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Abstract: In this study, half-hourly Global Precipitation Mission (GPM) satellite precipitation data
were downscaled to produce high-resolution daily rainfall data for tropical coastal micro-watersheds
(100–1000 ha) without gauges or with rainfall data conflicts. Currently, daily-scale satellite rainfall
downscaling techniques rely on rain gauge data as corrective and controlling factors, making them
impractical for ungauged watersheds or watersheds with rainfall data conflicts. Therefore, we used
high-resolution local orographic and vertical velocity data as proxies to downscale half-hourly GPM
precipitation data (0.1◦) to high-resolution daily rainfall data (0.02◦). The overall quality of the
downscaled product was similar to or better than the quality of the raw GPM data. The downscaled
rainfall dataset improved the accuracy of rainfall estimates on the ground, with lower error relative
to measured rain gauge data. The average error was reduced from 41 to 27 mm/d and from 16 to
12 mm/d during the wet and dry seasons, respectively. Estimates of localized rainfall patterns were
improved from 38% to 73%. The results of this study will be useful for production of high-resolution
satellite precipitation data in ungauged tropical micro-watersheds.

Keywords: GPM downscaling; high resolution satellite rainfall; ungauged micro-watersheds

1. Introduction

Daily rainfall is a critical variable used to characterize hydrological dynamics in tropical
catchments. In Southeast Asia, many operational and productive micro-watersheds are relatively small
(<16 km2) [1–3], but are utilized for water supply, irrigation, and hydroelectric power. Despite their
small size, these micro-watersheds exhibit high spatiotemporal variability in rainfall patterns [4,5],
including extreme rainfall events that release large volumes of water within a short duration [6,7].
Rainfall intensity and distribution vary at short distances in micro-watersheds (~1 km). Additionally,
coastal tropical watersheds are influenced by convective processes that determine cloud formation,
as well as interactions between seasonal winds from the Asian Monsoon and local topography
and geomorphology.

Most micro-watersheds in Southeast Asia have rainfall data conflicts, which are characterized by
one or more of the following problems: lack of rain gauges, sparse rain gauge coverage, missing rain
gauge data, inefficient data sharing policies, or ineffective data management [8]. These conflicts often
cause ineffective watershed management, which can lead in turn to water resource, flood, water-borne
disaster, and biodiversity management failures. Satellite precipitation data can be used as a support
for ungauged sub-catchments or those with data conflicts; however, their use is constrained by spatial

Water 2020, 12, 1661; doi:10.3390/w12061661 www.mdpi.com/journal/water

http://www.mdpi.com/journal/water
http://www.mdpi.com
https://orcid.org/0000-0001-8284-3332
http://dx.doi.org/10.3390/w12061661
http://www.mdpi.com/journal/water
https://www.mdpi.com/2073-4441/12/6/1661?type=check_update&version=2


Water 2020, 12, 1661 2 of 19

resolution and sub-catchment size limitations. The coarse grid size of satellite data is a major constraint,
whereby satellite precipitation data are unable to effectively represent spatial rainfall distribution at
the sub-catchment scale [9–11].

The most advanced satellite data product of the Global Precipitation Mission (GPM) is available at a
half-hourly scale with an optimal resolution of 0.1◦ (~100 km2 grid at the Equator) [12]; however, it cannot
represent the rainfall patterns of small tropical sub-catchments, known as micro-watersheds [13].
Despite the recent development of many spatial downscaling techniques, most of these techniques
are designed for monthly-scale [8,14–16] or larger measurements (seasonal, annual) [17,18]. Thus,
most downscaling approaches are limited to monthly rainfall downscaling and cannot be applied to
daily-scale rainfall data. These spatial downscaling techniques are based on empirical relationships with
surrogate environmental variables as downscaling proxies; they have been developed for non-humid
tropical climates in terms of orography, solstice equinox season, and vegetation [19,20] and are therefore
not appropriate for the humid tropics. Although one technique has been developed for the humid
tropics, its selected proxy variable is less meaningful for coastal and maritime regions [21].

