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Abstract: Disinfection is a very significant water treatment process for drinking water safety, as it
inactivates pathogens from drinking water. However, disinfection-by-products (DBPs) are formed
which are accused of contributing to cancer and reproductive/developmental effects. Research has
provided many predictive models for the formation of DBPs based on various water quality parameters
and following different methodologies. The present study aims at developing predictive models for
the formation of DBPs in two drinking water supply systems in Greece. Data from the water supply
systems are used. A statistical analysis took place to identify the predictive models for the formation
of Total trihalomethanes (TTHMs). The results showed that some of the developed models are more
reliable than others. However, further study is necessary in order to obtain more data on variables
that are affecting trihalomethanes (THMs) formation. Such models can be used mainly locally.
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1. Introduction

Water is essential for life and therefore its safety is of paramount importance. Drinking water
distribution networks (WDNs) supplying water to the consumers are extremely complex systems,
comprised of hundreds of kilometers of pipes, storage tanks, pumps, valves, and other important
assets for the operation of the WDN. It is well known that water quality deteriorates as water travels
within the WDN, from the water intake to the tanks, the distribution systems and finally the consumers’
taps. Physical, chemical, and biological risks are identified in WDNs. Several outbreaks connected to
water quality have been recorded all over the world due to biological and chemical factors. Microbial
load exists in natural water coming from surface or groundwater sources, but it can also be present
under normal operating conditions, natural disasters, and malicious threats [1]. Natural disasters such
as extreme weather phenomena (floods) or earthquakes might cause several kinds of damage to WDNs
and may result in the entrance of micro-organisms at several parts of the network. Malicious threats
might include terrorism attacks using biological or chemical compounds that may cause adverse
effects to the health of water consumers. Even under normal operating conditions it is possible that
contaminants might enter the network, after a scheduled or non-scheduled maintenance or even
during normal operations (e.g., due to leaking pipes allowing substances from the ground to enter
the network) [1]. As sometimes sewerage networks are located above water supply pipes, possible
leakages in both systems might be the cause of water contamination. Trying to manage and reduce
water losses in WDNs, pressure management among other measures is used. In these cases, as water
pressure is reduced within the network, the water age (being the time water remains within the
network) increases, especially at dead-ends of the network. Increased water age means that water
quality deteriorates [1].

An important measure taken to reduce the risk of contaminated drinking water by micro-organisms
is disinfection. Disinfection is a crucial water treatment method as it ensures that water is free of
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pathogenic micro-organisms causing water borne diseases. It is worth noting that in the U.S. cholera
incidence was reduced by 90%, typhoid by 80% and amoebic dysentery by 50% after introducing
disinfection in water treatment [2,3]. Although disinfection is an extremely important water treatment
process, disinfection-by-products (DBPs) are formed, being accused of various effects on health.
The present paper aims to: (1) investigate the formation of DBPs in two water supply systems in Greece;
(2) develop predictive models for the concentration of THMs in these systems; and (3) statistically
evaluate the developed models and present limiting factors.

2. Disinfection Methods and Effects

It is known that disinfection is affected by many parameters such as water temperature, water pH,
type of existing bacteria, type of disinfection, disinfectant dose, contact time and inorganic and organic
material existing in water. DBPs formed are categorized as trihalomethanes (THMs) and haloacetic
acids (HAAs).

Methods used for disinfection include chlorination, chloramination, use of chlorine dioxide, ozone,
use of other chemical disinfectants (such as copper silver ionization and hydrogen peroxide) and
non-chemical disinfection technologies such as UV radiation, etc. [4,5]. All disinfection methods have
advantages and disadvantages. Some disinfectants are stable, and some are more effective than others
(e.g., chlorine dioxide compared to “chlorine”). However, an important advantage is the existence of
residual chlorine after chlorination. Some disinfectants (such as chlorine dioxide) do not form THMs
when reacting with humic substances. However, the disinfectants’ cost, their generation on demand,
taste and odor issues, their use in sites limited in space and the formation of THMs are some of their
disadvantages [4]. Chlorination is the disinfection method most widely used, where liquefied chlorine
gas or sodium hypochlorite solution (sometimes the term “chlorine” is used) is added in water [4].
Chlorination has the advantage of retaining chlorine residual throughout the water supply system.

