Sandbar Breakwater: An Innovative Nature-Based Port Solution
Abstract
:1. Introduction
2. Field Site
2.1. The Coast of the Gulf of Guinea
2.2. The Lessons Learned
3. Methods
3.1. Conceptualization
3.2. Models and Engineering Methods
4. Results
4.1. Overall Concept
4.2. Design Components
4.2.1. Sandbar Body
- : total longshore sediment transport (kg/s). A bulk density of 1600 kg/m3 is used to convert this to m3/s;
- : swell factor = , where is the percentage of swell wave heights, which is considered 100% at this location;
- : sediment density = 2650 kg/m3;
- : slope of surf zone = 1:20;
- : median grain size = 600 μm (based on sediment samples [26]);
- , : significant wave height nearshore (at 10 m water depth) and at the breaker line (m);
- , : wave incidence angle (to shore normal) nearshore (at 10 m water depth) and at the breaker line;
- : acceleration of gravity (m/s2);
- : breaker coefficient (based on 5% breaking) = 0.6;
- , : wave celerity nearshore (at 10 m water depth) and at the breaker line (m/s). Determined by iteration using the dispersion relation;
- : calibration coefficient = 1.8.
4.2.2. Sandbar Groyne
- An additional diffraction point has been created for the most dominant wave direction (~200° N), providing additional sheltering;
- Wave energy running along the groyne is being absorbed along the structure due to the refraction of the waves on the slope, resulting in reduced wave energy entering the port basin.
4.2.3. Sand Engine
5. Discussion
5.1. Impact of Updrift Interventions
5.2. Maintenance and Long-Term Effects
5.3. Impact of Dredged Access Channel
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Parameter | Setting | Unit |
---|---|---|
Grain size d50 | 600 | μm |
Grain size d90 | 1100 | μm |
Pores | 40 | % |
Sand density | 2650 | kg/m3 |
Bottom slope factor | 1.6 | - |
Beta (β) | 1 | - |
Maximum bottom slope | 0.25 | m/m |
References
- Lawer, E.T. Transitioning Towards Sustainability: Practices and Outcomes in European and West African Ports. Ph.D. Thesis, Universität Bremen, Bremen, Germany, 2019. [Google Scholar]
- World Bank. Making the Most of Ports in West Africa; Other Infrastructure Study; World Bank: Washington, DC, USA, 2015. [Google Scholar]
- Matz, E. Private Sector & Development, Proparco. Magazine 2017, 26, 3. [Google Scholar]
- Chen, K.; Xu, S.; Haralambides, H. Determining hub port locations and feeder network designs: The case of China-West Africa trade. Transp. Policy 2020, 86, 9–22. [Google Scholar] [CrossRef]
- De Boer, W.; Mao, Y.; Hagenaars, G.; de Vries, S.; Slinger, J.; Vellinga, T. Mapping the Sandy Beach Evolution Around Seaports at the Scale of the African Continent. J. Mar. Sci. Eng. 2019, 7, 151. [Google Scholar] [CrossRef] [Green Version]
- Giardino, A.; Schrijvershof, R.; Nederhoff, C.; De Vroeg, H.; Brière, C.; Tonnon, P.-K.; Caires, S.; Walstra, D.; Sosa, J.; Van Verseveld, W. A quantitative assessment of human interventions and climate change on the West African sediment budget. Ocean Coast. Manag. 2018, 156, 249–265. [Google Scholar] [CrossRef]
- Stocker, T.; Qin, D.; Plattner, G.; Tignor, M.; Allen, S.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P. IPCC, 2013: Summary for Policymakers in Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Ukny, NY, USA, 2013. [Google Scholar]
- Temmerman, S.; Meire, P.; Bouma, T.J.; Herman, P.M.; Ysebaert, T.; De Vriend, H.J. Ecosystem-based coastal defence in the face of global change. Nature 2013, 504, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Stive, M.J.F.; de Schipper, M.A.; Luijendijk, A.P.; Aarninkhof, S.G.J.; van Gelder-Maas, C.; van Thiel de Vries, J.S.M.; de Vries, S.; Henriquez, M.; Marx, S.; Ranasinghe, R. A new alternative to saving our beaches from sea-level rise: The sand engine. J. Coast. Res. 2013, 29, 1001–1008. [Google Scholar] [CrossRef]
- Ibe, A. Coastline erosion in Nigeria; The Nigerian Institute for Oceanography and Marine Research: Ibadan, Nigeria, 1988.
