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Abstract: We present a numerical framework for efficiently simulating seawater flow in coastal
aquifers using a finite volume method. The mathematical model consists of coupled and nonlinear
partial differential equations. Difficulties arise from the nonlinear structure of the system and the
complexity of natural fields, which results in complex aquifer geometries and heterogeneity in
the hydraulic parameters. When numerically solving such a model, due to the mentioned feature,
attempts to explicitly perform the time integration result in an excessively restricted stability condition
on time step. An implicit method, which calculates the flow dynamics at each time step, is needed
to overcome the stability problem of the time integration and mass conservation. A fully implicit
finite volume scheme is developed to discretize the coupled system that allows the use of much
longer time steps than explicit schemes. We have developed and implemented this scheme in a new
module in the context of the open source platform DuMuX. The accuracy and effectiveness of this
new module are demonstrated through numerical investigation for simulating the displacement of
the sharp interface between saltwater and freshwater in groundwater flow. Lastly, numerical results
of a realistic test case are presented to prove the efficiency and the performance of the method.
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1. Introduction

The numerical modeling and analysis of seawater intrusion in coastal aquifers have been a
problem of interest for many years and many methods have been developed. There is an extensive
amount of literature on this subject. We refer to the books [1–6]. Two main models are often used to
predict marine intrusion into coastal aquifers. The first one is the 2D sharp interface approach which
assumes that the saltwater and the freshwater are immiscible separated by an abrupt interface [2],
therefore the mixing zone is not taken into consideration. Secondly, the 3D variable density flow
and solute transport approach [1] which considers that the two fluids are miscible and a transition
zone caused by dispersion is then considered. This approach seems more realistic to simulate the
seawater intrusion problem and to track the movement and changes of the transition zone between
fresh and saltwater. The vertical section is then considered and the salt concentration is expressed in 3D.
However, in the numerical context, this approach is costly (CPU time) compared to the 2D model with
a sharp interface. In addition, we cannot determine exactly the transition area as in the sharp interface
model. In many coastal aquifers, the thickness of the aquifer is negligible compared to its horizontal
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surface. The flow is supposed to be horizontal and the problem is reduced to a 2D model. In this case,
the sharp interface approach can be adopted to study large scale seawater intrusion in such coastal
aquifers. Thus, the extent of the transition (mixing) zone can be neglected when compared to the
lateral dimensions of the aquifer. The two fluids can then be supposed separated by a sharp interface.

A review of the mathematical models for 2D saltwater intrusion in coastal aquifers can be viewed
in [5,7,8]. Most of the previous numerical models used finite difference and finite element methods;
see, for instance [9–14]. More recently, finite volume methods were developed and analyzed for the
sharp interface model [15–17]. This approach leads to robust schemes applicable for unstructured grids
and the approximate solution has various interesting properties which correspond to the properties
of the physical solution. These methods have been useful for advective flow problems because they
combine element by element conservation of mass with numerical stability and minimal numerical
diffusion, see for instance [18].

The purposes of this paper are to derive a robust and accurate scheme on unstructured grids
by using a fully implicit finite volume method for the coupled system modeling sharp interface
seawater intrusion in coastal aquifers and present numerical simulations for complex case studies.
This work aims to develop and implement a code coupling approach for this model in the framework
of the parallel open-source platform DuMuX [19,20], based on the distributed and unified numerics
environment (DUNE) [21], allowing simulations for large-scale field applications involving seawater
intrusion in coastal aquifers. The model described above is built in DuMuX framework, which handles
general input/output, memory management, grid generation, parallelism, etc. The code is an
object-oriented software written in C++ and equipped with efficient solvers and massively parallel
computation capability. Let us mention that the variable density flow and solute transport model
is already implemented in DuMuX (module 1pnc: one phase n components) which permits us to
compare it to the sharp interface one.