Therefore, an appropriate approach is needed for downscaling satellite precipitation data to
produce improved daily rainfall data for humid tropical environments, independent of rain gauges.
Daily downscaling approaches by Ryo [22] that use in-sync calibration using rain gauge streamflow or
merging with in situ rain gauge data by Chen et al. [23] and Lopez et al. [24] have produced reliable
results. Unfortunately, both of these methods require in situ rain gauge measurements, and many
micro-watershed catchments have no or very limited in situ data. Therefore, the challenge in spatially
downscaling daily-scale satellite precipitation data without in situ rain gauge measurement comprises
the identification of environmental parameters that strongly characterize rainfall patterns at the hourly
local scale, for use as proxies. Most torrential rainfall in the humid tropics of Southeast Asia is produced
by rain events lasting 2–4 h. At this scale, local heterogeneity rainfall patterns are highly influenced by
seasonal monsoon wind flow, relative humidity, topography, and proximity to the sea [25–28].

Integration of satellite rainfall estimates with influential local-scale environmental factors, in the
context of higher spatial (<0.1◦) and temporal resolution (1–2 h), would allow the appropriate
characterization of localized rainfall. At present, global digital elevation models (DEMs) are available
at a resolution of 15 m, thus allowing the accurate modelling of orographic effects if coupled with
wind vector data on a reasonable time scale. These types of wind data are generally obtained through
direct observation, interpolation, or model estimation when limited data are available. It is essential to
select a suitable orographic model for humid tropical climate conditions and coastal environments that
also matches the resolution of the satellite gridded data. The modelling period should be specific to
the monsoon season, when orography is the strongest influential factor. Experiments are required to
evaluate the model. A successful experiment would greatly aid in filling the current gap in rainfall
dynamics modelling in the humid tropics at the micro-watershed level.

In this study, we hypothesized that wind and orographic variables could be used as surrogate
factors to transform coarse rainfall estimates to a daily-scale product, because the surrogate data
had higher spatial and temporal resolution. We primarily utilized the high-resolution DEM as the
downscaling input, coupled with hourly local wind estimates. We made the following assumptions:
(1) the downscaling period occurred during the monsoon season when wind and orographic factors had
considerable effects on the rainfall pattern, and (2) the selected watershed was primarily influenced by
coastal effects and proximity to the sea. These downscaling assumptions are suitable for humid tropical
micro-catchments, which experience substantial wind and orography effects at hourly temporal scales.

The proposed algorithm used proxy environmental variables as downscale modelling factors,
instead of rain gauge data, such that it is suitable for ungauged catchment usage. The main objectives
of this study were to use high-resolution hourly local orography effects and GPM rainfall data
to determine the actual amount of precipitation that reached the ground at a daily scale, and to
evaluate the accuracy and reliability of the downscaled product in comparison with rain gauge
data. The Mass–Dempsey coastal wind model was modified for use with the uniform gridded pixel
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data used in this study. The quality of the downscaled rainfall products was then evaluated based on
three criteria: (i) quantification of actual rainfall amount on the ground, (ii) representation of spatial
rainfall distribution, and (iii) visualization of effective spatial rainfall patterns for micro-watersheds.

2. Materials and Method

2.1. Study Area

Paka-Dungun watershed is located in Peninsular Malaysia (4.75◦ N, 103.25◦ E), in the centre of
Southeast Asia (Figure 1). This tropical coastal watershed has a total catchment area of 2430 square
kilometres (243,000 ha). This watershed faces the South China Sea. The upper watershed comprises the
hilly mountain of Gunung Chemerong (~1100 m). It has a humid tropical climate with a temperature
range from 25 to 34◦C and a total average annual rainfall of 3172 mm. Of the total rainfall, 39% (1100 mm)
is received during the northeast monsoon season (November–January). This heavy rainfall is associated
with a large volume of moisture coming from the South China Sea in the northeast direction (Figure 2a–c)
and interaction with the orographic influences of the hilly areas (refer to the 2D view of the digital
elevation model in Figure 1).
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Figure 2. Rose wind vector during major wet season (a) November; (b) December; and (c) January and
minor wet months (d) March; & (e) May.

