Coastal Vulnerability Assessment along the North-Eastern Sector of Gozo Island (Malta, Mediterranean Sea)
Abstract
:1. Introduction
2. Conceptual Framework
3. Study Area
3.1. Geological and Geomorphological Setting
3.2. Social, Economic and Tourist Setting
4. Materials and Methods
- Definition of the landward limit of the coastal area to be investigated;
- Classification of physical and social indicators into levels;
- Data overlay and computation of an Overall Vulnerability Index;
- Overall coastal vulnerability zonation and representation on a map.
4.1. Definition of the Landward Limit of the Coastal Area to be Investigated
4.2. Classification of Physical and Social Indicators
4.3. Data Overlay and Computation of an Overall Vulnerability Index
5. Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
- The Health Care function, which consists of all those benefits paid to persons during temporary periods of unemployment due to sickness or injury, and health care provided in the framework of social protection;
- The Disability function, which mainly covers cash benefits paid to persons who are below the retirement age and unable to work because of a mental or physical disability;
- The Old Age function, which covers all interventions against the risks linked to retirement and ageing. These include pensions given to a person once they retire from the labour market, lodging in specialized retirement homes and any services provided to persons unable to independently care for themselves.
- The Family/Children function, which includes cash benefits provided to households with children, various childcare services available to families and other social services provided with the specific intention to assist families with children.
- The Unemployment function, which represents benefits paid to either compensate an individual for the loss of his/her gainful employment or to cover the income of persons who retire from employment prior to the statutory age.
References
- Davidson–Arnott, R. An Introduction to Coastal Processes and Geomorphology; Cambridge University Press: Cambridge, UK, 2010; p. 458. [Google Scholar]
- Masselink, G.; Gehrels, R. Coastal Environments and Global Change; John Wiley & Sons: West Sussex, UK, 2014; p. 448. [Google Scholar]
- Nicholls, R.J.; Wong, P.P.; Burkett, V.R.; Codignotto, J.O.; Hay, J.E.; McLean, R.F.; Ragoonaden, S.; Woodroffe, C.D. Coastal systems and lowlying areas. Climate Change 2007. Impacts, Adaptation and Vulnerability. In Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 315–356. [Google Scholar]
- World Resources Institute. Decision Making in a Changing Climate; United Nations Development Programme World Bank; World Resources Institute: Washington, DC, USA, 2010. [Google Scholar]
- European Environment Agency. The Changing Faces of Europe’s Coastal Areas; EEA Report; European Environment Agency: Copenhagen, Denmark, 2006. [Google Scholar]
- European Environment Agency. Mediterranean Sea Region Briefing—The European Environment—State and Outlook; EEA Report; European Environment Agency: Copenhagen, Denmark, 2015. [Google Scholar]
- Reid, W.V.; Mooney, H.A.; Cropper, A.; Capistrano, D.; Carpenter, S.R.; Chopra, K.; Dasgupta, P.; Dietz, T.; Duraiappah, A.K.; Hassan, R.; et al. Ecosystems and Human Well–Being: Synthesis; Millennium Ecosystem Assessment: Washington, DC, USA, 2005. [Google Scholar]
- Maes, J.; Teller, A.; Erhard, M.; Liquete, C.; Braat, L.; Berry, P.; Egoh, B.; Puydarrieux, P.; Fiorina, C.; Santos, F.; et al. Mapping and Assessment of Ecosystems and Their Services. An Analytical Framework for Ecosystem Assessments under Action 5 of the EU Biodiversity Strategy to 2020; Publications Office of the European Union: Luxembourg, Luxembourg, 2013; pp. 1–58. [Google Scholar]
- Gallina, V.; Torresan, S.; Critto, A.; Sperotto, A.; Glade, T.; Marcomini, A. A review of multi–risk methodologies for natural hazards: Consequences and challenges for a climate change impact assessment. J. Environ. 2016, 168, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Intergovernmental Panel on Climate Change. Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Metz, B., Davidson, O.R., Bosch, P.R., Dave, R., Meyer, L.A., Eds.; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Intergovernmental Panel on Climate Change. Climate Change 2014: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Part A: Global Aspects; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Hoegh–Guldberg, O.; Jacob, D.; Taylor, M.; Bindi, M.; Brown, S.; Camilloni, I.; Diedhiou, A.; Djalante, R.; Ebi, K.L.; Engelbrecht, F.; et al. 2018: Impacts of 1.5 °C Global Warming on Natural and Human Systems. In Global Warming of 1.5 °C; Masson–Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma–Okia, W., Péan, C., Pidcock, R., et al., Eds.; An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre–Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2018. [Google Scholar]
- Intergovernmental Panel on Climate Change. Summary for Policymakers. In Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Shukla, P.R., Skea, J., Buendia, E.C., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D.C., Zhai, P., Slade, R., Connors, S., Diemen, R., et al., Eds.; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- UNISDR (United Nations International Strategy for Disaster Reduction). Sendai Framework for Disaster Risk Reduction 2015–2030; The United Nations Office for Disaster Risk Reduction: Geneva, Switzerland, 2015; Available online: https://www.preventionweb.net/files/43291_sendaiframeworkfordrren.pdf (accessed on 26 April 2020).