This paper deals with a numerical method based on a finite volume scheme for solving the sharp
interface model. More precisely, the time discretization is done by an implicit Euler method and in
space we use a cell-centered finite volume method. The nonlinear system is solved by the Newton
method and a biconjugate gradient stabilized (BiCGSTAB) method with incomplete LU factorisation
(ILU) preconditioner is used to solve the linear systems. Numerical differentiation techniques are used
to approximate the derivatives in the calculation of the Jacobian matrix. The control of the time-step
is based on the number of iterations required by the Newton method to achieve convergence for the
last time iteration. The time-step is reduced, if the number of iterations exceeds a specified threshold,
whereas it is increased if the method converges within less iterations. This numerical scheme has
been implemented and integrated in the platform DuMuX by the creation of a new module named
two-phase saltwater intrusion (2p− SWI). Our numerical model is verified with the field-scale free
aquifer presented in [16]. We also apply the method to perform numerical simulations of the sharp
interface approach in the Souss–Chtouka aquifer field case [22].

The outline of the paper is as follows. In Section 2, we briefly describe the governing equations for
the sharp interface seawater intrusion model, while Section 3 describes the fully implicit finite volume
scheme for solving the nonlinear coupled system. A description of the implementation of our scheme
in the DuMuX framework is given in Section 4 and numerical results which illustrate the robustness
of our approach are discussed for a field-scale free aquifer test and the Souss—Chtouka case study.
Section 5 contains concluding remarks.

2. Mathematical Model

In this section, we recall the equations modeling a subsurface freshwater–saltwater flow in the
case where saltwater and freshwater are immiscible separated by a sharp interface. Thus the coastal
aquifer is divided into two regions. The freshwater flows in the upper part of a vertical section and the
saltwater in the lower part, separated by a freshwater/saltwater interface, as shown in Figure 1.
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Figure 1. Interface and other related elevation from [16].

The freshwater–saltwater model for groundwater flow with free aquifer consists of two vertically
integrated governing equations, one for freshwater flow and the other for saltwater flow [2]. Let Ω
be a bounded domain in R2 representing the aquifer and [0, T] the time interval of interest. Invoking
the continuity of flux and pressure on the interface and combining Darcy’s law with the continuity
equation, the governing equations of the sharp interface freshwater-seawater model in coastal aquifers
are expressed as follows (see, e.g., [1,2]):

Freshwater flow equation:[
S f b f (u, v) + φ

]∂u
∂t
− φ

∂Z
∂t
− div

(
b f (u, v)K f∇u

)
= Q f in Ω× [0, T] , (1)

Saltwater flow equation:

Ssbs (u, v) ∂v
∂t + φ ∂Z

∂t − div (bs (u, v)Ks∇v) = Qs in Ω× [0, T] , (2)

where u and v are the hydraulic heads [m] of the freshwater and saltwater respectively and are the
main unknowns of system (1) and (2). Z [m] is the saltwater front elevation given by:

Z = (1 + δ)v− δu.

Q f and Qs indicate flows (fresh and salt) pumped or injected per unit surface of aquifer. The other
different notations used in Equations (1) and (2) are exhibited in Table 1.

Table 1. Notations of parameters and functions used in system (1) and (2).

Parameters

ZT : water table elevation [m] ZB: bottom of the aquifer [m]
K f , Ks: hydraulic conductivities [m/day] S f , Ss: specific storage coefficients [1/m]
ρ f , ρs: densities of fresh and saltwater [kg/m3] Q f , Qs: flows [m/day]
φ: porosity of medium [%] δ =

ρ f
ρs−ρ f

Functions

b f = u− Z: freshwater thickness [m] bs = Z− ZB: saltwater thickness [m]

By replacing the functions Z, b f and bs by their formulas, system (1) and (2) becomes:
Freshwater flow equation:

(1 + δ)
[
S f (u− v) + φ

]∂u
∂t
− φ(1 + δ)

∂v
∂t
− div

[
(1 + δ) (u− v)K f∇u

]
= Q f , (3)
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Saltwater flow equation:[
Ss
(
(1 + δ)v− δu− ZB

)
+ (1 + δ)φ

]∂v
∂t
− δφ

∂u
∂t
− div

[(
(1 + δ)v− δu− ZB

)
Ks∇v

]
= Qs. (4)

This system gives a 2D description for tracking a sharp interface problem in a free aquifer.
It represents two coupled parabolic partial differential equations that should be solved simultaneously
for the freshwater head u and saltwater head v.