There is no distinct dry season, where the average rainfall for the rest of the month is 150 mm
(refer hyetograph in Figure 3a–h). In some parts of the watershed, slight heavier rainfall in March
and May, particularly due to the shifting from Northeast to Southwest monsoon. There are seven
major sub-watersheds. Those sub-watersheds are the catchments for two major rivers, Sungai Paka
(18 km length) and Sungai Dungun (33 km length). The major land cover is tropical forest (51%),
followed by oil palm (31%), built up areas (10%), and others (9%), which includes mixed horticulture,
orchard, aquaculture and other economic activities. One dam (Paka dam) is in this watershed for water
resources supply. This watershed has constantly experienced flooding due to extreme river discharge
and high tides, particularly during the wet season in November to January.

The digital elevation model (DEM) data, which are used to provide the topographic information
and to represent the orographic factors of the watershed, is a product from the Shuttle Radar Topography
Mission (SRTM). The DEM data product provides elevation information at 1 arc resolution (~30 m)
and can be accessed at dwtkns.com/srtm30m/. For this study, the DEM has been re-gridded to 0.02◦

resolution. The elevation is based on EGM96 vertical datum. The elevation for the study area was
extracted from the downloaded dataset using the catchment boundary information and is done by the
ArcGIS software.
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2.2. Precipitation and Wind Data

2.2.1. Global Precipitation Mission (GPM) Satellite Data

We used the hourly rainfall estimates data from the GPM satellite as our primary data. We utilized
the multi-satellite precipitation estimate with climatological gauge calibration—Late Run, or also
known as GPM_3IMERGHHL v06. This data product provides the half-hourly rain rate values.
The main reasons for its selection are: (i) satellite rainfall estimates with finest gridded data (0.1◦),
(ii) high temporal data supply, ranging from half-hourly to daily and monthly. The public domain
data ae obtained via the world wide web. GPM satellite precipitation is the successor of the Tropical
Rainfall Measuring Mission (TRMM), and only available starting from April 2014. The downloaded
data were then cropped for the selected catchment of our study area. We only chose the hourly data
with an intensity of over 0.05 mm/half hour. Data with an average rainfall below that threshold were
considered as no rain. The sampling period was conducted over the 24 h period starting from 8.00 am
on the starting day until 8.00 am on the next day.

To assist our successful selection of the satellite data, we used the existing rain gauge records
to filter the significant rainy days which have moderate to heavy intensity (daily rainfall exceeding
10 mm/d). The selection of the threshold was set so because, in theory, low-intensity rainy days tend
to have an insignificant impact on the run-off or productivity of the catchment. From the sampling
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period, the datasets would be split into two, one is for the normal season (June–July) and second is the
wet season (October–December) in 2014. From the 153 days of the sampling period, we had identified
46 significant rainy days to be used as samples, (daily rainfall exceeding 10 mm/d). The heaviest daily
rainfall was 295 mm, indicated in Kg Surau station. The rest of the rainy days below 10 mm/d were
excluded in our experiment.

2.2.2. Rain Gauge Data

There were eight rain gauges obtained from the Dept. of Irrigation and Drainage, Malaysia,
used in this study. The locations of the stations, average elevation, and maximum elevation of their
surrounding areas are included in Table 1. These stations were selected due to their preferences to
represent the fair distribution of rainfall variation and various elevations in the study area. The rain
gauge data were used for accuracy evaluation. The location of each station is shown in Figure 1.

Table 1. Rain gauge details.