One of the major concerns about disinfection processes is the formation of by-products that can
be dangerous for human health. DBPs are formed due to disinfectant overdose or inappropriate use.
Organic and inorganic compounds react with the disinfectant and form by-products, organochlorine
and inorganic. Organic compounds include trihalomethane (THM) and haloacetic acids (HAAs).
THMs include chloroform, bromodichloromethane, dibromochloromethane and bromoform [2].
The first researches on DBPs appeared in the 1970s, when Rook and others identified chloroform
and other THMs in drinking water [2,6,7]. The formation of these DBPs is related to the existence of
organic matter in water, water pH and temperature and the type of disinfectant used. Apart from,
organic by-products, inorganic by-products are also formed such as chlorate and bromate, related to the
type of disinfectant. Retention time is a critical factor for the formation of DBPs. Regarding chlorination,
chlorine residual is considered as the most accepted and reliable indicator for real time control of
bacteria. Research has not revealed any micro-organism that meets all criteria to become a reliable
indicator for disinfection efficacy.

DBPs’ effects in humans have been studied by many researchers [2,8,9]. Studies record effects
such as cancer and reproductive or developmental effects and negative impacts to organs such as
liver, kidney, and the nervous system [2,8]. Studies also recorded infertility, teratogenicity, organs’
inefficiency, etc. [9]. Several epidemiological studies focus on the harmful effects of chlorine by-products
and link their increased concentrations with an increased risk of various forms of cancer growth [9].

The literature review revealed that more than 600 DBPs are reported and only some of them
are regulated, while others as considered as emerging, as they have lower occurrence levels and
toxicological effects [2,10]. Several DBPs can be formed in drinking water and it is known that
they have synergistic effects. Thus, as they are found in drinking water in different concentrations,
their effects are difficult to be determined. Means of exposure include not only drinking but also
bathing, cleaning, washing (dermal and inhalation exposure), etc.

Several organizations, as the World Health Organization (WHO), United States Environmental
Protection Agency (US EPA) and the European Union (EU), have set regulations and guidelines to
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control DBPs and minimize consumers’ exposure. The maximum acceptable contaminant level set by
U.S. EPA for total THMs (that is total concentration of all four THMs) is 0.08 mg/L, while this level
set by WHO is 0.2 mg/L for chloroform, 0.1 mg/L for each dibromochloromethane and bromoform
and 0.06 mg/L for bromodichloromethane. European Union guidelines set acceptable total THM
concentration to 0.1 mg/L. The new updated European Directive for drinking water did not change the
maximum acceptable THM concentration but encourage water utilities to pursue lower concentrations
without affecting disinfection. In Greece, the maximum acceptable level of total THMs is set by
the Joint Ministerial Decision (Y2/2600/2001) to 0.1 mg/L, complying with the EU Drinking Water
Directive 98/83/EC.

3. DBP Predictive Models—A Review

The development of statistical models for DBPs is increasingly recognized as a methodological
basis to predict the formation of DBPs. Such models are helpful to the water utility managers during
decision making, for example, setting disinfectant dose, contact time, adjustment of pH, etc., in order
to reduce the formation of DBPs and at the same time maintain the required disinfectant residual [5].
These models can also be used to identify the optimal locations for boosters in order to maintain the
required levels of disinfectant residuals and reducing the DBPs’ formation. Optimal water sampling
points can be identified for water quality control using such models.

The levels of THMs in chlorinated water are associated with chlorine demand, pH, temperature
and seasonal variability, chlorine contact time and organic materials or chemical elements [11–15]
(Table 1). It is found in the literature that pH and temperature are proportional to THMs formation,
but pH effects vary for different DBPs [8]. As micro-organisms increase as temperatures increases,
higher disinfectant dose is applied during the summer period, resulting in high DBP concentrations.
The conditions affecting the disinfection efficiency and the requirements to maintain disinfectant
residuals simultaneously affect DBP formation (vicious cycle). Several studies [16] showed that THM
concentrations are higher within the WDN compared to the storage tank. This is also due to the
existence of organic matter in the biofilms located in the water pipes’ walls. Organic matter in water is
another parameter affecting proportionally DBP formation (Table 1).