- Van Bentum, K.M. The Lagos Coast-Investigation of the Long-Term Morphological Impact of the Eko Atlantic City Project. Master’s Thesis, Delft University of Technology, Delft, The Netherlands, 2012. [Google Scholar]
- Wang, Y.; Shen, J.; Zhao, S. Shoreline Evolution and Responses to Port Engineering at Lekki Coast, Nigeria. In Estuaries and Coastal Zones in Times of Global Change; Springer: Berlin/Heidelberg, Germany, 2020; pp. 467–486. [Google Scholar]
- Ozer, P.; Hountondji, Y.-C.; De Longueville, F. Erosion Littorale et Migrations Forcées de Réfugiés Environnementaux. L’exemple de Cotonou, Bénin. In Proceedings of the XXVIème Colloque International Association Internationale de Climatologie, Cotonou, Benin, 3–7 September 2013. [Google Scholar]
- Anthony, E.J.; Blivi, A. Morphosedimentary evolution of a delta-sourced, drift-aligned sand barrier–lagoon complex, western Bight of Benin. Mar. Geol. 1999, 158, 161–176. [Google Scholar] [CrossRef]
- Google Inc. Google Earth Pro. Available online: https://www.google.com/earth/ (accessed on 31 March 2020).
- Pelnard-Considere, R. Essai de Theorie de L’evolution des Formes de Rivage en Plages de Sable et de Galets; Les Energies de la Mer: Compte Rendu Des Quatriemes Journees de L’hydraulique, Paris 13, 14 and 15 June 1956; Question III, Rapport 1, 74-1-10; Société Hydrotechnique de France: Paris, France, 1956. [Google Scholar]
- Kroon, A.; van Leeuwen, B.; Walstra, D.-J.; Loman, G. Dealing with uncertainties in long-term predictions of a coastal nourishment. In Coastal Management: Changing Coast, Changing Climate, Changing Minds; ICE Publishing: London, UK, 2016; pp. 9–18. [Google Scholar]
- Dam, G.; Van der Wegen, M.; Labeur, R.; Roelvink, D. Modeling centuries of estuarine morphodynamics in the Western Scheldt estuary. Geophys. Res. Lett. 2016, 43, 3839–3847. [Google Scholar] [CrossRef] [Green Version]
- Booij, N.; Holthuijsen, L.; Ris, R. The “SWAN” wave model for shallow water. In Coastal Engineering 1996; American Society of Civil Engineers: Reston, VA, USA, 1996; pp. 668–676. [Google Scholar]
- Roelvink, D.; Reniers, A.; Van Dongeren, A.; Van Thiel de Vries, J.; Lescinski, J.; McCall, R. XBeach Model Description and Manual; Report 21 June 2010; Unesco-IHE Institute for Water Education, Deltares and Delft University of Tecnhology: Delft, the Netherlands, 2010. [Google Scholar]
- Eikema, B.; Attema, Y.; Talstra, H.; Bliek, A.; de Wit, L.; Dusseljee, D. Spectral modeling of wave propagation in coastal areas with a harbor navigation channel. In Proceedings of the PIANC World Congress, Panama, FL, USA, 7–11 May 2018; pp. 1–16. [Google Scholar]
- Construction Industry Research and Information Association; Civieltechnisch Centrum Uitvoering Research en Regelgeving (Netherlands); Centre d’études maritimes et fluviales (France). The Rock Manual: The Use of Rock in Hydraulic Engineering, 2nd ed.; CIRIA: London, UK, 2007; ISBN 0-86017-683-5. [Google Scholar]
