Use of Aquatic Biota to Detect Ecological Changes in Freshwater: Current Status and Future Directions
Abstract
:1. Introduction
2. Content of the Special Issue
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Birk, S.; Bonne, W.; Borja, A.; Brucet, S.; Courrat, A.; Poikane, S.; Solimini, A.; Van De Bund, W.; Zampoukas, N.; Hering, D. Three hundred ways to assess Europe’s surface waters: An almost complete overview of biological methods to implement the Water Framework Directive. Ecol. Indic. 2012, 18, 31–41. [Google Scholar] [CrossRef]
- Birk, S.; Willby, N.J.; Kelly, M.; Bonne, W.; Borja, A.; Poikane, S.; Van De Bund, W. Intercalibrating classifications of ecological status: Europe’s quest for common management objectives for aquatic ecosystems. Sci. Total Environ. 2013, 454, 490–499. [Google Scholar] [CrossRef] [PubMed]
- Keck, F.; Vasselon, V.; Tapolczai, K.; Rimet, F.; Bouchez, A. Freshwater biomonitoring in the Information Age. Front. Ecol. Environ. 2017, 15, 266–274. [Google Scholar] [CrossRef]
- Stubbington, R.; Chadd, R.; Cid, N.; Csabai, Z.; Miliša, M.; Morais, M.M.; Munné, A.; Pařil, P.; Pešić, V.; Tziortzis, I.; et al. Biomonitoring of intermittent rivers and ephemeral streams in Europe: Current practice and priorities to enhance ecological status assessments. Sci. Total Environ. 2018, 618, 1096–1113. [Google Scholar] [CrossRef]
- Friberg, N.; Bonada, N.; Bradley, D.C.; Dunbar, M.J.; Edwards, F.K.; Grey, J.; Hayes, R.B.; Hildrew, A.G.; Lamouroux, N.; Trimmer, M.; et al. Biomonitoring of human impacts in freshwater ecosystems: The good, the bad and the ugly. Adv. Ecol. Res. 2011, 44, 1–68. [Google Scholar] [CrossRef]
- Dudgeon, D.; Arthington, A.; Gessner, M.O.; Kawabata, Z.-I.; Knowler, D.J.; Lévêque, C.; Naiman, R.J.; Prieur-Richard, A.; Soto, D.; Stiassny, M.L.J.; et al. Freshwater biodiversity: Importance, threats, status and conservation challenges. Boil. Rev. 2005, 81, 163–182. [Google Scholar] [CrossRef]
- Kolkwitz, R.; Marsson, M. Ökologie der tierischen Saprobien. Beiträge zur Lehre von der biologischen Gewässerbeurteilung. Int. Rev. Gesamten Hydrobiol. 1909, 2, 126–152. [Google Scholar] [CrossRef] [Green Version]
- Saito, V.; Siqueira, T.; Fonseca-Gessner, A.A. Should phylogenetic and functional diversity metrics compose macroinvertebrate multimetric indices for stream biomonitoring? Hydrobiologia 2014, 745, 167–179. [Google Scholar] [CrossRef]
- Merritt, R.W.; Fenoglio, S.; Cummins, K.W. Promoting a functional macroinvertebrate approach in the biomonitoring of Italian lotic systems. J. Limnol. 2016, 76. [Google Scholar] [CrossRef] [Green Version]
- Bady, P.; Doledec, S.; Fesl, C.; Gayraud, S.; Bacchi, M.; Schöll, F. Use of invertebrate traits for the biomonitoring of European large rivers: The effects of sampling effort on genus richness and functional diversity. Freshw. Boil. 2005, 50, 159–173. [Google Scholar] [CrossRef]
- Mandelik, Y.; Roll, U.; Fleischer, A. Cost-efficiency of biodiversity indicators for Mediterranean ecosystems and the effects of socio-economic factors. J. Appl. Ecol. 2010, 47, 1179–1188. [Google Scholar] [CrossRef]
- Hajibabaei, M.; Shokralla, S.; Zhou, X.; Singer, G.A.C.; Baird, D.J. Environmental Barcoding: A Next-Generation Sequencing Approach for Biomonitoring Applications Using River Benthos. PLoS ONE 2011, 6, e17497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feio, M.J.; Serra, S.R.Q.; Mortágua, A.; Bouchez, A.; Rimet, F.; Vasselon, V.; Almeida, S.F.P. A taxonomy-free approach based on machine learning to assess the quality of rivers with diatoms. Sci. Total Environ. 2020, 722, 137900. [Google Scholar] [CrossRef] [PubMed]