Table 1. Disinfection-by-products (DBPs) predictive models’ parameters (based on [8]).

Parameter Units

Br- Bromide ion mg/L
Cl2 Initial chlorine concentration
pH pH
T temperature ◦C

NVTOC Non-volatile organic carbon mg/L
TOC Total organic carbon mg/L

D Chlorine dose mg/L
t Reaction time hrs

UV UV absorbance at 254 nm cm−1

TTHMo Initial total THM concentration
Flu fluorescence %
Co Residual chlorine at the treatment plant after chlorination mg/L
α Parameter depending on location which chloroform is predicted
ε Random error

Ch-a Chlorophyll-a mg/m3

DOC Dissolved organic carbon mg/L

The first models for chlorinated DBPs appeared in 1983 [17] predicting the formation of total THMs,
while the first models for other DBPs appeared in 1994 [18]. DBP predictive models are data-driven
statistical models or process-based ones. The first models are based on empirical relationships between
dependent and independent variables [19]. On the other hand, process-based models are mainly
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based on the assumed knowledge of the actual processes taking place in the water supply system [19].
Many studies are elaborated using data-driven statistical models as there are cases where parameter
estimation within a process-based model is imprecise or difficult to obtain [20] or where the data
required for the development of process-based models are not available [19]. Using such models,
the researchers do not have to know the laws of chemistry and mathematics for the formation of DBPs
in advance [19,21]. However, the factors affecting formation of chlorine decay should be known in
advance. As data availability becomes stronger, statistical techniques are used more and more, using
as much as possible the data already available.

Many researchers have proposed several empirical models for DBP formation [8,22–25]. Most of
these models are functions of many parameters derived from linear and non-linear multi-regression
analysis. The parameters taken into consideration in these models include: total organic carbon (TOC),
ultraviolet light absorbance at 254 nm (UV254), temperature, chlorine dosage, bromide concentration,
reaction time, and chlorination pH [8,22,26–29]. Most of the models developed in various studies
are site-specific and cannot be used widely, as conditions vary. Models have been developed based
on laboratory studies or real field data or both. Field studies compared to laboratory ones take into
consideration the effects of the distribution system on residual disinfectant concentration and DBP
formation as they measure or observe human exposure [8]. Another difference is that contact time,
which can be easily estimated in laboratory studies, needs tracer studies or hydraulic simulation
models in field studies. Prediction models are based on empirical relationships or kinetics involved
during chlorination.

A few studies have been elaborated in Greece for the water supply network of Athens [30], for water
from water treatment plants in Athens [31,32] and for river waters on the island of Lesvos [29,33].

4. Case Studies—THM Formation Models

This paper presents predictive models developed for WDNs of two cities in Greece. The water
utility in city A supplies about 150,000 people, while the water utility in city B supplies about
55,000 people. The data are gathered from samplings that the water utilities elaborated, as this is their
obligation according to the institutional framework. Depending on the water volume produced, the
water utility has the obligation to elaborate water samplings and analysis of chemical and biological
parameters. The water utilities investigate check monitoring and audit monitoring for the water they
abstract and supply to the consumers. The sampling frequency depends on the water volume taken
from the water source and the number of consumers supplied with water. For both cities, the data
provided include both check and audit monitoring parameters (THM concentration is measured in
audit monitoring). However, audit monitoring is done less frequently. In city A, samplings are taken
from all over the water supply network including consumers’ taps, while in city B only from the tanks
after water intake. Both cities use groundwater sources to supply their consumers. Chlorination is
performed in water tanks in both cases.

4.1. General Data

The data gathered and used in the analysis from the WDN of city A include pH, temperature
(T), residual chlorine (mg/L Cl2), conductivity (µS/cm), turbidity (NTU) and Total THMs (TTHMs in
µg/L). The data refer to a period of six years (2013–2018) and samples are taken from various points of
the networks including tanks and final consumers. Temperature values range from 13 to 30 ◦C and
TTHMs values range from 0.39 to 22.84 µg/L, lower than the maximum allowable level.

