstructured grid, by using a finite volume approach
for the spatial discretization and an implicit scheme for the temporal discretization to compute the
water motion for turbulent flow.

∂Ui
∂t

+ U j
∂Ui
∂x j

=
1
ρ
∂
∂x j

(
−Pδi j − ρuiu j

)
(1)

∂Ui
∂xi

= 0 i = 1, 2, 3 (2)

where U is the averaged velocity over the time t; x is the space direction; ρ is the water density; P is the
dynamic pressure; δi j is the Kronecker delta, which can be either 1 if i = j or 0 if i , j [62]; and −ρuiu j
is the turbulent Reynolds stress term. Regarding the RANS equations, the convective term is modeled
by using the second-order upwind (SOU) scheme [49]. The semi-implicit method for pressure-linked
equations (SIMPLE) is used to evaluate the pressure term [63] by computing pressure-correction
from the water continuity defect in a cell. The Reynolds stress term is computed by the concept of
eddy viscosity with the standard k–ε turbulence model [64], using the Boussinesq approximation.
The free water surface is calculated according to the computed pressure gradient using the Bernoulli
equation [65]. A Dirichlet boundary condition is applied for the inflow and a zero gradient boundary
condition is defined for variables at the outflow boundary. Wall laws for rough boundaries are used
for the bed and the side walls [66].

The grid size is chosen according to a similar study by Fischer-Antze et al. [67], containing
254 × 20 × 5 cells in streamwise, lateral, and vertical directions, respectively. The number of cells in
the adaptive grid is adjusted during the computations according to the implemented wetting–drying
algorithm [68]. Three different bedload transport formulae by Engelund-Hansen [69], van Rijn [70],
and Wu [71] are used for the sediment transport computation. Using Wu’s correction factor, the hiding
and exposure effect of nonuniform sediments is applied for the formulae by Engelund-Hansen and van
Rijn, which by default do not consider the interaction between different size fractions in calculating the
fractional transport rate of nonuniform sediments (i.e., they take the transport of each size individually
into account).

2.3. Calibration Procedure

2.3.1. Local Optimization Method

The model-independent Parameter ESTimation tool (PEST) has been successfully used for
calibration, sensitivity, and uncertainty analysis of environmental models in the fields of hydrology [72],
groundwater [73], ecology and water quality [74–76], and flood modeling [77], providing promising
results. PEST uses the gradient-based Gauss–Marquardt–Levenberg (GML) [78,79] algorithm for
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nonlinear parameter estimation through iterative progress refinement and by employing the weighted
sum of the squared residuals as the objective function (Equation (3)).

SSR =
n∑

i=1

wir2
i (3)

where r is the residual, defined as the difference between model-generated bed levels and corresponding
measured topographic elevation; and w is the weighting factor, which is considered to be 1 for all
observations in this study.

The GML algorithm combines the gradient descent method (when the function is far from the
minimum) with the Gauss–Newton algorithm (when the function is around the minimum), resulting in
a fast and efficient convergence to the minimum of the objective function. PEST invokes the model by
using the initial parameter values prespecified by the user. Through Taylor’s expansion of the actual
parameter set, PEST linearizes the relationship between input parameters and model outputs. At the
first iteration, according to the number of adjustable parameters, PEST runs the model several times and
fills the Jacobian matrix containing the partial derivatives of each model output (i.e., filling the Jacobian
matrix requires as many runs as the number of adjustable parameters). Subsequently, the upgrade
vector is calculated (Equation (4)) with the aim of defining a damping factor, and parameters are
changed within the user-defined bounds. This procedure is repeated for each iteration by using the
updated values from the previous one until the minimum of the objective function is found.

u =
(
JTQ J + λI

)−1
JTQr (4)

where J is the (n × m) Jacobian matrix, which has n columns according to the number of adjustable
parameters and m rows following the number of model outputs; the superscript T stands for the
transpose operator; Q is an (m × m) diagonal weight matrix; λ is a damping parameter (i.e., Marquardt
lambda), which is adjusted during each iteration; I is an (n × n) identity matrix; and r is the vector of
residuals for the current parameter set.