Stations Name
Locations Elevation (m)

E N Average Maximum (2 km Radius)

4529001 Rumah Pam Paya, Pasir Raja 102.98 4.57 70 200
4631001 Bandar Al-Muktafi Billah Shah 103.19 4.62 60 170
4634085 Pusat Kesihatan Paka 103.44 4.64 11 12
4730002 Kg. Surau 103.09 4.74 38 210
4734079 SMK Sultan Omar 103.42 4.77 11 13
4834001 Klinik Bidan Kuala Abang 103.31 4.82 12 24
4833078 Rumah Pam Delong 103.42 4.83 22 23
4832011 Jerangau 103.20 4.85 20 80

2.2.3. Wind Data

The hourly wind speed and its direction were obtained from the spline-interpolated products
from the regional stations. The resolution is set to be similar to the desired downscaled resolution
(0.02◦). All of the data were acquired from the meteorological stations available at the local airports and
also the Malaysian Meteorological Department. The geographic locations of the data were provided in
Table 2 and Figure 4.

Table 2. Wind station details.

No Station Name Lat. Long.

1 Bayan Lepas 5.30 100.48
2 Subang 3.15 101.70
3 Pasir Gudang 1.45 103.88
5 Malacca 2.20 102.25
6 Ipoh 4.62 101.12
7 Johor Bahru 1.47 103.77
8 Alor Setar 6.12 100.37
9 Langkawi 6.32 100.37
10 Kota Bahru 6.12 102.25
11 KLIA 2.82 101.80
12 Seremban 2.72 101.93
13 Kuantan 3.80 103.32
14 Georgetown 5.42 100.33
15 Kangar 6.43 100.20
16 Cukai 4.25 103.42
17 Kuala Terengganu 5.33 103.12
18 Mersing 2.43 103.83
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2.3. Downscaling Approach

The core principle of the downscaling process is to compute the ground rainfall based on the three
factors, precipitation efficiency, condensation rate, and synoptic rain rate estimates at the exact hour of
the rainfall occurrence. The exact timing and synoptic rain rate estimates of rainfall occurrence were
provided by hourly data analysis of the GPM satellite data. In this study, only GPM data that have
over 0.1 mm of rain per hour were considered for downscaling. Therefore, a preliminary selection of
hourly rain rate images will be conducted before proceeding to the further downscaling process.

Because the satellite rainfall retrieval algorithm is based on the microwave backscatter from the
cloud, the estimated rain rate is less sensitive to the orographic effects, which strongly influenced those
watersheds that are mountainous and experience strong wind flows from the open sea. We adopted
the theory that coupling the high resolution orographic and wind effect with coarse GPM rain rate
data would represent the actual amount of the precipitation that reaches the ground, thus producing
rainfall surface images with finer resolution that are suitable for the micro-watershed application.
The methodology of this study is divided into four main phases, (1) computation of the total vertical
velocity, (2) computation of the hourly condensation, (3) estimation of the high-resolution daily rainfall
and (4) accuracy assessment. Figure 5 showed the schematic flow of the methodology.
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2.3.1. Phase 1a—Calculation of the Vertical Velocity Induced by Slope Surface and Wind

The vertical velocity, which is the main component in this downscaling scheme, is computed
in three major steps, (i) component A—calculation of the vertical velocity induced by slope surface
and wind, (ii) component B—calculation of the vertical velocity from vertical convergence, and (iii)
calculation of the total average vertical velocity. An orographic model introduced by Mass–Dempsey [27]
was modified to suit the nature of the uniform gridded remote sensing data. This model was chosen
due to several reasons, (1) they applied the concept of coupling the synoptic rain rate with the local
orography in estimating local rainfall at near coast watershed; a concept that is suitable to be used
in downscaling the satellite precipitation in Southeast Asia as many critical watersheds are in close
proximity to the sea, (2) the sigma coordinate model adopted in the original version suits the nature of
the uniform gridded data, (3) the simplicity of the calculation and number of required input parameters;
because the calculation using new generation of remote sensing data dealt with huge gridded data,
it would fasten the calculation process. In addition, the experimental site fulfils the fundamental
requirement of the model that depends on vertical stability, hydrostatic assumptions and drive with
strong exert of adiabatic convective process. With minimum field data being required (only wind data
are regularly required), the downscaling process would be operational.