For city B, the data gathered from the WDN include pH, total organic carbon concentration (TOC)
(mg/L), conductivity (µS/cm), residual chlorine (mg/L), turbidity (NTU), total THMs (µg/L) and the
concentrations of the four THMs (chloroform—CM, bromoform—BM, bromodichloromethane—DCBM
and dibromochloromethane—DBCM) in µg/L. Data are gathered from 27 different water boreholes
for a period of five years (2014–2018). TOC values range from 0.01 to 39.5 mg/L and TTHMs range
from 0.48 to 68.35 µg/L, lower than the threshold. Both cities are supplied with water abstracted from
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boreholes and this is why organic substances are not present in high concentrations in water. Table 2
presents the total number of values (N), average (AV), standard deviation (SD), minimum (MIN) and
maximum (MAX) values of the parameters studied.

Table 2. Total number, average, standard deviation (SD), minimum and maximum values of the
parameters in both water distribution networks (WDNs).

WDN A WDN B

Parameter N AV SD MIN MAX Parameter N AV SD MIN MAX

pH 41 7.6707 0.1677 7.00 8.00 pH 64 7.6895 0.3931 6.92 8.90
T 41 20.122 3.816 13.0 30.0 Conductivity 64 715.5 179.3 419.0 1141.0

Conductivity 41 485.4 75.7 259.0 686.0 Turbidity 64 0.1983 0.3157 0.01 2.45
Turbidity 41 0.3993 0.138 0.21 0.82 TOC 64 5.227 7.52 0.01 39.5
Residual
Chlorine 41 0.17 0.0729 0.05 0.40 Residual

Chlorine 63 0.3313 0.1192 0.16 0.80

TTHMs 41 5.866 5.382 0.39 22.84 TTHMs 64 8.07 11.36 0.48 68.35

4.2. Statistical Analysis

The dependent variables (TTHM concentrations) were tested for normality using the
Kolmogorov–Smirnov (K–S) test to check the goodness-of-fit to the normal distribution [34]. The results
of the K–S tests for the estimation of goodness-of-fit of the dependent variables of the model to
the normal distribution showed that all dependent variables followed the normal distribution at
significance level 0.05 except for after ln-transformation steps [33] (Table 3). Independent variables
were also tested for normality using K-S test. For city A, pH, turbidity and conductivity follow normal
distribution at significance level 0.01 (Table 3). For city B, turbidity and TOC do not follow normal
distribution at 0.05 significance level. Thus, log-transformation for turbidity took place (Table 3).
Regarding TOC another transformation took place using the tool available from Minitab software.
It was found that (TOC)−0.1 follows normal distribution at significance level 0.05.

Table 3. Kolmogorov-Smirnov (K-S) values for the parameters of both WDNs.

WDN A WDN B

Parameter K-S Parameter K-S

pH 0.228 pH 0.077
T (oC) 0.165 Conductivity 0.099

Conductivity 0.212 Turbidity 0.275
Turbidity 0.225 TOC 0.244

Residual Chlorine 0.145 Residual Chlorine 0.120
TTHMs 0.224 TTHMs 0.282

ln (TTHMs) 0.153 Log turbidity 0.181
Log (TTHMs) 0.127

The relationships between the variables were examined by Pearson correlation matrix. For city
A, the results of Pearson correlation matrix (Table 4) show a moderate negative correlation between
TTHMs and conductivity (r = −0.406) and a moderate correlation between TTHMs and residual
chlorine (r = 0.266). The results for city B show a moderate positive correlation between TTHMs and
turbidity (r = 0.553) and a moderate correlation between TTHMs and water pH (r = 0.465). Several
studies have reported a linear relationship between TTHMs and pH [8]. Other variables show a low
correlation to TTHMs (Table 4).
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Table 4. Pearson correlation values for the parameters of both WDNs.