3. Numerical Scheme

The spatial discretization of the coupled system (3) and (4), subject to boundary and initial
conditions, employs a conservative Finite Volume (FV) method. The time discretization is done by
an implicit Euler method. For the sake of simplicity of exposition, here we present the scheme for a
regular mesh. The extension to unstructured grids is straightforward. Here, we choose a cell-centered
FV method. It consists in integrating Equations (3) and (4) on a control volume Vk (Figure 2) and
evaluating the fluxes at the interface γkl between two adjacent elements Vk and Vl .

Figure 2. Discretization by the cell-centered finite volume method.

We denote by fk = 1
|Vk |
∫

Vk
f dV the average of a function f on each element Vk. By using the

implicit Euler scheme for the time discretization and due to the fact that the approximation of the
primary unknowns (u, v) and the physical parameters are constant on each element Vk, the cell-centered
FV schemes corresponding to the discretization of the freshwater and saltwater equations are given by:

Finite volume discretization of freshwater equation:(
S f (un+1

k − vn+1
k ) + φk

)
(un+1

k − un
k )− φk(vn+1

k − vn
k )

− ∆tn

|Vk | ∑
l∈V(k)

|γkl |
{
(un+1 − vn+1)K f

}
kl

{
∇un+1

}
kl
·~nkl

= ∆tn

(1+δ)

{
Qn+1

f

}
k

;

(5)

Finite volume discretization of saltwater equation:(
Ss

[
(1 + δ)vn+1

k − δun+1
k − ZB

]
+ (1 + δ)φk

)
(vn+1

k − vn
k )− δφk(un+1

k − un
k )

− ∆tn

|Vk | ∑
l∈V(k)

|γkl |
{[

(1 + δ)vn+1 − δun+1 − ZB

]
Ks

}
kl

{
∇vn+1

}
kl
·~nkl

= ∆tn {Qn+1
s
}

k ;

(6)

where ∆tn is the time step,~nkl denotes the unit outer normal to γkl , V(k) is the set of adjacent elements
of Vk. The gradient operators

{
∇un+1}

kl and
{
∇vn+1}

kl on the interfaces γkl are calculated by a Two
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Point Flux Approximation (TPFA), see for instance [19,23]. A harmonic average of the values between
two adjacent elements is used to calculate the diffusion coefficients at the interface γkl .

By integrating the boundary and initial conditions into the FV discretization of system (5) and (6),
we have two sets of nonlinear equations which are solved implicitly using Newthon’s method with
variable time stepping. The control of the time-step is based on the number of iterations required by
the Newton method to achieve convergence for the last time iteration. The time-step is reduced, if the
number of iterations exceeds a specified threshold, whereas it is increased if the method converges
within less iterations. Numerical differentiation techniques are used to approximate the derivatives in
the calculation of the Jacobian matrix. This allows to transform the nonlinear system of equations for
each iteration step into a linear system of equations. For solving the occurring linearized systems of
equations, an iterative linear solver is used, namely, Bi-Conjugate Gradient STABilized (BiCGSTAB)
method with ILU (Incomplete LU factorisation) preconditioner. This solver is integrated in the
ISTL-Library of DUNE.

4. Numerical Simulations

In this section, we present a brief description of DuMuX and our module 2p− SWI developed
and integrated in this plateform. The new algorithm is first validated on some classical tests. In cases
we obtain a very good level of accuracy, showing also numerical convergence results; we furthermore
confirm mass conservation up to machine precision. Then, to validate our approach, we consider
two test cases. The first one is proposed in [16] for an unconfined coastal aquifer subject to pumping
while the second one considers a realistic case with a highly complex geometry with different types of
rocks [22].

Let us mention that throughout all numerical experiments, we observed that in no instance more
than a maximum of 20 iterations was needed for the convergence of Newton’s method. Consequently,
for this study the adopted strategy for the management of the time step is sufficient. However, various
types of local time-stepping strategies have been proposed in the literature; see, for instance [24–26].

