An Improved Fuzzy Analytic Hierarchy Process for the Allocation of Water Rights to Industries in Northeast China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methods
2.2.1. The Establishment of the Index System
2.2.2. Improved Fuzzy AHP Method
- The original AHP
- 2.
- The improved fuzzy AHP.
2.2.3. Fuzzy Comprehensive Evaluation Method
- For indices in which bigger values indicate better outcomes:
- 2.
- For indices in which smaller values are better outcomes:
2.2.4. The Total Weight Coefficient of Initial Water Rights for Different Industries
- The relative weight and priority of each index were determined in the objective, criteria, evaluation, and index levels before the total weight coefficient of each index was be calculated.
- 2.
- The data of each grade was quantified by assigning a value between 0–1, following which the water rights weight coefficient of each industry was obtained according to the membership grade of each water industry, combined with the total weight coefficient of each index.
2.3. Data Collection
3. Results and Discussion
3.1. The Weightings of Initial Water Rights for Different Industries
3.1.1. The Establishment of the Fuzzy Assessment Matrix
3.1.2. The Weighting of the Evaluation Indices for Allocating Water Rights to Different Industries
3.2. The Allocation of Initial Water Rights to Different Industries
3.3. Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Evaluation Criteria | Affecting Priority Factors | Evaluation Indices | Excellent | Good | Average | Fair | Poor | Particularly Poor |
---|---|---|---|---|---|---|---|---|
B1 Physiographic criterion | Source of water | Ratio of available water resources | >0.9 | 0.9~0.8 | 0.8~0.7 | 0.7~0.6 | 0.6~0.5 | <0.5 |
Water quality | >0.8 | 0.8~0.7 | 0.7~0.6 | 0.6~0.5 | 0.5~0.3 | <0.3 | ||
Regional impact | Distance index | <600 | 600~1000 | 1000~1500 | 1500~2000 | 2000~2500 | >2500 | |
Superiority of geographical location | >0.75 | 0.75~0.6 | 0.6~0.5 | 0.5~0.35 | 0.35~0.2 | <0.2 | ||
B2 Social criterion | Water shortage status | Water quantity shortage | <0.05 | 0.05~0.1 | 0.1~0.15 | 0.15~0.2 | 0.2~0.25 | >0.25 |
Poor water quality | <0.1 | 0.1~0.2 | 0.2~0.3 | 0.3~0.45 | 0.45~0.65 | >0.25 | ||
Population | Population growth rate | <0.01 | 0.01~0.08 | 0.08~0.12 | 0.12~0.16 | 0.16~0.20 | >0.2 | |
Population density | <1.0 | 1~1.1 | 1.1~1.3 | 1.3~1.8 | 1.8~3.0 | >3.0 | ||
Average water allocation | Per capita water allocation | >150 | 150~120 | 120~100 | 100~85 | 85~60 | <60 | |
Irrigation quota | >858 | 858~725 | 725~608 | 608~480 | 480~325 | <325 | ||
Adherence to the established water supply | Current water supply | >0.9 | 0.9~0.72 | 0.72~0.65 | 0.65~0.52 | 0.52~0.38 | <0.38 | |
Agricultural facilities | >0.85 | 0.85~0.7 | 0.7~0.5 | 0.5~0.35 | 0.35~0.21 | <0.21 | ||
Water conservancy projects | Water utilization efficiency | >0.62 | 0.62~0.58 | 0.58~0.52 | 0.52~0.45 | 0.45~0.37 | <0.37 | |
Channel lining rate | >0.82 | 0.82~0.7 | 0.7~0.62 | 0.62~0.55 | 0.55~0.44 | <0.44 | ||
Water security | Agricultural water safety | >2 | 2~1.7 | 1.7~1.2 | 1.2~0.8 | 0.8~0.5 | <0.5 | |
Degree of medical and health facilities | >0.88 | 0.88~0.75 | 0.75~0.63 | 0.63~0.55 | 0.55~0.34 | <0.34 | ||
Industrial structural change | Rate of industrial structure change | <0.12 | 0.12~0.25 | 0.25~0.32 | 0.32~0.4 | 0.4~0.56 | >0.56 | |
Advanced productivity | Scientific and technological progress | >25 | 15~25 | 10~15 | 5~10 | 2~5 | <2 | |
Water saving irrigation technology | >0.55 | 0.55~0.42 | 0.42~0.35 | 0.35~0.2 | 0.2~0.1 | <0.1 | ||
B3 Economic criterion | Economic performance | Ratio of income generated by water conservancy to total GDP | >0.78 | 0.78~0.62 | 0.62~0.0.5 | 0.5~0.38 | 0.38~0.25 | <0.25 |
Ratio of income generated by grain to total GDP | >0.42 | 0.42~0.35 | 0.35~0.28 | 0.28~0.22 | 0.22~0.16 | <0.16 | ||
Income of per-water production unit | >25 | 15~25 | 10~15 | 5~10 | 2~5 | <2 | ||