WDN A WDN B

Parameter pH T Residual
Chlorine Turbidity Conductivity Parameter TTHMs pH Conductivity TOC

T −0.158 pH 0.465
Res.chlorine 0.252 −0.362 Conductivity −0.316 −0.397

Turbidity −0.524 0.105 −0.299 Turbidity 0.553 0.074 −0.173
Conductivity −0.136 −0.108 −0.307 0.049 TOC 0.049 0.097 0.145 0.115

TTHMs −0.009 −0.125 0.266 −0.003 −0.406 Res. chlorine 0.301 0.218 −0.042 0.498

4.3. Multiple Regression Analysis

To perform a linear regression, the TTHM concentration (Y) is assumed to be a linear function of
the inputs, X. The unknown parameters to be determined, ai, are the coefficients, as given in (1):

Y = a0 + a1X1 + a2X2 + . . . + anXn (1)

where n is the number of inputs used. The coefficients are chosen to minimize the sum of the squared
differences between the predicted and actual values of Y. Multiple regression analysis is used to
evaluate the statistically significant variables at a level of significance α.

5. Results and Discussion

5.1. Model Development

Based on the data, multiple regression analysis was applied at significance level α, which was
0.1 for WDN A and 0.05 for WDN B. Throughout the process of model development, several linear
and non-linear regression analyses were performed. The inclusion of each variable in the proposed
model was based on the t-criterion [29,35]. Methodological details about the model development are
extensively discussed in past studies [25,29,31,36,37]. Multiple regression analysis tool from Minitab
was used.

For the WDN A, all variables are initially used as independent variables (inputs). As the
independent variables are not statistically significant (p > 0.1), they are excluded one-by-one from
the model development process. Finally, only residual chlorine (RedChl) is found to be statistically
significant (p < 0.1) (Table 5). Finally, the developed model is:

lnTTHMs = 0.781 + 3.64 ResChl (2)

Table 5. Statistical analysis data for the 4 models developed for WDN A and WDN B.

Term Coef t-Value p-Value Model R2 Durbin
Watson

Constant 0.781 2.23 0.032
lnTTHMs = 0.781 + 3.64 ResChl 8.63% 1.19478ResChl 6.64 1.92 0.062

Constant 1.096 4.33 0.000 logTTHMs = 1.096 + 0.602 logResChl 9.13% 1.23129logResChl 0.602 1.98 0.055

Constant −3.2 −1.79 0.079
lnTTHMs = −3.2 + 1.072 pH – 3.658

(TOC)−0.1 46.90% 2.14728pH 1.072 4.59 0.000
(TOC)−0.1 −3.658 −6.42 0.000

Constant −5.04 −3.18 0.002
logTTHMs = −5.04 + 8.17 logpH – 1.595

(TOC)−0.1 46.34% 2.14778logpH 8.17 4.50 0.000
(TOC)−0.1 −1.595 −6.40 0.000

R2 value is 8.63% for this model, which is very low, showing that this model is not very suitable
for the prediction of TTHMs. All statistical analysis data are given in Table 5.
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As the above model is not very effective at predicting TTHMs, another attempt was made for the
model development. In this attempt the independent variable residual chlorine is log-transformed.
Again, this is the only independent variable found to be statistically significant (p < 0.1) after eliminating
the other variables one-by-one from the model (Table 5). The new model is:

logTTHMs = 1.096 + 0.602 logResChl (3)

For this model, all statistical analysis data are given in Table 5. The value of R2 is 9.13% which is
still very low but is slightly higher than the model’s (3) R2 value.

The same methodology is used for the WDN B. Several linear and non-linear regression analyses
were performed. All variables are found not to be statistically significant (p > 0.05) except for pH and
(TOC)−0.1. After eliminating the other independent variables one-by-one, pH and (TOC)−0.1 are found
to be statistically significant (p < 0.05). The model developed for WDN B is:

lnTTHMs = −3.2 + 1.072 pH − 3.658 (TOC)−0.1 (4)

The value of R2 for this model is 46.90% which is moderate and shows that the model can be used
(Table 5).