A reliable estimation of calibrated parameters in PEST highly depends on the predefined starting
values. The reason is that in the case of getting trapped in a local minimum point on the objective
function surface, the GML algorithm may not be able to leave this region. Therefore, in this study, the
model calibration is done with four different initial parameter values for PEST to ensure its stability in
finding the global minimum.

2.3.2. Global Optimization Methods

• The Shuffled Complex Evolution-University of Arizona (SCE-UA)
The SCE-UA method was initially developed for calibration of conceptual rainfall-runoff

models [45], which uses a global optimization algorithm. The algorithm is based on the competitive
evolution [80], the local direct search of downhill simplex method [81], a controlled random search [82],
and the concept of complex shuffling. The optimization starts by sampling a population of randomly
distributed points over the feasible parameter space and partitioning the points into several groups
(complexes). Each complex contains 2n + 1 points (n is the number of parameters to be optimized)
and evolves independently to explore the domain in different directions, using the downhill simplex
algorithm. Periodically, the population is shuffled and candidate solutions are reassigned to new
complexes to share the information obtained from previous complexes during their evolution phase.
The evolution and shuffling are progressively repeated until the convergence criterion is reached
(i.e., the entire population moves gradually to converge towards the global minimum point). For more
details about the algorithm see [83,84].

• Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
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CMA-ES is a derivative-free stochastic method for real-parameter optimization of nonlinear
and nonconvex functions, using the general operators of evolution strategies, i.e., recombination,
mutation, and selection. Each iteration (generation) is initiated by sampling a new population of
individuals or candidate solutions from a multivariate normal search distribution. This is followed by
the evaluation of individuals according to their performance measures and by updating the parameters
of the multivariate normal distribution to guide the search towards the area with lower objective
function values. The sequence of iterations is continued until a user-defined termination criterion
is met. CMA-ES adapts the covariance matrix representing the pairwise dependencies between the
variables in the distribution. The algorithm follows two principles for the parameter adaptation:
(a) the maximum likelihood principle for updating the mean of the normal distribution in a way that
the likelihood of previously successful candidate solutions is maximized; (b) using two evolution
paths, one for the covariance matrix adaptation and the other one for adjusting the mutation strength
(or the step size, which is defined as the standard deviation of the normal distribution). For a detailed
description of the algorithm see [85].

• Particle Swarm Optimization (PSO)
The PSO algorithm, inspired by the social behavior of swarming animals (e.g., bird flocks or fish

schools), is a metaheuristic stochastic global optimization approach. In this method, the search space
is initialized with randomly positioned particles as potential solutions forming a swarm. Particles
are composed of two vectors (position and velocity vectors) and move in random directions, keeping
track of the best position (solution) found by themselves (having intelligence) and the one achieved
by the whole swarm (with social interaction). The fitness of particles is measured by an objective
function. In each generation, the velocity vector (reflecting the travel direction of particles across the
search trajectory) is updated according to the previous best position of each particle (personal best
or cognitive component) and that of the entire swarm population (global best or social component).
Finally, the new position is computed with regard to the updated velocity. The process is iterated until
a termination condition is satisfied [44,86].

2.3.3. Investigated Parameters

Among several uncertain input parameters in SSIIM 2 numerical model, the three most sensitive
parameters are selected for calibration through a manual sensitivity analysis as follows:

1. Roughness height at the bed (ks): For fixed beds, this parameter is typically assumed to be
proportional to the representative grain size dn (the diameter where n% of sediment grains are
finer) (i.e., Nikoradse’s equivalent grain roughness). For movable beds, however, the roughness
caused by bedforms has to be added to the grain roughness, which may increase it with a higher
factor than the grain roughness itself. A collection of different equations regarding the roughness
height can be found in the literature (e.g., [87]). In this study, despite the dynamic nature of the
roughness coefficient due to the formation of bedforms, the roughness height is considered to be
uniform along the whole domain, because of the focus on the automatic calibration procedure.
The range of this parameter is selected to be between d50 and 10d90.