- European Commission. An EU Strategy on Adaptation to Climate Change; The European Commission: Brussels, Belgium, 2013; Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2013:0216:FIN:EN:PDF (accessed on 26 April 2020).
- Directive 2007/60/EC of the European Parliament and of the Council of 23 October 2007 on the Assessment and Management of Flood Risks. Available online: https://eur–lex.europa.eu/legal–content/EN/TXT/PDF/?uri=CELEX:32007L0060&from=EN (accessed on 26 April 2020).
- Field, C.B.; Barros, V.; Stocker, T.F.; Qin, D.; Dokken, D.J.; Ebi, K.L.; Mastrandrea, M.D.; Mach, K.J.; Plattner, G.-K.; Allen, S.K.; et al. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation; A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC); Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Baird, A.; O’Keefe, P.; Westgate, K.; Wisner, B. Towards an Explanation of and Reduction of Disaster Proneness; Occasional Paper Number 11; Disaster Research Unit, University of Bradford: Bradford, UK, 1975. [Google Scholar]
- O’Keefe, P.; Westgate, K.; Wisner, B. Taking the naturalness out of natural disasters. Nature 1976, 260, 566–577. [Google Scholar] [CrossRef] [Green Version]
- Lewis, J. The vulnerable state: An alternative view. In Disaster Assistance: Appraisal, Reform and New Approaches; Stephens, L., Green, S.J., Eds.; New York University Press: New York, NY, USA, 1976; pp. 104–129. [Google Scholar]
- Hewitt, K. Interpretations of Calamity; Allen & Unwin: London, UK, 1983. [Google Scholar]
- O’Brien, K.; Eriksen, S.; Schjolen, A.; Nygaard, L. What’s in a Word? Conflicting Interpretations of Vulnerability in Climate Change Research; CICERO Working Paper 2004:04; CICERO, Oslo University: Oslo, Norway, 2004. [Google Scholar]
- Romieu, E.; Welle, T.; Schneiderbauer, S.; Pelling, M.; Vinchon, C. Vulnerability assessment within climate change and natural hazard contexts: Revealing gaps and synergies through coastal applications. Sustain. Sci. 2010, 5, 159–170. [Google Scholar] [CrossRef]
- Jurgilevich, A.; Räsänen, A.; Groundstroem, F.; Juhola, S. A systematic review of dynamics in climate risk and vulnerability assessments. Environ. Res. Lett. 2017, 12, 013002. [Google Scholar] [CrossRef]
- Mysiak, J.; Torresan, S.; Bosello, F.; Mistry, M.; Amadio, M.; Marzi, S.; Furlan, E.; Sperotto, A. Climate risk index for Italy. Philos. Trans. R. Soc. 2018, 376, 20170305. [Google Scholar] [CrossRef] [PubMed]
- UNISDR. UNISDR Terminology on Disaster Risk Reduction. 2009. Available online: https://www.unisdr.org/files/7817_UNISDRTerminologyEnglish.pdf (accessed on 26 April 2020).