The first component is calculated based on the product of wind intensity vectors and slope parallel
surface wind field, as shown in Equations (1)–(4). Instead of using four adjacent grid heights in the
traditional Mass–Dempsey sigma coordinates model, we adapted eight adjacent heights in order to
suit the nature of 3 × 3 kernel to the continuous DEM data.

dh
dx

=
h3 + h6 + h9

3
−

h1 + h4 + h7
3

(1)

dh
dy

=
h1 + h2 + h3

3
−

h7 + h8 + h9
3

(2)
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where dh/dx and dh/dy are the slope induced surface in direction-x (east–west) and direction-y
(north–south), respectively, h is the height from the DEM of surrounding central pixel (refer to Figure 6).Water 2020, 12, x FOR PEER REVIEW 9 of 20 
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The wind vector effect was then incorporated with this slope-induced surface to transform the
equation into

wsx = u ×
dh
dx
÷

√(
dh
dx

2)
+

(
dx2

)
(3)

wsy = v ×
dh
dy
÷

√(
dh
dy

2)
+

(
dy2

)
(4)

|u|= a × sin θ (5)

|v|= a × cos θ (6)

ws = wsx + wsy (7)

where ws is the total vertical velocity induced by slope surface and wind, wsx and wsy is the vertical
velocity induced by slope surface and wind in the east–west and north–south directions, respectively,
dx and dy is the distance between the east–west and north–south pixels, respectively, u and v are the wind
vectors in the direction of east–west and north–south, respectively, a is the wind speed (km/h, later this
metric unit is converted into m/h), and θ is the wind direction. See Figure 7 for the schematic diagram.
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This vertical velocity induced by slope and wind surface will be computed for each hourly datum
during the entire rainy period.

2.3.2. Phase 1b—Calculation of the Vertical Velocity from Vertical Surface Wind Convergence

The vertical velocity from vertical surface wind convergence is computed by summing the wind
vectors (east–west and north–south direction) for each individual pixel. The assumption of the original
Mass–Dempsey wind model where the surface wind convergences to decrease linearly with increasing
height and becomes zero at a maximum of 2000 m, suitable with the elevation range of our study area
(max. height ~ 1600 m). Therefore, the model can resemble effective vertical surface wind convergence
at ground scale.
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Theoretically, the wind speed intensity in this study is based on the synoptic scale and having a
constant value with height. This is due to eliminating the effects of surface wind flow.

dwc
dz

=

(
du
dx

+
dv
dy

)
(8)

where dwc/dz is the vertical velocity at surface convergence, and du/dx and dv/dx are the wind vector
components.

2.3.3. Phase 1c—Calculation of the Total Average Vertical Velocity

In order to obtain the total vertical velocity component, we average both the vertical velocity that
acquired earlier in phase 1a and 1b.

2.3.4. Phase 2—Calculation of the Hourly Condensation Rate

Upon the derivation of vertical velocity, it is used then to compute the condensation,
which represents the conversion of the airmass to liquid. We fully adopt the initial calculation by
Mass–Dempsey, as shown in Equation (9). In short, condensation is obtained by the function of
vertical velocity, rate of saturated mixing ratio, and depth of lifted airmass within the duration of
the precipitation.

C(i,j,t)= Wt(i,j,t) ×
dq
dz (i,j,t)

× D(i,j) × t (9)

where Wt is the vertical velocity, dq/dz is the average saturated mixing ratio, D is a depth of the lifted
airmass (height in m), and t is the duration (hour) of the precipitation. The value of the alternative
value of dq/dz can be obtained from the pseudo-adiabatic chart. In this study, we refer to that option
where the value of altitude is referred to the digital elevation model.