- McGee, K.M.; Robinson, C.V.; Hajibabaei, M. Gaps in DNA-Based Biomonitoring Across the Globe. Front. Ecol. Evol. 2019, 7, 337. [Google Scholar] [CrossRef] [Green Version]
- Szoszkiewicz, K.; Jusik, S.; Pietruczuk, K.; Gebler, D. The Macrophyte Index for Rivers (MIR) as an Advantageous Approach to Running Water Assessment in Local Geographical Conditions. Water 2019, 12, 108. [Google Scholar] [CrossRef] [Green Version]
- Vásquez, C.; Calva, J.; Morocho, R.; Donoso, D.A.; Benítez, A. Bryophyte Communities along a Tropical Urban River Respond to Heavy Metal and Arsenic Pollution. Water 2019, 11, 813. [Google Scholar] [CrossRef] [Green Version]
- Ko, N.T.; Suter, P.; Conallin, J.; Rutten, M.; Bogaard, T. The Urgent Need for River Health Biomonitoring Tools for Large Tropical Rivers in Developing Countries: Preliminary Development of a River Health Monitoring Tool for Myanmar Rivers. Water 2020, 12, 1408. [Google Scholar] [CrossRef]
- Donatich, S.; Doll, B.A.; Page, J.L.; Nelson, N.G. Can the Stream Quantification Tool (SQT) Protocol Predict the Biotic Condition of Streams in the Southeast Piedmont (USA)? Water 2020, 12, 1485. [Google Scholar] [CrossRef]
- Gonino, G.; Benedito, E.; Cionek, V.D.M.; Ferreira, M.; Oliveira, J. A Fish-Based Index of Biotic Integrity for Neotropical Rainforest Sandy Soil Streams—Southern Brazil. Water 2020, 12, 1215. [Google Scholar] [CrossRef]
- Reid, A.; Carlson, A.K.; Creed, I.F.; Eliason, E.J.; Gell, P.; Johnson, P.T.J.; Kidd, K.A.; MacCormack, T.; Olden, J.D.; Ormerod, S.J.; et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Boil. Rev. 2018, 94, 849–873. [Google Scholar] [CrossRef] [Green Version]
- Wen, Y.; Schoups, G.; Van De Giesen, N. Organic pollution of rivers: Combined threats of urbanization, livestock farming and global climate change. Sci. Rep. 2017, 7, 43289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Multiple Stressors in River Ecosystems. Mul. Stress. River Ecosyst. 2019, 404. [CrossRef]
- Hering, D.; Borja, A.; Jones, J.I.; Pont, D.; Boets, P.; Bouchez, A.; Bruce, K.; Drakare, S.; Hänfling, B.; Kahlert, M.; et al. Implementation options for DNA-based identification into ecological status assessment under the European Water Framework Directive. Water Res. 2018, 138, 192–205. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.W.; Ji, Y.; Emerson, B.C.; Wang, X.; Ye, C.; Yang, C.; Ding, Z. Biodiversity soup: Metabarcoding of arthropods for rapid biodiversity assessment and biomonitoring. Methods Ecol. Evol. 2012, 3, 613–623. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, J.M.; Ferreira, M.T. Use of Aquatic Biota to Detect Ecological Changes in Freshwater: Current Status and Future Directions. Water 2020, 12, 1611. https://doi.org/10.3390/w12061611
Santos JM, Ferreira MT. Use of Aquatic Biota to Detect Ecological Changes in Freshwater: Current Status and Future Directions. Water. 2020; 12(6):1611. https://doi.org/10.3390/w12061611
Chicago/Turabian StyleSantos, José Maria, and Maria Teresa Ferreira. 2020. "Use of Aquatic Biota to Detect Ecological Changes in Freshwater: Current Status and Future Directions" Water 12, no. 6: 1611. https://doi.org/10.3390/w12061611
APA StyleSantos, J. M., & Ferreira, M. T. (2020). Use of Aquatic Biota to Detect Ecological Changes in Freshwater: Current Status and Future Directions. Water, 12(6), 1611. https://doi.org/10.3390/w12061611