Instead of ln-transformation, log-transformation is used alternatively for TTHMs as normality
hypothesis is valid. In this attempt logTTHMs is used as dependent variable and logpH and (TOC)−0.1 as
independent variables, as they are found to be statistically significant (p < 0.05) (Table 5). The predictive
model for TTHMs is the following:

logTTHMs = −5.04 + 8.17 logpH − 1.595 (TOC)−0.1 (5)

For this model R2 value is 46.34% which is moderate and slightly lower than that of model (4)
(Table 5).

For the models developed, Durbin Watson estimate, provided in Table 5, is used in order to check
autocorrelation. The values of the Durbin–Watson statistic were found to be 1.19478 and 1.23129 for
models 2 and 3, respectively, and 2.14728 and 2.14778 for models 4 and 5, respectively. The analysis
showed that there is no autocorrelation.

ANOVA tests are elaborated. Statistical examination showed that the residuals of the models
follow the normal distribution [38], and the mean value of the residuals should be zero. The residuals
should be evenly attributed above and below zero, otherwise a calculation error should be suspected
or an additional variable should be added to the regression model [34]. Figures 1–4 are provided for all
four models. In all cases the analysis showed that the residuals are approaching normal distribution
and the models are deemed valid to describe the experimental data.

5.2. Predicted and Observed Values Comparison

The developed models are used for the validation of the results. A comparison between predicted
and observed values for all proposed models is presented in Figure 5a,b and Figure 6a,b. For WDN A,
it can be observed that the models do not provide a satisfactory estimation of the THM concentrations
formed. For the model (2), only 17% of the predicted values range in the ±20% of observed values,
while for model (3), the percentage of the predicted values ranging in the ±20% of observed values
is 14.6%. The regression coefficients (R2) range from 0.0525 to 0.0774 (Figure 5a,b), which is not a
satisfactory level of explanation of the observed variability.
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Figure 6. Predicted vs Observed values for (a) model (4); (b) model (5).

For the WDN B, the models provide a more satisfactory estimation of the TTHM concentrations
formed. The percentage of observed values laying within ±20% of predicted values is 20.3% for both
models (4) and (5). The regression coefficients (R2) range from 0.5673 to 0.5809 (Figure 6a,b), which is a
satisfactory level of explanation of the observed variability and can be compared to results reported in
previous studies [29,31]. However, in other studies the regression coefficients are found to be much
higher [25].

Performance evaluation was then used to test the accuracy of each calibrated model, which included
the Mean Absolute Error (MAE), the Mean Square Error of Prediction (MSEP) and the maximum
absolute error (MAX) produced by a prediction from the model. MAE is a measure of error expressed
as the average of the absolute errors (difference between predicted and observed values). MSEP is
defined as the average square difference between independent observation and prediction from the
fitted equation for the corresponding values of the independent variable [38]. MAX is the maximum
absolute value of error and it is used as it gives an indication of the worst-case prediction made by the
model. MAE values for models (2) and (3) are 3.43 and 3.40, respectively. MSEP values are 29.52 and
28.99, respectively, and MAX values are 18.79 and 18.55, respectively. For models 2 and 3 all the error
indicators have slightly better (lower) values for model 3, but the difference is very small (Figure 7a).
MAE values for models (4) and (5) are 3.80 and 3.88, respectively. MSEP values are 69.48 and 71.04,
respectively, and MAX values are 53.07 and 53.45, respectively (Figure 7b). The error indicators show
slightly better (lower) values for model 4, but the difference is small. According to Gibbs et al. [19],
when comparing the prediction accuracy between two models the MSEP was considered the best
indicator, as this error measurement penalizes larger prediction errors more harshly than the MAE.
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Based on the analysis elaborated in this paper, the models developed for the WDN of city A are
not reliable, as they fail to predict TTHM values accurately and cannot be used for the prediction of
TTHMs in the network. A reason for this is that a full set of data with frequent measurements was not
available from the water utility, as the water sampling frequency to detect TTHMs is very low. Another
reason is that not all variables affecting the formation of TTHMs are measured and thus used in the
model. As the variables monitored are set by legislation, the water utilities do not monitor other water
quality variables. So, in order to develop reliable models for the prediction of TTHMs, enough data
from the variables affecting TTHM formation is necessary.