- Cavallin, A.; Marchetti, M.; Panizza, M.; Soldati, M. The role of geomorphology in the environmental impact assessment. Geomorphology 1994, 9, 143–153. [Google Scholar] [CrossRef]
- UNDRO. Disaster Prevention and Mitigation—Compendium of Current Knowledge; United Nations: New York, NY, USA, 1984. [Google Scholar]
- Papathoma–Köhle, M.; Gems, B.; Sturm, M.; Fuchs, S. Matrices, curves and indicators: A review of approaches to assess physical vulnerability to debris flows. Earth Sci. Rev. 2017, 171, 272–288. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. Climate Change 1995. Impacts, Adaptations and Mitigation of Climate Change: Scientific-Technical Analyses; Watson, R.T., Zinyowera, M.C., Moss, H.J.D., Eds.; Second Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University: Cambridge, UK, 1995. [Google Scholar]
- Costa, L.; Kropp, J.P. Linking components of vulnerability in theoretic frameworks and case studies. Sustain. Sci. 2013, 8, 1–9. [Google Scholar] [CrossRef]
- Gornitz, V. Vulnerability of the East Coast, USA to future sea level rise. J. Coast. Res. 1990, 9, 201–237. [Google Scholar]
- Gornitz, V.M.; White, T.W.; Cushman, R.M. Vulnerability of the US to future sea level rise, Coastal Zone 91. In Proceedings of the 7th Symposium on Coastal and Ocean Management, Long Beach, CA, USA, 8–12 July 1991; American Society of Civil Engineers: New York, NY, USA, 1991; pp. 1345–1359. [Google Scholar]
- Ojeda–Zújar, J.; Álvarez–Francosi, J.I.; Martín–Cajaraville, D.; Fraile–Jurado, P. El uso de las TIG para el cálculo del índice de Vulnerabilidad costera (CVI) ante una potencial subida del nivel del mar en la costa andaluza (España). GeoFocus 2009, 9, 83–100. [Google Scholar]
- Özyurt, G.; Ergin, A. Application of sea level rise vulnerability assessment model to selected coastal areas of Turkey. J. Coast. Res. 2009, 56, 248–251. [Google Scholar]
- Özyurt, G.; Ergin, A. Improving coastal vulnerability assessments to sea–level rise: A new indicator–based methodology for decision makers. J. Coast. Res. 2010, 26, 265–273. [Google Scholar] [CrossRef]
- McLaughlin, S.; Cooper, J.A.G. A multi-scale coastal vulnerability index: A tool for coastal managers? Environ. Hazard 2010, 9, 233–248. [Google Scholar] [CrossRef]
- Di Paola, G.; Iglesias, J.; Rodríguez, G.; Benassai, G.; Aucelli, P.P.C.; Pappone, G. Estimating coastal vulnerability in a meso-tidal beach by means of quantitative and semi–quantitative methodologies. J. Coast. Res. 2011, 61, 303–308. [Google Scholar] [CrossRef]
- Santos, M.; Del Río, L.; Benavente, J. GIS–based approach to the assessment of coastal vulnerability to storms. Case study in the Bay of Cádiz (Andalusia, Spain). J. Coast. Res. 2013, 65, 826–831. [Google Scholar] [CrossRef]
- Armaroli, C.; Duo, E. Validation of the Coastal storm Risk Assessment Framework along the Emilia–Romagna coast. Coast. Eng. 2018, 134, 159–167. [Google Scholar] [CrossRef] [Green Version]
- Van Dongeren, A.; Ciavola, P.; Martinez, G.; Viavattene, C.; Bogaard, T.; Ferreira, O.; McCall, R. Introduction to RISC–KIT: Resilience–increasing strategies for coasts. Coast. Eng. 2018, 134, 2–9. [Google Scholar] [CrossRef] [Green Version]
- Viavattene, C.; Jiménez, J.A.; Ferreira, O.; Priest, S.; Owen, D.; McCall, R. Selecting coastal hotspots to storm impacts at the regional scale: A Coastal Risk Assessment Framework. Coast. Eng. 2018, 134, 33–47. [Google Scholar] [CrossRef]
- Stelljes, N.; Martinez, G.; McGlade, K. Introduction to the RISC–KIT web based management guide for DRR in European coastal zones. Coast. Eng. 2018, 134, 73–80. [Google Scholar] [CrossRef]
- Prampolini, M.; Gauci, C.; Micallef, A.S.; Selmi, L.; Vandelli, V.; Soldati, M. Geomorphology of the north–eastern coast of Gozo (Malta, Mediterranean Sea). J. Maps 2018, 14, 402–410. [Google Scholar] [CrossRef]
- Micallef, S.; Micallef, A.; Galdies, C. Application of the Coastal Hazard Wheel to assess erosion on the Maltese coast. Ocean Coast. Manag. 2018, 156, 209–222. [Google Scholar] [CrossRef] [Green Version]
- Mantovani, M.; Devoto, S.; Forte, E.; Mocnik, A.; Pasuto, A.; Piacentini, D.; Soldati, M. A multidisciplinary approach for rock spreading and block sliding investigation in the north–western coast of Malta. Landslides 2013, 10, 611–622. [Google Scholar] [CrossRef]
- Mantovani, M.; Devoto, S.; Piacentini, D.; Prampolini, M.; Soldati, M.; Pasuto, A. Advanced SAR interferometric analysis to support geomorphological interpretation of slow–moving coastal landslides (Malta Mediterranean Sea). Remote Sens. 2016, 8, 443. [Google Scholar] [CrossRef] [Green Version]
- Soldati, M.; Devoto, S.; Foglini, F.; Forte, E.; Mantovani, M.; Pasuto, A.; Piacentini, D.; Prampolini, M. An integrated approach for landslide hazard assessment on the NW coast of Malta. In Proceedings of the International Conference: Georisks in the Mediterranean and Their Mitigation, Valletta, Malta, 20–21 July 2015; Galea, P., Borg, R.P., Farrugia, D., Agius, M.R., D’Amico, S., Torpiano, A., Bonello, M., Eds.; Gutemberg Press Ltd.: Tarxien, Malta, 2015; pp. 160–167. [Google Scholar]
- Piacentini, D.; Devoto, S.; Mantovani, M.; Pasuto, A.; Prampolini, M.; Soldati, M. Landslide susceptibility modeling assisted by Persistent Scatterers Interferometry (PSI): An example from the northwestern coast of Malta. Nat. Hazards 2015, 78, 681–697. [Google Scholar] [CrossRef] [Green Version]
- Mantovani, M.; Piacentini, D.; Devoto, S.; Prampolini, M.; Pasuto, A.; Soldati, M. Landslide susceptibility analysis exploiting Persistent Scatterers data in the northern coast of Malta. In Proceedings of the International Conference Analysis and Management of Changing Risks for Natural Hazards, Padua, Italy, 18–19 November 2014; pp. 1–7. [Google Scholar]
- Viavattene, C.; Jimenez, J.A.; Owen, D.; Priest, S.; Parker, D.; Micou, A.P.; Ly, S. Coastal Risk Assessment Framework Guidance Document. Deliverable No: D.2.3—Coastal Risk Assessment Framework Tool, Risc-Kit Project (G.A. No. 603458). 2015. Available online: http://www.risckit.eu/np4/file/23/RISC_KIT_D2.3_CRAF_Guidance.pdf (accessed on 15 October 2018).