2. Active layer thickness (ALT): This parameter is described as a function of the representative grain
diameter and the bedform height as a dynamic value that depends on the sediment properties
and the flow conditions. ALT determines the maximum depth of erosion during one time-step in
the numerical model. For this study, a constant value of ALT is also chosen, with a range between
d50 and 5dmax [88,89].

3. The volume fraction of compacted sediments (VFS): This parameter describes the proportion of
deposited sediments in the bed compared to the water content, which depends on the bulk density
as a function of grain size distribution and packing of sediment depositions. This parameter’s
range is adjusted between 40% and 60% in the calibration process.
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2.4. Work Structure

Among the five experiments conducted by Yen and Lee [47], three different discharge rates—Run#1
(the highest discharge), Run#3 (the middle discharge), and Run#5 (the lowest discharge)—are used
in this study for model calibration in order to cover different discharge characteristics. First, Run#5
is selected to test all of the optimization algorithms. Afterwards, the most efficient method is also
applied for Run#1 and Run#3 to test the performance of the selected method. It should be mentioned
that Run#1 and Run#3 show the formation of bedforms at the outer bend in the experimental setup.
However, the employed numerical model in this study cannot precisely simulate the bedforms. Table 2
presents the features of the three applied hydrographs.

Table 2. Characteristics of the three hydrographs used in this study.

Run# Peak Flow Discharge (m3/s) Peak Flow Depth (cm) Duration (min)

1 0.0750 12.9 180
3 0.0613 11.3 240
5 0.0436 9.10 420

3. Results and Discussion

3.1. Testing the Performance of Different Optimization Methods

In order to evaluate the performance of the four selected calibration methods, in the first step,
the numerical model of Run#5 is calibrated as a test case, using Wu’s bedload transport formula, which
considers the fractional transport of nonuniform sediments. The initial values of the investigated
parameters are defined for all methods to be: ks = d90, ALT = dmax, and VFS = 50%. However, for
ensuring the survival of the gradient-based method by using PEST from being trapped in a local
minimum point, three additional starting values are also proposed as:

• PEST#2 (ks = d90, ALT = 2dmax, and VFS = 55%)
• PEST#3 (ks = 2d90, ALT = 4dmax, and VFS = 45%)
• PEST#4 (ks = 5d90, ALT = 2dmax, and VFS = 50%)

Table 3 summarizes the values for the calibrated parameters obtained from the four PEST runs
(four different starting conditions) and those obtained by the three global optimization methods.
In addition, the minimum of the achieved objective function (sum of the squared residuals, SSR) and
the number of models runs are presented in the table.

Table 3. Calibration results for the numerical model Run#5 by local and global optimization methods,
using Wu’s sediment transport formula.

Calibration Results
Calibration Method

PEST#1 PEST#2 PEST#3 PEST#4 SCE-UA CMA-ES PSO

ks (cm) 0.904 0.894 0.899 0.903 0.898 0.892 0.904
ALT (cm) 1.639 1.644 1.629 1.638 1.635 1.631 1.647
VFS (%) 48.1 47.9 48.4 48 48.1 48.1 47.9

Minimum of SSR (cm) 0.28249 0.28251 0.28240 0.28249 0.28247 0.28247 0.28241
Number of model runs 26 30 28 27 176 440 448

Note: ks, roughness height at the bed; ALT, active layer thickness; VFS, the volume fraction of compacted sediments;
SSR, sum of the squared residuals.

According to the results presented in Table 3, PEST returns very similar outputs by using different
initial values. This reveals that the software explored the whole parameter space and did not stick
to a local minimum point. By comparing the results of PEST with the three global optimization
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algorithms, a good agreement can be found between them regarding the calibrated parameter values,
which proves the ability of PEST to calibrate the model globally by applying a local optimization
algorithm. Nevertheless, by taking the number of model runs into account, considerably fewer runs
are used by PEST, representing an advantage for the calibration of morphological models, for which
long simulation time occurs.