- British Standard Institution. BS 6349-7: Maritime Structures—Part 7: Guide to the Design and Construction of Breakwaters; BSI Group: London, UK, 1991. [Google Scholar]
- Van Gent, M.R. Oblique wave attack on rubble mound breakwaters. Coast. Eng. 2014, 88, 43–54. [Google Scholar] [CrossRef]
- Van Rijn, L.C. Longshore sand transport. In Coastal Engineering 2002: Solving Coastal Conundrums; World Scientific: Singapore, 2003; pp. 2439–2451. [Google Scholar]
- Copline Engineering Services. Sand Sampling Campaign Lekki—Laboratory Sand Testing and Reporting; Copline Engineering Services: Lagos, Nigeria, 2016. [Google Scholar]
- Moesker, N. Sandbar Breakwaters: Analysis of the Effects of Variations in Wave Climate on the Morphological Development of Sandbar Breakwaters by Using the Lekki Sandbar Breakwater Case Study. Master’s Thesis, Delft University of Technology, Delft, The Netherlands, 2020. [Google Scholar]
- Boswood, P.; Voisey, C.; Victory, S.; Robinson, D.; Dyson, A.; Lawson, S. Beach Response to Tweed River Entrance Sand Bypassing Operations. In Proceedings of the Australasian Coasts and Ports 2005, At Adelaide, South Australia, 20–23 September 2005; A.C.T. Institution of Engineers: Barton, Australia, 2005; p. 119. [Google Scholar]
- Grey, S.; Cruickshank, I.; Beresford, P.; Tozer, N. The Impact of Navigation Channels on Berth Protection; Thomas Telford Ltd: London, UK, 2010; Volume 163, pp. 49–54. [Google Scholar]
- Waterman, R.E. Integrated Coastal Policy via Building with Nature, 2nd ed.; Citeseer: The Hague, The Netherlands, 2008; ISBN 978-90-805222-3-7. [Google Scholar]
- De Vriend, H.J.; van Koningsveld, M.; Aarninkhof, S.G.; de Vries, M.B.; Baptist, M.J. Sustainable hydraulic engineering through building with nature. J. Hydroenviron. Res. 2015, 9, 159–171. [Google Scholar] [CrossRef]
- Egbert, G.D.; Erofeeva, S.Y. Efficient inverse modeling of barotropic ocean tides. J. Atmos. Ocean. Technol. 2002, 19, 183–204. [Google Scholar] [CrossRef] [Green Version]
- Soulsby, R. Dynamics of Marine Sands: A Manual for Practical Applications; Thomas Telford: London, UK, 1997; ISBN 0-7277-2584-X. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
van der Spek, B.-J.; Bijl, E.; van de Sande, B.; Poortman, S.; Heijboer, D.; Bliek, B. Sandbar Breakwater: An Innovative Nature-Based Port Solution. Water 2020, 12, 1446. https://doi.org/10.3390/w12051446
van der Spek B-J, Bijl E, van de Sande B, Poortman S, Heijboer D, Bliek B. Sandbar Breakwater: An Innovative Nature-Based Port Solution. Water. 2020; 12(5):1446. https://doi.org/10.3390/w12051446
Chicago/Turabian Stylevan der Spek, Bart-Jan, Eelco Bijl, Bas van de Sande, Sanne Poortman, Dirk Heijboer, and Bram Bliek. 2020. "Sandbar Breakwater: An Innovative Nature-Based Port Solution" Water 12, no. 5: 1446. https://doi.org/10.3390/w12051446
APA Stylevan der Spek, B. -J., Bijl, E., van de Sande, B., Poortman, S., Heijboer, D., & Bliek, B. (2020). Sandbar Breakwater: An Innovative Nature-Based Port Solution. Water, 12(5), 1446. https://doi.org/10.3390/w12051446