- Ferreira, O.; Viavattene, C.; Jiménez, J.; Bole, A.; Plomaritis, T.; Costas, S.; Smets, S. CRAF Phase 1, A framework to identify coastal hotspots to storm impacts. Risk Evaluation & Assessment. In Proceedings of the FLOODrisk 2016—3rd European Conference on Flood Risk Management, Lyon, France, 17–21 October 2016. [Google Scholar] [CrossRef] [Green Version]
- Aucelli, P.P.; Di Paola, G.; Rizzo, A.; Rosskopf, C.M. Present day and future scenarios of coastal erosion and flooding processes along the Italian Adriatic coast: The case of Molise region. Envrion. Earth Sci. 2018, 77, 371. [Google Scholar] [CrossRef]
- Ballesteros, C.; Jiménez, J.A.; Viavattene, C. A multi–component flood risk assessment in the Maresme coast (NW Mediterranean). Natl. Hazards 2018, 90, 265–292. [Google Scholar] [CrossRef] [Green Version]
- Papathoma–Köhle, M.; Cristofari, G.; Wenk, M.; Fuchs, S. The importance of indicator weights for vulnerability indices and implications for decision making in disaster management. Int. J. Disaster Risk. Reduct. 2019, 36, 101103. [Google Scholar] [CrossRef]
- Birkmann, J. Indicators and criteria for measuring vulnerability: Theoretical bases and requirements. In Measuring Vulnerability to Natural Hazards: Towards Disaster Resilient Societies; Birkmann, J., Ed.; UNU Press: Tokyo, Japan, 2006. [Google Scholar]
- Fuchs, S.; Frazier, T.; Siebeneck, L. Vulnerability and Resilience to Natural Hazards; Fuchs, S., Thaler, T., Eds.; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- Nardo, M.; Saisana, M.; Saltelli, A.; Tarantola, S. Tools for Composite Indicators Building; European Commission: Brussels, Belgium, 2005. [Google Scholar]
- Soldati, M.; Maquaire, O.; Zezere, J.L.; Piacentini, D.; Lissak, C. Coastline at risk: Methods for multi–hazard assessment. J. Coast. Res. 2011, 61, 335–339. [Google Scholar] [CrossRef]
- Foglini, F.; Prampolini, M.; Micallef, A.; Angeletti, L.; Vandelli, V.; Deidun, A.; Soldati, M.; Taviani, M. Late Quaternary Coastal Landscape Morphology and Evolution of the Maltese Islands (Mediterranean Sea) Reconstructed from High–Resolution Seafloor Data. In Geology and Archaeology: Submerged Landscapes of the Continental Shelf; Har, J., Bailey, G., Lüth, L., Eds.; Geological Society, Special Publication: London, UK, 2016; Volume 411, pp. 77–95. [Google Scholar]
- Soldati, M.; Barrows, T.T.; Prampolini, M.; Fifield, K.L. Cosmogenic exposure dating constraints for coastal landslide evolution on the Island of Malta (Mediterranean Sea). J. Coast. Conserv. 2018, 22, 831–844. [Google Scholar] [CrossRef] [Green Version]
- Oil Exploration Directorate. Geological Map of the Maltese Islands; Office of the Prime Minister: Valletta, Malta, 1993.