The models developed for city B are more reliable as more data are available compared to city A.
In this case also, the variables used are not all those affecting the formation of TTHMs and used in
other models, as their measurements are not available from the water utility. It can be concluded from
the analysis elaborated that the model (4) is more reliable and it can be used to predict the formation of
TTHMs in the WDN of city B, if the variables’ values are within the limits shown in Table 2. The models
developed in these cases refer to water utilities using groundwater where, usually, organic matter is
not present compared to surface water. Although organic matter needs to be present to form THMs,
there are indications showing that THMs are formed even when groundwater is used. In the present
cases, both WDNs use groundwater sources. However, from the data and the analysis, it is obvious
that THMs are formed in low concentrations, probably because of the existence of organic matter
which is present in this case. It is known that other factors such as the biofilm in the pipes’ walls
react with chlorine forming THMs. Comparing the models developed in this study with the models
developed in other studies, it can be concluded that as pH values increase TTHM concentrations
increase. However, there are models in the literature where pH effects on TTHM formation vary [8].
TOC increase results in increased TTHM concentrations in the present study, which is the case in other
studies too [8]. However, other explanatory variables such as disinfectant dose, reaction time and
others are not available in this study. The availability of reliable data is indicated by many studies as
the factor motivating the choice of the explanatory variables. In the present study it must be noted that
the model is site-specific and cannot be used extensively.

6. Conclusions

The paper presents an attempt to develop TTHM prediction models in two different WDNs in
Greece. The paper aims at:

(a) Investigating the formation of THMs during chlorination of groundwaters taking into
consideration the available variables. The effect of pH, and TOC was studied.

(b) Developing predictive models for the concentrations of total THMs formed during chlorination
of these groundwaters. Modeling of THM formation can be helpful for the minimization of their
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formation during water treatment, and therefore to comply with legislative measures and to protect
human health.

(c) Statistically evaluating the developed models (correlation coefficient, Durbin–Watson estimate),
in comparison to the models developed during previous studies for THMs [25,29,31,36] using the same
modeling technique (multiple regression).

The study’s results showed that the first two models developed for WDN A are not reliable and
cannot be used for the prediction of TTHMs. Reasons for this include the lack of sufficient data and
lack of data for explanatory variables affecting the formation of TTHMs. As groundwater is used, it is
possible that the formation of TTHMs is affected by other factors, such as the pipes’ biofilms existing
in the water distribution pipes’ network. The results showed that the models developed for WDN
of city B can be used for the prediction of TTHMs, and more specifically model (4). However, as the
models are not very reliable, further study should be conducted, including a larger dataset of the
variables studied in this study and also explanatory variables such as disinfectant dose, retention time,
temperature and variables indicating organic matter presence (such as chlorophyll a, dissolved organic
carbon, etc.). Finally, as all samplings were done in autumn, it is suggested that seasonal variation
should be taken into consideration elaborating more samplings all over the year, to study the effect of
the season on the formation of TTHMs, which is found to be related in other studies [31].

Finally, it must be noted that the complexity of DBP formation reactions makes it difficult to develop
universally applicable models. However, the existence of such models in regions and WDNs with the
same characteristics could be useful, as they provide sufficient estimations of DBP concentrations that
could minimize the need for complicated and expensive analysis of such compounds. DBP statistical
models’ development is a useful methodological basis to predict the formation of DBPs. Such models
are helpful to the water utility managers during decision making, for example, setting disinfectant
dose, the contact time, adjustment of pH, etc., in order to reduce DBP formation and at the same
time maintain the required disinfectant residual. Prediction models can be used as a tool to select
location for boosting chlorination residual levels to ensure complete removal of microbes and as
well as minimization of DBP formation. The combination of DBP models with residual disinfectant
models allow water utility managers to select the sampling points for water quality control within the
distribution system [8]. Such models are used as the basis for epidemiological studies and health risk
assessment [8].
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