2.3.5. Phase 3—Estimation of High Resolution of Daily Rainfall

In this third phase, the daily rainfall for each high-resolution grid is computed in two steps.
The first step is computing the downscale of hourly rainfall using the condensation information acquire
in phase 2. The downscaled rainfall is equal to the product of condensation (C) and precipitation
efficiency (E) added to the average synoptic precipitation over the ocean or flat terrain on adjacent
land (Ps). In our study context, we substitute the Ps with the satellite rainfall estimates from GPM data,
as expressed in Equation (10).

Ph(i,j,t) =
(
C(i,j,t) × E(i,j)

)
+Ps(i,j, t) (10)

where Ph is the downscaled high-resolution rainfall at t hour, C is the condensation, E is the precipitation
efficiency, and Ps is the satellite rainfall estimates from GPM. The precipitation efficiency for this area is
assumed as a constant value of 0.8 based on the existing studies on many humid tropical sites [29,30].
i, and j represent the specific planimetric coordinates (x, y), and t is the specific duration of rainfall
occurrences (in hour).

The second step is summing all the rainfall at t hours (Ph) in the 24 h period to obtain the total
rainfall in a day. This process is executed at each high-resolution grid, and the final output of daily
satellite rainfall is generated. Equation (11) describes the process.

Pd(i,j) =
t∑

i,j=1

Ph(i,j,t) (11)

where Pd is the total daily rainfall for each pixel in the i and j grid, and t is the total number of
observations for each rainfall dataset.
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2.3.6. Phase 4—Accuracy Assessment

We will evaluate the performance of the high-resolution downscaled rainfall quantitatively and
qualitatively. The quantitative performance is measured by three indicators—the correlation, RMSE,
and bias ration. Correlation is used to measure the strength of the relationship between the raw and
downscale GPM rainfall against the rain gauge data over a series of temporal periods. Meanwhile,
the RMSE, also referred to as the quantitative error, is used to measure the quantitative differences
between downscaled rainfall and ground observed rainfall against the rain gauge. The third indicator,
bias ratio, is used to quantify the proportion and trend of the deviation committed by the downscaled
rainfall against the actual ground measurement. In this study, the bias ratio is used to assess how well
the downscaled GPM data represent the rainfall pattern based on the ground rain gauge. A value
of 1 indicates perfect representation of satellite and ground rainfall, while a value over 1 indicates
satellite overestimation and below 1 means satellite underestimation. The calculation and concept of
evaluation was adapted from Wolff et al. [31] and Mahmud et al. [13]. The corresponding equations are
expressed below.

P =

∑(
Rs−¯R. s

SRs

)(
Rrg−¯R. rg

SRrg

)
n

(12)

RMSE =

√∑(
Rs − Rrg

)
n

(13)

Bias =
Rs

Rrg
(14)

where Rs is the satellite-based rainfall, (raw and downscaled, depending on context), S is the standard
deviation, and Rrg is the rain gauge data.

3. Results

This section is divided into four sub-sections, where each section represents a different element
of spatio-temporal rainfall data performance, including (1) spatial rainfall pattern and distribution,
(2) temporal rainfall data, (3) quantitative rainfall measurement, and (4) effective rainfall visualization
at micro-watersheds scale.

3.1. Spatial Rainfall Pattern Representation Assessment

The bias ratio between the satellite rainfall and rain gauge data was used as an indicator to assess
the goodness of fit of the rainfall spatial pattern (Table 3). The downscaled data better represented actual
rainfall spatial patterns, compared with the raw GPM data. However, bias ratio reduction was slightly
affected by elevation. In comparison with raw rainfall data, the average bias ratio at high-elevation
stations was reduced from 61% to 26%, whereas bias ratio at low-elevation stations was reduced from
64% to 35%. Thus, downscaled rainfall data generally tended to underestimate actual rainfall.

Table 3. Average quantitative error (RMSE) and bias ratio for all ground rain gauge before and after
the downscaling process. * Bandar AMBS: Bandar Al-Muktafi Billah Shah.