- Magri, O. A geological and geomorphological review of the Maltese Islands with special reference to the coastal zone. Territoris 2006, 6, 7–26. [Google Scholar]
- Micallef, A.; Foglini, F.; Le Bas, T.; Angeletti, L.; Maselli, V.; Pasuto, A.; Taviani, M. The submerged palaeolandscape of the Maltese Islands: Morphology evolution and relation to Quaternary environmental change. Mar. Geol. 2013, 335, 129–147. [Google Scholar] [CrossRef]
- Paskoff, R.; Sanlaville, P. Observations geomorphologiques sur le cotes de l’Archipel Maltaise. Z. Geomorphol. 1978, 22, 310–328. [Google Scholar]
- Said, G.; Schembri, J. Malta. In Encyclopaedia of the World’s Coastal Landforms; Bird, E., Ed.; Springer: Dordrecht, The Netherlands, 2010; pp. 751–759. [Google Scholar]
- Galve, J.P.; Tonelli, C.; Gutiérrez, F.; Lugli, S.; Vescogni, A.; Soldati, M. New insights into the genesis of the Miocene collapse structures of the island of Gozo (Malta, central Mediterranean Sea). J. Geol. Soc. 2015, 172, 336–348. [Google Scholar] [CrossRef] [Green Version]
- Mottershead, D.; Bray, M.; Soar, P.; Farres, P.J. Extreme wave events in the central Mediterranean: Geomorphic evidence of tsunami on the Maltese Islands. Z. Geomorphol. 2014, 58, 385–411. [Google Scholar] [CrossRef] [Green Version]
- Soldati, M.; Tonelli, C.; Galve, J.P. Geomorphological evolution of palaeosinkhole features in the Maltese archipelago (Mediterranean Sea). Geogr. Fis. Din. Quat. 2013, 36, 189–198. [Google Scholar] [CrossRef]
- Coratza, P.; Galve, J.P.; Soldati, M.; Tonelli, C. Recognition and assessment of sinkholes as geosites: Lessons from the Island of Gozo (Malta). Quaest. Geogr. 2012, 31, 22–35. [Google Scholar] [CrossRef] [Green Version]
- Coratza, P.; Gauci, R.; Schembri, J.A.; Soldati, M.; Tonelli, C. Bridging Natural and Cultural Values of Sites with Outstanding Scenery: Evidence from Gozo, Maltese Islands. Geoheritage 2016, 8, 91–103. [Google Scholar] [CrossRef]
- Cappadonia, C.; Coratza, P.; Agnesi, V.; Soldati, M. Malta and Sicily Joined by Geoheritage Enhancement and Geotourism within the Framework of Land Management and Development. Geosci. J. 2018, 8, 253. [Google Scholar] [CrossRef] [Green Version]
- Satariano, B.; Gauci, R. Landform loss and its effect on health and well–being: The collapse of the Azure Window (Gozo) and the resultant reactions of the media and the Maltese community. In Landscapes and Landforms of the Maltese Islands; Gauci, R., Schembri, J.A., Eds.; Springer: Cham, Switzerland, 2019; Volume 14, pp. 289–303. [Google Scholar]
- Baldassini, N.; Di Stefano, A. Stratigraphic features of the Maltese Archipelago: A synthesis. Nat. Hazards 2017, 86, 203–231. [Google Scholar] [CrossRef]
- Gauci, R.; Schembri, J.A. (Eds.) Landscapes and Landforms of the Maltese Islands; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Pedley, M.; Clarke, M.H. Limestone Isles in a Crystal Sea: The Geology of the Maltese Islands; Publishers Enterprises Group: San Gwann, Malta, 2002. [Google Scholar]
- Biolchi, S.; Furlani, S.; Devoto, S.; Gauci, R.; Castaldini, D.; Soldati, M. Geomorphological identification, classification and spatial distribution of coastal landforms of Malta (Mediterranean Sea). J. Maps 2016, 12, 87–99. [Google Scholar] [CrossRef] [Green Version]
- Furlani, S.; Antonioli, F.; Gambin, T.; Gauci, R.; Ninfo, A.; Zavagno, E.; Micallef, A.; Cucchi, F. Marine notches in the Maltese islands (central Mediterranean Sea). Quat. Int. 2017, 439, 158–168. [Google Scholar] [CrossRef] [Green Version]
- Alexander, D. A review of the physical geography of Malta and its significance for tectonic geomorphology. Quat. Sci. Rev. 1988, 7, 41–53. [Google Scholar] [CrossRef]
- Soldati, M.; Devoto, S.; Prampolini, M.; Pasuto, A. The spectacular landslide–controlled landscape of the northwestern coast of Malta. In Landscapes and Landforms of the Maltese Islands; Gauci, R., Schembri, J.A., Eds.; Springer: Cham, Switzerland, 2019; Volume 14, pp. 167–178. [Google Scholar]