In explicit and semi-explicit schemes, the time step is restricted by the famous
Courant–Friedrichs–Lewy (CFL) condition to ensure stability. This condition is usually very restrictive
in reservoir-scale models, and it is therefore more common to use implicit schemes. Furthermore,
sequential approaches introduce operator splitting errors and restrictions on the time step are
mandatory to ensure mass conservation for instance. Implicit discretizations capable of taking
large(r) time steps are therefore often preferred in practical computations. Although implicit
schemes are more diffusive than their explicit counterparts, they yield better stability and mass
conservation. Although this guarantees numerical stability in the solution, this does not guarantee
nonlinear convergence. The computational performance of the code depends greatly on the
convergence of Newton’s method and linear systems in an optimal number of iterations which
is highly correlated to the choice of time step. The fully coupled fully implicit finite volume scheme,
developed in this study, combined with time-accurate local time stepping allow Newton’s method and
linear solver to converge within a reasonable number of iterations which saves computing time.

Finally a remarkable property of the scheme is that the discrete maximum principles
(nonnegativity of the thickness of fresh and saltwater in the aquifer) is satisfied wich is crucial to obtain
physically meaningful approximate solutions. This has been verified in all our simulations. A proof of
this result for a simplified model could be find in [27]. The numerical analysis of the scheme including
this property is out of the scope of this paper and will be considered in a future work.

4.1. DuMuX : Numerical Simulator

All our numerical developments have been implemented in DuMuX. It is a parallel free and
open-source simulator for flow and transport processes in porous media. It is based on the Distributed
and Unified Numerics Environment DUNE. It provides many tools to solve numerically partial
differential equations and allowing, among other things, the management of mesh, discretization
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or linear and nonlinear solvers. The code is an object-oriented software written in C++ and has
massively parallel computation capability. The modular concept of DuMuX makes it easy to integrate
new modules adapted to our numerical scheme. For this, we have developed a new module named
2p− SWI in DuMuX . This module allows to numerically solve the coupled system (3) and (4) with a
fully implicit scheme in time and a cell-centered finite volume method in space.

4.2. Numerical Tests

Our approach has been validated by solving several tests to approximate solutions of seawater
flows with sharp interface in coastal aquifers. The first one performed is the rotating interface of
Keulegan [28] who proposed an analytical solution that consists of describing the movement of the
freshwater–saltwater interface without any external forcing in a confined aquifer. The numerical
results are satisfactory and replicated to those in [29,30]. The results of these simulations are omitted
since nothing startling was found. Instead, we concentrate on the results obtained in realistic two case
studies in the next section. More precisely, we present two numerical studies, one proposed in [16]
dealing with a hypothetical conceptual homogeneous unconfined aquifer subject to eleven scenarios
with different pumping rates and different well locations, and the other focusing on a real field test
case dealing with the contamination of the Souss–Chtouka aquifer. This second test is a coastal aquifer,
with complex geometry, and geologic material heterogeneities and subject to a large stress period along
with high pumping withdrawals.

All computations were performed on a laptop with Intel Xeon(R) CPU E3-1505M Processor
(3.00 GHz) and 8 GB RAM. One of the objectives of this paper is to deliver computational performance
also suitable for limited computational resources. Let us mention that in view of the CPU times required
for the examples treated in this paper, all the simulations were performed sequentially. However,
the new module developed can be used on multicore/multinode systems. The parallelization in
DuMuX is carried out using the DUNE parallel library package based on MPI providing high parallel
efficiency and allowing simulations with several tens of millions of degrees of freedom to be carried out,
ideal for large-scale field applications. DuMuX has the ability to run on anything from single processor
systems to highly parallel supercomputers with specialized hardware architectures.

4.3. Test 1: A Field-Scale Free Aquifer

The purpose of this test, considered in [16], is to see the influence of the pumping rate and well
position on the displacement of the interface. As reported in [16], it aims to assess the validity of the
sharp-interface approach for an unconfined coastal aquifer subjected to pumping by comparison with
dispersive approach results. For this, numerical simulation for several scenarios have been achieved
and compared to the results obtained in [16] where good agreement is observed.