3.2. Application of the Selected Calibration Method for Additional Numerical Setups

Based on its efficient performance in model calibration, PEST is selected to calibrate additional
numerical models (i.e., Run#1, Run#3, and Run#5, with the sediment transport formulae of Wu,
van Rijn, and Engelund-Hansen; nine model calibrations in total). From Table 4, which presents the
calibration results for nine models, it can be seen that the active layer thickness (ALT), as well as the
roughness height (ks), gain higher values with increase of the flow discharge. It can be argued that the
formation and evolution of bedforms along the channel bottom account for this effect.

Table 4. Calibrated values of the three selected parameters for nine simulations.

Calibration Parameters

Sediment Transport Formula

Wu Van Rijn Engelund-Hansen

Run#1 Run#3 Run#5 Run#1 Run#3 Run#5 Run#1 Run#3 Run#5

ks (cm) 1.52 1.34 0.90 0.63 0.61 0.37 0.48 0.31 0.25
ALT (cm) 2.04 1.85 1.64 2.20 1.94 1.24 1.31 1.12 0.74
VFS (%) 49 51 48 60 60 60 52 51 53

The volume fraction of sediments (VFS) compared to the water volume is quite constant for the
simulations using the formulae of Wu and Engelund-Hansen (around 50%). However, a value of 60%
is found by employing the sediment transport formula of van Rijn, which corresponds to the upper
predefined boundary for the search algorithm, indicating that the best solution for the optimization
problem may lie outside the physically realistic bounds. As already mentioned, the selection of
threshold values, between which the optimization algorithm adjusts parameters, should be taken
according to a reasonable range for each parameter.

Figures 1–3 show longitudinal sections of the initial and final bed levels after Run#1 (the highest
discharge), Run#3 (the mid discharge), and Run#5 (the lowest discharge), respectively. The results are
presented along the sections: (a) 10 cm from the inner convex bank, (b) the central line, and (c) 10 cm
from the outer concave bank.

In Run#1, according to the measurements, the maximum deposition occurs near the inner wall at
the 75◦ cross-section, which is well predicted in terms of position and magnitude by the numerical
model using the formula of Wu. The model using Engelund-Hansen’s formula also predicts the
location of this point at the same cross-section (75◦), with just a minor discrepancy. Nevertheless,
the model of van Rijn shows higher bed levels compared to the measurements. In this case, the position
of the point bar is at the central cross-section (90◦), having a slightly higher magnitude (Figure 1a).
Along the central longitudinal-section (Figure 1b), the predicted patterns of bed elevations by all of the
numerical models have a similar trend compared to the measurements, with a modest overestimation
of the deposition for the last 40◦ range of the bend (140◦–180◦). Near the outer bend, the maximum
scour depth in the experiment can be seen at the 165◦ cross-section, whereas the numerical models
give this point at the 180◦ cross-section. In the second half of the bend (90◦–180◦), measurements
show larger fluctuations caused by the development of bedforms compared to the smoother patterns
obtained from the simulations (Figure 1c).
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Regarding Run#3, near the inner bank, the maximum calculated deposition point is slightly shifted
to the upstream compared to the experiment. The location of this point is at around 60◦–70◦ according
to the numerical models, although measurements show it at about 75◦ (Figure 2a). Additionally, in the
range of 90◦–160◦, higher bed levels can be seen in the numerical models compared to the experiment.
Along the central line (Figure 2b), numerical models marginally underpredict the erosion part up to
the 60◦ cross-section. However, the overall patterns of the bed levels are similar to the experiment.
Although having almost identical patterns near the outer bend (Figure 2c), a contrast can be found
in the range of the last 30◦ of the bend between the simulations and measurements, especially the
underestimation of the maximum erosion depth at the 180◦ cross-section.

In Run#5, similar to Run#3, the position of the maximum bed level near the inner wall (Figure 3a)
is shifted further to the upstream in the numerical models. Here, the results of the model using
Engelund-Hansen’s formula diverge largely from the measured data. Although showing some degree
of underprediction regarding the erosion part up to the 60◦ cross-section, the simulated bed levels
along the central line and near the concave bank are in good agreement with the experimental data
(Figure 3b,c).