- Devoto, S.; Biolchi, S.; Bruschi, V.M.; Furlani, S.; Mantovani, M.; Piacentini, D.; Soldati, M. Geomorphological map of the NW coast of the Island of Malta (Mediterranean Sea). J. Maps 2012, 8, 33–40. [Google Scholar] [CrossRef]
- Devoto, S.; Biolchi, S.; Bruschi, V.M.; González, D.A.; Mantovani, M.; Pasuto, A.; Soldati, M. Landslides Along the North–West Coast of the Island of Malta. In Landslide Science and Practice: Landslide Inventory and Susceptibility and Hazard Zoning; Margottini, C., Canuti, P., Sassa, K., Eds.; Springer: Berlin, Germany, 2013; Volume 1, pp. 57–63. [Google Scholar]
- Devoto, S.; Forte, E.; Mantovani, M.; Mocnik, A.; Pasuto, A.; Piacentini, D.; Soldati, M. Integrated Monitoring of Lateral Spreading Phenomena Along the North–West Coast of the Island of Malta. In Landslide Science and Practice: Early Warning, Instrumentation and Monitoring; Margottini, C., Canuti, P., Sassa, K., Eds.; Springer: Berlin, Germany, 2013; Volume 2, pp. 235–241. [Google Scholar]
- Magri, O.; Mantovani, M.; Pasuto, A.; Soldati, M. Geomorphological investigation and monitoring of lateral spreading along the north–west coast of Malta. Geogr. Fis. Din. Quat. 2008, 31, 171–180. [Google Scholar]
- Pasuto, A.; Soldati, M. Lateral Spreading. In Treatise on Geomorphology; Shroder, J.F., Ed.; Academic Press: San Diego, CA, USA, 2013; Volume 7, pp. 239–248. [Google Scholar]
- Dykes, A.P. Mass movements and conservation management in Malta. J. Environ. Manag. 2002, 66, 77–89. [Google Scholar] [CrossRef]
- Prampolini, M.; Foglini, F.; Biolchi, S.; Devoto, S.; Angelini, S.; Soldati, M. Geomorphological mapping of terrestrial and marine areas, northern Malta and comino (Central Mediterranean sea). J. Maps 2017, 13, 457–469. [Google Scholar] [CrossRef]
- Selmi, L.; Coratza, P.; Gauci, R.; Soldati, M. Geoheritage as a Tool for Environmental Management: A Case Study in Northern Malta (Central Mediterranean Sea). Resources 2019, 8, 168. [Google Scholar] [CrossRef] [Green Version]
- Central Bank of Malta. The Evolution of Malta’s Tourism Product over Recent Years. Available online: https://www.centralbankmalta.org/file.aspx?f=72256 (accessed on 17 October 2019).
- World Travel and Tourism Council. Travel & Tourism Economic Impact 2018 Malta; World Travel and Tourism Council: London, UK, 2018. [Google Scholar]
- Chaperon, S.; Bramwell, B. Dependency and agency in peripheral tourism development. Ann. Tour. Res. 2013, 40, 132–154. [Google Scholar] [CrossRef]
- Ebejer, J.; Mangion, M.J.; Bingül, M.B.; Kwiatkowska, D. Rural Landscape and Tourism: A Proposed Policy for Sustainable Tourism in Gozo. In Proceedings of the 7th LE: NOTRE Landscape Forum 2018, Gozo, Malta, 20–24 March 2018; Available online: https://www.um.edu.mt/library/oar/bitstream/123456789/40147/1/Article%20on%20Gozo%20tourism%20for%20LeNOTRE%20Landscape%20FINAL%20DRAFT%20for%20OAR.pdf (accessed on 22 November 2019).
- Malta Tourism Authority. Tourism in Malta—Facts and Figures. 2017. Available online: https://www.mta.com.mt/en/file.aspx?f=32328 (accessed on 16 October 2019).
- National Statistics Office. Regional Statistics—Malta, 2019th ed.; National Statistics Office: Valletta, Malta, 2019.
- Salman, A.; Lombardo, S.; Doody, P. Living with Coastal Erosion in Europe: Sediment and Space for Sustainability; Technical Report; EUCC: Warnemünde, Germany, 2004. [Google Scholar]
- Geofabrik. Available online: http://download.geofabrik.de/europe/malta.htm (accessed on 3 July 2019).
- Malta Inspire Geoportal. Available online: https://msdi.data.gov.mt/geoportal.html (accessed on 3 July 2019).
- National Statistics Office. Social Protection—Reference Years 2012–2016. Malta, 2019. Available online: https://nso.gov.mt/en/publicatons/Publications_by_Unit/Documents/A2_Public_Finance/Social%20Protection%202016.pdf (accessed on 3 July 2019).