The test considers a free aquifer of thickness 30 m and length 500 m. A Dirichlet condition for the
saltwater head v = 30 m was imposed in x = 500 m which corresponds to the seaside. The constant
freshwater flux 0.1 m3/day at land boundary (x = 0) was considered and homogeneous Neumann
boundary conditions are imposed on the rest of the border.

The total extraction rate in the pumping wells is assumed to be constant irrespective of the
proportions of saltwater and freshwater: Qt = Q f + Qs in a similar manner described by [31].
The hydraulic head of freshwater and saltwater under steady-state conditions (before pumping)
are used as initial conditions for the transient regime (after pumping) simulations. The simulation
duration of the transient model is approximately 30 years. The parameters and properties of the
aquifer are presented in Table 2.

Table 2. Parameters and properties of the aquifer.

Parameters δ K f Ks φ ρ f ρs S f Ss

Values 40 1.0 41 0.35 1000 1025 0.0 0.0
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Table 3 gives the different scenarios of the pumping rate and the wells position. Qt is the quantity
of the water pumped, Xw represents the distance between the well and the seaside (x = 500 m) and Zw

is the depth of the well. The well screen position is presented by a solid rectangular on Figure 3.

Table 3. Parameters for different scenarios.

Scenarios Sc-1 Sc-2 Sc-3 Sc-4 Sc-5 Sc-6 Sc-7 Sc-8 Sc-9 Sc-10 Sc-11

Qt [m3/d] 0.1 0.05 0.07 0.15 0.1 0.1 0.1 0.1 0.1 0.07 0.07
Xw [m] 150 150 150 150 150 150 200 300 100 150 150
Zw [m] 15 15 15 15 0 25 15 15 15 0 25

For all simulations, a uniform rectangular mesh of 250 × 10 cells is used for control volumes.
Simulations were achieved with an initial time step of 0.01 s and a maximum time-step equal to
1 day have been considered. The tolerances for the Newton method and the BICGSTAB method are
respectively 10−8 and 10−6. In this case, Newton’s method converges rapidly in less than 5 iterations.
The CPU time consumed for such simulation is less than 1 min.

4.3.1. Numerical Results by Varying the Pumping Rate

Here, we test the effect of the amount of water pumped on the evolution of the saltwater interface.
We will simulate the latter by varying the pumping rate. We assume that the well is located at the point
(Xw = 150 m, y = 0 m) in a depth Zw = 15 m. The different pumping scenarios correspond respectively
to 0.1 m3/day (Sc-1), 0.05 m3/day (Sc-2), 0.07 m3/day (Sc-3) and 0.15 m3/day (Sc-4). The numerical
results obtained in this case are presented in Figure 3. We observe that the salt front rises and the cone
of the polluted water tends towards the pumping well. The progression of this local “upconing” is
dependent on the amount of water pumped. In the second scenario, which corresponds to the smallest
amount of water pumped, the interface is too far from the well base. However, we see that the interface
touches the well bottom in the fourth scenario. The latter is salinized by the seawater, which can be
dangerous for the operator. It can, therefore, be deduced that the salinization of the well is strongly
related to the quantity of water pumped.

Figure 3. Evolution of the salt front by varying the pumping rate and fixing the position of the well.

4.3.2. Numerical Results by Varying the Depth of the Well

Here, we focus on the effect of the well position combined with the pumping rate on the evolution
of the sharp interface. The well is placed in the middle, bottom and top of the aquifer. Two different
pumping rates are considered. Figure 4 shows the evolution of the sharp interface for Qt = 0.1 m3/day
in the case of full (Sc-5) and partial (Sc-1, Sc-6) penetration of the pumping well.
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Figure 4. Evolution of the salt front by varying the depth of the well and fixing the pumping rate at
0.1 m3/day.

In Figure 4 (Sc-5), the salt cone is gone and the pumping well is filled by the seawater. The risk of
salinization decreases gradually as the well moves vertically up the aquifer.

We can make the same remarks in the case where we reduce the pumping rate to Qt = 0.07 m3/day
(Figure 5). The effects are less comparable to those observed with Qt = 0.01 m3/day.

Figure 5. Evolution of the salt front by varying the depth of the well and fixing the pumping rate at
0.07 m3/day.