In Figure 4a–f, the cross-sectional bed profiles for all three runs are plotted at the locations of the
maximum deposition height (Run#1: 75◦; Run#3: 75◦; Run#5: 90◦) and the maximum scour depth
(Run#1: 165◦; Run#3: 180◦; Run#5: 180◦), according to the experiments. It can be seen that the results
of the numerical models are in good agreement with the experimental data regarding the pattern and
magnitude of the bed levels. However, the models using the formula of Engelund-Hansen are not
successful in accurately predicting the steepness of the scour flank and its depth in the downstream
part while increasing the discharge rate (compare Figure 4b,d,f).
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Figure 4. Cross-sectional bed levels for all runs in the maximum deposition (a,c,e) and erosion (b,d,f)
sections according to the experiments.

According to Table 5, which presents the overall performance of the models based on the coefficient
of determination (R2) and the root mean squared error (RMSE) statistics, all three calibrated models
using Wu’s formula have the best agreement with the observations, with R2 values ranging between
0.89 and 0.95 and RMSE values ranging between 0.67 cm and 1.49 cm. The simulation results with van
Rijn’s formula show similar statistical performance as those obtained with Wu’s formula. Nevertheless,
the results for the models using Engelund-Hansen’s formula have the lowest correlation and the
highest error compared to the measured data.
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Table 5. Goodness of fit for the calibrated models with different sediment transport formulae.

Goodness of Fit

Sediment Transport Formula

Wu Van Rijn Engelund-Hansen

Run#1 Run#3 Run#5 Run#1 Run#3 Run#5 Run#1 Run#3 Run#5

R2 (-) 0.90 0.89 0.95 0.90 0.89 0.94 0.88 0.83 0.90
RMSE (cm) 1.49 1.04 0.67 1.57 1.08 0.69 1.63 1.33 0.81

Note: R2, the coefficient of determination; RMSE, the root mean squared error.

In Figure 5, the bed level changes normalized by the base water depth (∆Z/h0, where h0 = 5.44 cm)
are presented for all runs using Wu’s formula (right side), and are compared with the experimental
data (left side).
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4. Summary and Conclusions

In the present study, four different optimization methods (GML, SCE-UA, CMA-ES, and PSO)
are employed for automatic calibration of a 3D morphodynamic numerical model of a 180◦ bend.
Three input parameters, namely roughness height, active layer thickness, and the sediment volume
compared to water at the bed, are selected for calibration, using their initial values and a reasonable
range based on the literature. The results of the model calibration using all optimization methods (a local
method and three global methods) show very similar calibrated values. All of the methods facilitate
the calibration process by reducing the user intervention. However, considering the convergence
speed, using the GML algorithm of PEST software is considerably more efficient compared to the other
methods, as it needs far fewer model runs. Accordingly, PEST is selected for further investigation
(In total, nine models are calibrated by using three different discharge rates and the sediment transport
formulae of van Rijn, Wu, and Engelund-Hansen). Nonetheless, as PEST uses a gradient-based
algorithm, it potentially involves a high risk of being trapped in a local minimum point over the search
space rather than finding the global minimum. Therefore, the initial parameter values should be taken
with care. It is also worthwhile reassessing the calibration procedure with different starting values
to ensure that PEST finds the global minimum of the objective function. Moreover, characters and
discontinuous values, which are defined in models (such as the selection of the sediment transport
formula), cannot be processed by PEST and have to be adjusted manually.

The final bed levels predicted by the calibrated numerical models are compared with the
measurements at various longitudinal and cross-sections. The overall capabilities of the numerical
models are evaluated using the coefficient of determination and the root mean squared error statistics.
It is concluded that the calibrated models using Wu’s formula can predict the general characteristics
of bed deformations (regions of deposition, erosion, and their magnitudes) better than the other two
formulae by having the highest correlation and the lowest error between simulations and experimental
data. The formula of van Rijn also gives reasonably acceptable results. However, the models which
use the formula of Engelund-Hansen have the highest disagreement with the observations. It can also
be mentioned that the bedforms, developed at the outer bend by increasing the discharge rate, cannot
be accurately simulated by the numerical model. This effect is independent of the selection of the
sediment transport formula and the calibration routine.
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