Stations No. Name

Root Mean Square Error (mm/d) Bias Ratio (Sat/Rg)

Wet Season (n = 21) Normal
Seaso(n = 18) Wet Season (n = 21) Normal Season

(n = 18)

Raw Downscale Raw Downscale Raw Downscale Raw Downscale

4529001 Rumah Pam Paya 47 24 23 15 0.44 0.78 0.48 0.88
4631001 *Bandar AMBS 34 51 13 10 0.33 0.71 0.38 0.65
4832011 Jerangau 43 30 29 25 0.39 0.69 0.34 0.65
4730002 Kg. Surau 49 34 14 12 0.35 0.7 0.44 0.88
4734079 SMK Sultan Omar 34 24 12 10 0.33 0.71 0.31 0.71
4834001 Klinik Bidan Kuala Abang 26 23 11 9 0.62 1.12 0.3 0.61
4833078 Rumah Pam Delong 45 28 15 11 0.38 0.63 0.31 0.63
4634085 Pusat Kesihatan Paka 33 21 8 6 0.33 0.65 0.28 0.63
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Downscaled satellite rainfall data occasionally overestimated rain gauge during heavy rainfall
months (October–December). However, such instances were exceptionally rare and occurred at only
one station (Klinik Bidan Kuala Abang). This overestimation may have been due to the close proximity
of this station to the sea; raw GPM rainfall data pixels may have been mistakenly identified as land,
instead of sea.

3.2. Temporal Rainfall Representation Assessment

Time-series analyses showed an improvement in seasonal trends of downscaled GPM rainfall
(Figure 8), with an increase in the correlation value from 18% to 22%. Greater bias was observed
during the wet season, when downscaled GPM rainfall data consistently underestimated actual rainfall.
Correlation was stronger at wetter stations (mainly at higher elevations) than at other stations; however,
it was generally slightly lower (5%–8%) during the wet season, presumably due to greater error
propagation during high-intensity rainfall.

3.3. Quantitative Rainfall Error Assessment

On average, downscaled GPM rainfall estimates showed smaller error values than the raw GPM
rainfall estimates, with some variation among seasons and stations (Table 3). The quantitative accuracy
of the downscaled rainfall estimates was better in the wet season than in the normal season; respective
improvements of 34% and 25% were observed during November and December, compared with May
and June. During the wet season, the error decreased from 41 to 27 mm/d, while the error during the
normal season decreased from 16 to 12 mm/d. Error reduction capacity was higher at high-elevation
stations (Rumah Pam Paya, Bandar Al-Muktafi Billah Shah and Kg. Surau), especially during the
wet season.

The accuracy of downscaled rainfall data improved at high- and low-elevation stations (<80 m)
by averages of 36% and 29%, respectively, in the wet season; these trends were not observed in the dry
season. Greater error reduction was observed in the wet season than in the dry season. The downscaled
GPM data always performed similarly to or better than the raw GPM data. No case where the
downscaled GPM data performed worse than the raw GPM data was found.

3.4. Qualitative Rainfall Assessment

Downscaled GPM rainfall data portrayed better rainfall variation than the raw GPM data during
both seasons (Figure 9). Significant impact appeared at high elevated areas. The heavy rainfall in the
high elevated areas that is caused by the interaction between the incoming atmospheric moisture
from the northeast direction during the wet season is clearly depicted by the downscaled rainfall map.
Hence, the downscaled GPM rainfall maps were also capable of depicting the likely pattern of the
interpolated ground rainfall, with better localized rainfall pattern detail on the micro-catchments level.
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4. Discussion

The proposed downscaling procedures were able to produce high-resolution daily rainfall data
from GPM data. The downscaled rainfall data also had higher accuracy and qualitative ability compared
to the raw GPM data. Without the use of rain gauge data, this downscaling technique is suitable for
the data conflicting micro-watersheds. The outcome of the downscaling is also robust throughout any
season despite relying on the regional wind data and elevation data as inputs. Hence, the downscaling
technique is suitable for operational rainfall mapping, monitoring, and assessment. Although the
ground precipitation radar can supply rainfall rate data with a fine spatiotemporal resolution, it is
hindered by several limitations. Such limitations are poor data management and archiving, usage is
limited for weather forecasting and difficult image data processing.