4.3.3. Numerical Results by Varying the Longitudinal Position of the Well

In order to visualize the impact of the well screen position on the evolution of the salt
front, four longitudinal places are considered. The pumping rate is assumed to be constant
(Qt = 0.1 m3/day). The numerical results obtained in this case are presented in Figure 6.
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Figure 6. Evolution of the salt front for the Sc-1, Sc-7, Sc-8 and Sc-9 scenarios.

Remark 1. We have presented a comparison of our results versus those obtained in [16] for a test case dealing
with a homogeneous unconfined aquifer subject to eleven scenarios with different pumping rates and different
well locations. For this test case, in [16], it was also studied the effect of pumping rates and well screen location
on the evolution of the salt front. They deduce that if the pumping wells are deep and close to the coast, the risk of
salinization seawater is higher. It is also the case when the pumping rate is high. As shown above, the similarity
between the two results validates our approach.

4.4. Test 2: Souss–Chtouka Aquifer Field Case

4.4.1. Geographic Location and Geologic Settings

The Souss—Chtouka aquifer is located at the southwestern part of Morocco in the Souss plain
and its extension, the Chtouka plain. It is a hydrogeologic structure embraced between the alpine
Haut-Atlas chain at the north, the eruptive massif of Siroua at the east, the Anti-Atlas massif at
the south and is in contact with the Atlantic ocean at the west. Deep aquifers are identified in
this hydrogeologic structure, in addition of the generalized phreatic aquifer, subject of this study.
The phreatic aquifer of the Souss and Chtouka plains consists of heterogeneous fitting material of
the valley. According to its geology, the deposits correspond to the quaternary alluvial sands and
gravels of the Oued-Souss river, to the Moghrebian sandstones and coastal marine sands, to the
Pliocene limestone with marly and conglomeratic intercalations of the downland areas of the Souss
plain and to fluvial-lacustrine deposits of the Souss unit extending to the Anti-Atlas chain border.

4.4.2. Studied Domain and Discretization

The studied domain, of approximately 24 Km2, corresponds to the downland areas of the Souss
plain and its extension, the Chtouka plain. It is located between the Haut-Atlas chain at the north,
the 100 m contour of the 1968s piezometry at the east, the Oued-Massa river at the south and the
Atlantic ocean at the west (Figure 7).
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Figure 7. Study area and geolocation of the aquifer.

The geometry and boundaries of the aquifer are given in the left of Figure 8. For the mesh, we used
an unstructured triangulation of 19,520 elements and 9871 vertexes as shown in the right of Figure 8.
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Figure 8. Left: Geometry and boundaries of the aquifer and well locations. Right: mesh for the aquifer.

In passing, we remark that the horizontal surface area of the aquifer is about 24 Km2, while the
thickness of the aquifer is less than 1 Km (about 600 m in the north and 100 m in the south). In spite of
the presence, locally, of relatively high depth regions in the northern part of the Souss–Chtouka
coastal aquifer, the thickness of the latter remains small when compared to its lateral extent,
which allows the Dupuit assumption to be valid. The fluid movement is therefore assumed to
be horizontal.

4.4.3. Parameters and Boundary Conditions

Hydraulic conductivity of different geologic units that constitute the Souss–Chtouka aquifer,
are determined following trial-and-error calibration operations in [22]. Ten zones have been recognized,
for which the hydraulic conductivity values vary between 1.21 m/day and 40 m/day. The specific
storage coefficient values varying between 10−5 m−1 and 4× 10−5 m−1 and taken to be the same
for fresh and salty phases are also specified in the right of Figure 8. Porosity values varying
between 0.1 and 0.25 have been used, depending on the geologic material lithology. The specific
storage coefficient distribution and the values of hydraulic conductivity and porosity are specified in
Figure 9. Figure 10 shows the topography of the aquifer bottom. The Souss—Chtouka aquifer
is fed, mainly, by the precipitation, the irrigation returns, the vertical leakance of the underlain
Turonian limestone, the infiltration from the Oued-Souss river and the recharge from the Haut-Atlas
chain at the north. In [22], the author delimited 8 zones in the study area with fluxes values varying
between 1.05× 10−6 m/day and 8.06× 10−5 m/day.
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Figure 9. Distribution maps of specific storage coefficient, hydraulic conductivity and porosity,
respectively, of the aquifer.