- Beccari, B. A comparative analysis of disaster risk, vulnerability and resilience composite indicators. PLoS Curr. 2016, 8. [Google Scholar] [CrossRef]
- Del Río, L.; Gracia, F.J. Erosion risk assessment of active coastal cliffs in temperate environments. Geomorphology 2009, 112, 82–95. [Google Scholar] [CrossRef] [Green Version]
- Di Paola, G.; Aucelli, P.P.C.; Benassai, G.; Iglesias, J.; Rodríguez, G.; Rosskopf, C.M. The assessment of the coastal vulnerability and exposure degree of Gran Canaria Island (Spain) with a focus on the coastal risk of Las Canteras Beach in Las Palmas de Gran Canaria. J. Coast. Conserv. 2018, 22, 1001–1014. [Google Scholar] [CrossRef]
- Mattei, G.; Rizzo, A.; Anfuso, G.; Aucelli, P.P.C.; Gracia, F.J. A tool for evaluating the archaeological heritage vulnerability to coastal processes: The case study of Naples Gulf (southern Italy). Ocean Coast. Manag. 2019, 179, 104876. [Google Scholar] [CrossRef]
- Rizzo, A.; Aucelli, P.P.C.; Gracia, F.J.; Anfuso, G. A novelty coastal susceptibility assessment method: Application to Valdelagrana area (SW Spain). J. Coast. Conserv. 2018, 22, 973–987. [Google Scholar] [CrossRef]
- Giorgi, F. Climate change hot-spots. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Giorgi, F.; Lionello, P. Climate change projections for the Mediterranean region. Glob. Planet. Chang. 2008, 63, 90–104. [Google Scholar] [CrossRef]
- Hov, Ø.; Cubasch, U.; Fischer, E.; Höppe, P.; Iversen, T.; Gunnar Kvamstø, N.; Zbigniew, W.K.; Rezacova, D.; Rios, D.; Santos, F.D.; et al. Extreme Weather Events in Europe: Preparing for Climate Change Adaptation. Norwegian Meteorological Institute: Oslo, Norway, 2013.
- Nicholls, R.J. Impacts of and Responses to Sea-Level Rise. Understanding Sea-Level Rise and Variability; Church, J.A., Woodworth, P.L., Aarup, T., Wilson, W.W., Eds.; Wiley–Blackwell: Hoboken, NJ, USA, 2010; pp. 17–51. [Google Scholar]
- Lambeck, K.; Antonioli, F.; Anzidei, M.; Ferranti, L.; Leoni, G.; Scicchitano, G.; Silenzi, S. Sea level change along the Italian coast during the Holocene and projections for the future. Quat. Int. 2011, 232, 250–257. [Google Scholar] [CrossRef]
- Aucelli, P.P.C.; Cinque, A.; Mattei, G.; Pappone, G. Historical sea level changes and effects on the coasts of Sorrento Peninsula (Gulf of Naples): New constrains from recent geoarchaeological investigations. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016, 463, 112–125. [Google Scholar] [CrossRef]
- Tsimplis, M.N.; Calafat, F.M.; Marcos, M.; Jordá, G.; Gomis, D.; Fenoglio-Marc, L.; Struglia, S.; Josey, S.; Chambers, D.P. The effect of the NAO on sea level and on mass changes in the Mediterranean Sea. J. Geophys. Res. Oceans 2013, 118, 944–952. [Google Scholar] [CrossRef] [Green Version]
- Anzidei, M.; Lambeck, K.; Antonioli, F.; Furlani, S.; Mastronuzzi, G.; Serpelloni, E.; Vannucci, G. Coastal structure, sea–level changes and vertical motion of the land in the Mediterranean. Geol. Soc. 2014, 388, 453–479. [Google Scholar] [CrossRef]
- Galassi, G.; Spada, G. Sea-level rise in the Mediterranean Sea by 2050: Roles of terrestrial ice melt, steric effects and glacial isostatic adjustment. Glob. Planet. Chang. 2014, 123, 55–66. [Google Scholar] [CrossRef]
- Antonioli, F.; Anzidei, M.; Amorosi, A.; Presti, V.L.; Mastronuzzi, G.; Deiana, G.; Marsico, A. Sea–level rise and potential drowning of the Italian coastal plains: Flooding risk scenarios for 2100. Quat. Sci. Rev. 2017, 158, 29–43. [Google Scholar] [CrossRef] [Green Version]
- Antonioli, F.; Defalco, G.; Moretti, L.; Anzidei, M.; Bonaldo, D.; Carniel, S.; Leoni, G.; Furlani, S.; Presti, V.I.; Mastronuzzi, G.; et al. Relative sea level rise and potential flooding risk for 2100 on 15 coastal plains of the Mediterranean Sea. Geophys. Res. Abstr. 2019, 21, 5274. [Google Scholar]