The downscaling technique could contribute to water resource management in the critical
tropical micro-watersheds. Many water resources related micro-watersheds in Southeast Asia are
highly vulnerable to drought and yet they suffer from a lack of rainfall data [32–34]. In addition,
such watersheds also have a high risk of flooding and other related disasters (e.g., landslide) due
to heavy and extreme rainfall. Therefore, the innovative solution of high-resolution daily rainfall
maps would fill a significant gap on rainfall data in the effective water management and disaster
framework [35].

There was a drawback that will need to be adhered to in the future works for the betterment of the
algorithm. The first is regarding the slight underperformance at an elevation below 80 m. Because the
downscaling algorithm incorporates an orography effect that strongly affects the undulated and
higher elevation areas, the less elevated coastal areas could be strongly affected by other significant
factors such as distance to the sea. A study by Hayward and Clarke [36] clarified the relationship
between the rainfall and distance to the sea in Sierra Leone. Yamanaka [37] also highlighted this in
his work on the equatorial coastal rainfall. Furthermore, the heat contrast differences between the
land surface and sea temperature could play a role in influencing the rainfall distribution in tropical
coastal areas [38,39]. More recent research highlighted the influence of coastline geomorphology on
the rainfall distribution. This was indicated by Alfahmi et al. [40] and Yamanaka [41] in their work in
Indonesia. Incorporating such variables into the downscaling procedures could be able to improve the
output performance in the future.

The second limitation in our study is the use of interpolated regional wind data to represent the
high-resolution of vertical velocity and condensation rate (0.02◦). Since, in theory, vertical convection
could happen at smaller region scales than 0.02◦, our downscaling approach is therefore unable to
represent such variation, and this might affect the accuracy of the results. Considering that capturing
such high-resolution local wind data is a mounting challenge especially for a remote, forested,
and mountainous watershed; the other plausible way to anticipate such limitation is through the
innovation of various wind data downscaling methods, such as those introduced by Hasager [42] and
Bentamy et al. [43]. However, obtaining both high-temporal and high-resolution (<0.25◦) data is yet
to be achieved. Nevertheless, with the accuracy that is obtained through the use of regional wind
data, we believe that it was a worthwhile solution that could compromise the absolute absence of
ground rain gauge data for many tropical micro-watersheds. A continuous improvisation is highly
recommended and subjected to further research.

5. Conclusions

This study demonstrated that generating high-resolution daily rainfall from GPM satellite data can
be materialized through the incorporation of high resolution orographic and vertical velocity factors
obtained from regional wind data and the fine scale of a digital elevation model. The downscaled
rainfall was able to produce a high-resolution rainfall with improved quantitative accuracy during
both the wet and normal season, where the error is reduced by 34% and 16%, respectively. In addition,
the spatial rainfall pattern and distribution is also increased by an average of 35%. Prior to this,
the present spatial rainfall pattern accuracy for wet season had reached 75%, while being at 70% during
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the normal season. The visual appearances and quality of the downscaled rainfall maps were also
improved significantly. The proposed downscaling algorithm can be useful in providing alternative
rainfall data especially for the ungauged or data conflicting tropical micro-watersheds in coastal region.
It was found that the sensitivity of the proposed algorithm was higher in the high elevated watershed
region (>80 m a.s.l) during the wet season, where the strong monsoon wind and moist air masses
characterize the local rainfall. The downscaling process on the watershed areas with low elevation
(<80 m a.s.l) and located t near the coastal lines are suggested to incorporate additional downscaling
factors such as distance to the sea, coastal line geomorphology and sea–land heat differences.
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