Figure 10. Bottom elevation contours of the aquifer.

Owing to the intensive exploitation of the Souss–Chtouka aquifer and the difficulty to have
appropriate data, a general lowering of the water table is assumed. Many pumping wells given by the
Moroccan authority of water (ONEP) are presented in Table 4. However, the numerical simulations
obtained with these data show that the interface does not move for almost 80 years. In order to predict
a significant displacement of the interface in the long term, we have multiplied the pumping rates
given by the ONEP by a factor of 10.

Table 4. Well position and rate pumping.

Wells pumping P1 P2 P3 P4 P5

x [m] 99,811 100,277 101,250 100,750 102,000
y [m] 384,285 383,966 375,920 374,280 375,400

Rate [m3/day] −2918.84 −2686.99 −1011.10 −673.31 −710.22

Wells pumping P6 P7 P8 P9

x [m] 99,507.7 101,710 100,062 1,000,000
y [m] 375,246 374,431 372,311 374,996

Rate [m3/day] −1113.03 −1533.89 −1402.35 −1488.54

To close the problem, boundary conditions have to be specified. Fixed head (u = 100 m) is used on
the upstream of the domain, at the east. At the northwest, at the contact with the Haut-Atlas chain and
the south, fixed heads are also imposed representing the measured head [22]. On the western boundary,
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at the contact with the ocean a zero head is imposed (u = v = 0 m). To obtain the initial conditions,
the present model was run, under steady conditions, with the parameters resulted from calibration
conducted in [22].

For all simulations, an unstructured mesh of 19,520 cells is used for control volumes.
Simulations were achieved with an initial time step of 10 s. The tolerances for the Newton method and
the BICGSTAB method are respectively 10−8 and 10−6. In this case, Newton’s method converges in
less than 20 iterations. As expected, the time-step is increased when Newton’s algorithm converges
within less iterations. A remarkable attribute of the algorithm is that the total CPU time required for a
80 years simulation is less than 15 min on a laptop.

Let us end this section with the following remark. A second simulation for the Souss—Chtouka
aquifer was performed with a refined mesh (37,320 cells and 18,861 vertex). The obtained results are
very close to those of the previous coarse mesh. However, the CPU time is 15 min. In the following we
will present results corresponding to the coarse mesh.

4.4.4. Numerical Results

We show the piezometry of the freshwater of the Souss–Chtouka aquifer between 1968 and 2048
in Figure 11.

Figure 11. Plan view of the piezometry of the plain Souss–Chtouka before (left) and after
(right) solicitation.

For better visualization, all the curves are represented also on the bottom of the aquifer. To give a
more realistic vision of the freshwater potential and to visualize the impact of the dramatic exploitation
of the Souss–Chtouka Plain, we illustrate the piezometric contours of the freshwater head on the
bottom of the aquifer (Figure 12).

Up to 1968, the aquifer was not subjected to any external force. We can see that the equipotentials
are regular and vary from 0 m at the coast to 100 m at the landside. For the 2048 predictions, however,
following a drastic exploitation scenario, consisting of a general lowering of the freshwater level
at the upstream of the aquifer (u = 100− 0.625 t), along with over pumping rates, the water table
decreased considerably, reflected in a generalized decrease from the coast to the entire basin. The level
of freshwater decreases by 50 m in the upper part of the aquifer and an exceptional depression is
located around the pumping wells position. Initially, the hydraulic head of saltwater is zero and the
piezometric lines after 80 years are given in Figure 13.
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Figure 12. Contours representing the freshwater potential of the Souss–Chtouka Plain illustrated on
the bottom of the aquifer in 1968 (left) and 2048 (right).

Figure 13. Piezometric contours for saltwater hydraulic heads in 2048.