- Aucelli, P.P.C.; Di Paola, G.; Incontri, P.; Rizzo, A.; Vilardo, G.; Benassai, G.; Buonocuore, B.; Pappone, G. Coastal inundation risk assessment due to subsidence and sea level rise in a Mediterranean alluvial plain (Volturno coastal plain–southern Italy). Estuar. Coast. Shelf Sci. 2017, 198, 597–609. [Google Scholar] [CrossRef]
- Di Paola, G.; Alberico, I.; Aucelli, P.P.C.; Matano, F.; Rizzo, A.; Vilardo, G. Coastal subsidence detected by Synthetic Aperture Radar interferometry and its effects coupled with future sea-level rise: The case of the Sele Plain (Southern Italy). J. Flood Risk Manag. 2018, 11, 191–206. [Google Scholar] [CrossRef] [Green Version]
- Nicholls, R.J.; Cazenave, A. Sea–level rise and its impact on coastal zones. Science 2010, 328, 1517–1520. [Google Scholar] [CrossRef] [PubMed]
- Revell, D.L.; Battalio, R.; Spear, B.; Ruggiero, P.; Vandever, J. A methodology for predicting future coastal hazards due to SLR on the California Coast. Clim. Chang. 2011, 109, 251–276. [Google Scholar] [CrossRef]
- Kulp, S.A.; Strauss, B.H. New elevation data triple estimates of global vulnerability to sea–level rise and coastal flooding. Nat. Commun. 2019, 10, 1–12. [Google Scholar]
Physical Indicators (Value) | Very Low/Null Exposure (1) | Low Exposure (2) | Medium Exposure (3) | High Exposure (4) | Very High Exposure (5) |
---|---|---|---|---|---|
Land Use | Abandoned agricultural area. Bare rock | Agricultural area; Green urban areas; Natural and vegetated area, Terraced agricultural field; Land principally occupied by agriculture with significant areas of natural vegetation | Residential area; Dump; Quarry; Cemetery | Beaches; Dunes; Sand | Historical and archaeological site; Natural protected area (SCI); Strategic elements; Entertainment (commerce, finance, business, recreational, leisure, and sport) |
Transport | Absence of transport network or highly degraded transport network | Footway; Path; Track; Steps | Tertiary road; Living street; Residential; Services | Secondary road | Primary road |
Utilities | Absence of utilities | Mainly local and small utilities | Street lighting | 11kV overhead line | Substations; Feeder pillar |
Physical Vulnerability | Surface (km2) | Surface (%) |
---|---|---|
Very low | 2.0 | 21.7 |
Low | 5.4 | 57.8 |
Medium | 0.7 | 7.4 |
High | 0.005 | 0.1 |
Very high | 1.2 | 13.0 |
Social Indicators | Żebbuġ District | Xagħra District | Nadur District | Qala District |
---|---|---|---|---|
Health care indicator | 3 | 2 | 3 | 3 |
Disability indicator | 3 | 5 | 4 | 5 |
Old age indicator | 2 | 3 | 3 | 3 |
Family/Children indicator | 3 | 3 | 3 | 3 |
Unemployment indicator | 5 | 2 | 2 | 2 |
Population (number of inhabitants, 2016) | 2043 | 4029 | 4001 | 1885 |
Overall Vulnerability | Surface (km2) | Surface (%) |
---|---|---|
Very low | - | - |
Low | 1.9 | 20.4 |
Medium | 5.6 | 61.3 |
High | 0.7 | 7.3 |
Very high | 1 | 11 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rizzo, A.; Vandelli, V.; Buhagiar, G.; Micallef, A.S.; Soldati, M. Coastal Vulnerability Assessment along the North-Eastern Sector of Gozo Island (Malta, Mediterranean Sea). Water 2020, 12, 1405. https://doi.org/10.3390/w12051405
Rizzo A, Vandelli V, Buhagiar G, Micallef AS, Soldati M. Coastal Vulnerability Assessment along the North-Eastern Sector of Gozo Island (Malta, Mediterranean Sea). Water. 2020; 12(5):1405. https://doi.org/10.3390/w12051405
Chicago/Turabian StyleRizzo, Angela, Vittoria Vandelli, George Buhagiar, Anton S. Micallef, and Mauro Soldati. 2020. "Coastal Vulnerability Assessment along the North-Eastern Sector of Gozo Island (Malta, Mediterranean Sea)" Water 12, no. 5: 1405. https://doi.org/10.3390/w12051405
APA StyleRizzo, A., Vandelli, V., Buhagiar, G., Micallef, A. S., & Soldati, M. (2020). Coastal Vulnerability Assessment along the North-Eastern Sector of Gozo Island (Malta, Mediterranean Sea). Water, 12(5), 1405. https://doi.org/10.3390/w12051405