Figure 14 illustrates the extension of the salt wedge, which is more prominent in the north towards
the east (the depth of the reservoir reaches 650 m) and remains practically parallel to the western limit
when going south. After 80 years of activity, the salt bevel has experienced a significant displacement
in the north caused by intensive freshwater pumping, especially in regions where pumping wells
are placed. However, in the southwestern region, the figure shows that the salt bevel is stable and does
not advance in the continent (regions with low permeabilities).

To show the extent of the salt intrusion according to the location, we chose five sections
perpendicular to the Atlantic coast and oriented from the East to the West. The profiles of u, v
and Z according to different sections are presented in Figures 15–17.



Water 2020, 12, 1639 14 of 18

Figure 14. Position of the saltwater/freshwater interface in 1968 (black) and in 2048 (red).

Figure 15. Left: Plan view of level positions. Right: vertical cross section showing the interface position
(red line), the free surface position (blue line) and the variation of the saltwater hydraulic head (green
line) for different times: cut on the level 1.

The first remark we can make is the progress of the freshwater/saltwater interface for the great
depths to the east in the Agadir region, over a distance estimated at 7000 m on the substratum at a
depth of 600 m. Indeed, in the area concerned, the high value of the permeability of the formations
contributes to the advance of the bevel. Significant vertical advancement of the interface is noticed
in the first section and an “upconing” is developed under a large flow well. The pumping well is
close to the coast, which accelerates the advancement of the salt bevel during the 80 years of activity
(Figure 15).

On the second section, (Figure 16(left)), we can see a significant displacement of the salt bevel
laterally around 4 km and especially vertically, so that an "upconing" developed below a large flow of
three pumping wells. A slight cone of depression can also be noted at the location of these wells.
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Figure 16. Vertical cross section showing the interface position (red line), the free surface position (blue
line) and the variation of the saltwater hydraulic head (green line), for different times: cut on the levels
2 (left) and 3 (right).

Along the third section, (Figure 16(right)), the salt bevel is displaced laterally over a distance
of at least 6 km after 80 years of activity and an “upconing” is developed below the pumping well.
The pumping effects are less visible compared to the first two sections since the corresponding flow
rate is low. On the other hand, a strong cone of depression developed at the well site. The regular shape
of the bedrock and the high permeability values in this region contributed to the lateral advancement
of the salt bevel.

On the fourth section, (Figure 17(left)), there is always a sustained movement of the salt bevel over
the years to reach its maximum value after 80 years of service. Finally, the fifth section, (Figure 17(right))
shows almost no movement of the salt bevel despite a linear decrease in the free surface area, which is
generalized to the entire slick. It should be noted that the region interested in logging is free of any
pumping zones.

Figure 17. Vertical cross section showing the interface position (red line), the free surface position (blue
line) and the variation of the saltwater hydraulic head (green line), for different times: cut on the levels
4 (left) and 5 (right).
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Remark 2. The numerical results of the second test showed that the new developed module is capable of
providing a stable solution and can predict the location, the shape and the extent of the water table and the
freshwater–saltwater interface in coastal aquifers under various stress conditions, demonstrating its robustness
with satisfactory rate of convergence.

Let us end this section by the following remark. For numerous tests, the obtained results are
satisfactory and the numerical computations for the coupled system have demonstrated that this
approach yields physically realistic flow fields in highly heterogeneous fields. Furthermore, the fully
coupled fully implicit scheme greatly reduce the runtime of the simulations.

5. Conclusions

In this paper, we have presented a fully implicit finite volume method for solving a seawater
intrusion problem in coastal aquifers. We have shown that this method is efficient, and accurate, and is
capable of solving seawater flow problems into complex heterogeneous aquifers. The proposed
approach was implemented in the framework of the parallel open-source platform DuMuX.
Numerical results on a realistic heterogeneous aquifer were presented. The use of an existing and
well-established framework such as DuMuX to implement the simulations has presented several
advantages. First, the framework provided most of the basic numerical tools for implementing the
new methods. Then, the structure of the framework means that extensions to quite varied geometrical
and physical situations will be reasonably straightforward. Its open architecture facilitates further
development for specific needs. Future works will focus on the numerical analysis of the scheme and
the extension of the methodology to more advanced models, like the mixte sharp diffuse interface
model recently introduced in [32–34].
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