Investment in water conservancy | Investment dynamics | >0.9 | 0.8~0.9 | 0.7~0.8 | 0.6~0.7 | 0.5~0.6 | <0.5 | |
Water price on cost | <0.12 | 0.12~0.18 | 0.18~0.24 | 0.24~0.32 | 0.32~0.38 | >0.38 | ||
B4 Ecological environment criterion | Ecological environment | Land salinization control | >0.7 | 0.6~0.7 | 0.5~0.6 | 0.4~0.5 | 0.3~0.4 | <0.3 |
River cut-off | <1.0 | 1~1.2 | 1.2~1.5 | 1.5~2.0 | 2.0~3.5 | >3.5 | ||
Artificial groundwater recharge | <0.1 | 0.1~0.2 | 0.2~0.3 | 0.3~0.4 | 0.4~0.5 | >0.5 | ||
Influence of permafrost | <0.1 | 0.1~0.16 | 0.16~0.25 | 0.25~0.38 | 0.38~0.5 | >0.5 | ||
Ecological water use | Ratio of ecological water use to total water use | >0.15 | 0.15~0.12 | 0.12~0.08 | 0.08~0.05 | 0.05~0.02 | <0.02 | |
Guaranteed rate of ecological water use | >0.75 | 0.75~0.63 | 0.63~0.51 | 0.51~0.42 | 0.42~0.3 | <0.3 |
Appendix B
The Criterion Layers | B1 | B2 | B3 | B4 | W |
---|---|---|---|---|---|
B1 | 1.000 | 0.577 | 0.760 | 1.004 | 0.670 |
B2 | 1.732 | 1.000 | 1.009 | 1.112 | 0.200 |
B3 | 1.316 | 0.991 | 1.000 | 1.004 | 0.080 |
B4 | 0.996 | 0.899 | 0.996 | 1.000 | 0.040 |
Consistency check | λmax = 4.022 | C.R. < 0.1, α < 0.2, and β < 0.1 A < 0.2, and β < 0.1 |
The Fuzzy Judgment Matrix of Factors C1–C2 Affecting Priority. | ||||||||
Priority Factors | C1 | C2 | ||||||
C1 | 1 | 1.116 | ||||||
C2 | 0.896 | 1 | ||||||
Consistency check | λmax = 2.000 | C.R. < 0.1, α < 0.2, and β < 0.1 | ||||||
The Fuzzy Judgment Matrix of Factors C3–C10 Affecting Priority. | ||||||||
Priority factors | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 |
C3 | 1.000 | 1.086 | 1.095 | 0.996 | 1.004 | 1.247 | 1.272 | 1.361 |
C4 | 0.921 | 1.000 | 0.998 | 0.760 | 0.898 | 0.994 | 1.073 | 1.185 |
C5 | 0.913 | 1.002 | 1.000 | 0.907 | 0.993 | 1.199 | 1.218 | 1.153 |
C6 | 1.004 | 1.316 | 1.102 | 1.000 | 0.998 | 1.007 | 1.138 | 1.131 |
C7 | 0.996 | 1.113 | 1.007 | 1.002 | 1.000 | 1.134 | 1.120 | 1.110 |
C8 | 0.802 | 1.006 | 0.834 | 0.993 | 0.882 | 1.000 | 1.143 | 1.193 |
C9 | 0.786 | 0.932 | 0.821 | 0.879 | 0.893 | 0.875 | 1.000 | 1.005 |
C10 | 0.735 | 0.844 | 0.867 | 0.884 | 0.901 | 0.838 | 0.995 | 1.000 |
Consistency check | λmax = 8.015 | C.R. < 0.1, α < 0.2, and β < 0.1 | ||||||
The Fuzzy Judgment Matrix of Factors C11–C12 Affecting Priority. | ||||||||
Priority Factors | C11 | C12 | ||||||
C11 | 1 | 1.074 | ||||||
C12 | 0.931 | 1 | ||||||
Consistency check | λmax = 2.000 | C.R. < 0.1, α < 0.2, and β < 0.1 | ||||||
The Fuzzy Judgment Matrix of Factors C13–C14 Affecting Priority. | ||||||||
Priority Factors | C13 | C14 | ||||||
C13 | 1 | 1.012 | ||||||
C14 | 0.988 | 1 | ||||||
Consistency check | λmax = 2.000 | C.R. < 0.1, α < 0.2, and β < 0.1 |
The Fuzzy Judgment Matrix of Evaluation Index D1–D2. | ||
Evaluation Indices | D1 | D2 |
D1 | 1.000 | 1.055 |
D2 | 0.948 | 1.000 |
Consistency check | λmax = 2.000 | C.R. < 0.1, α < 0.2, and β < 0.1 |
The Fuzzy Judgment Matrix of Evaluation Index D3–D4. | ||
Evaluation Indices | D3 | D4 |
D3 | 1.000 | 0.924 |
D4 | 1.082 | 1.000 |
Consistency check | λmax = 2.000 | C.R. < 0.1, α < 0.2, and β < 0.1 |
The Fuzzy Judgment Matrix of Evaluation Index D5–D6. | ||
Evaluation Indices | D5 | D6 |
D5 | 1.000 | 1.060 |
D6 | 0.943 | 1.000 |
Consistency check | λmax = 2.000 | C.R. < 0.1, α < 0.2, and β < 0.1 |
The Fuzzy Judgment Matrix of Evaluation Index D7–D8. | ||
Evaluation Indices | D7 | D8 |
D7 | 1.000 | 1.024 |
D8 | 0.977 | 1.000 |
Consistency check | λmax = 2.000 | C.R. < 0.1, α < 0.2, and β < 0.1 |
The Fuzzy Judgment Matrix of Evaluation Index D9–D10. | ||
Evaluation Indices | D9 | D10 |
D9 | 1.000 | 0.783 |
D10 | 1.277 | 1.000 |
Consistency check | λmax = 2.000 | C.R. < 0.1, α < 0.2, and β < 0.1 |
The Fuzzy Judgment Matrix of Evaluation Index D11–D12. | ||
Evaluation Indices | D11 | D12 |
D11 | 1.000 | 0.993 |
D12 | 1.007 | 1.000 |
Consistency check | λmax = 2.000 | C.R. < 0.1, α < 0.2, and β < 0.1 |
The Fuzzy Judgment Matrix of Evaluation Index D13–D14. | ||
Evaluation Indices | D13 | D14 |
D13 | 1.000 | 1.028 |
D14 | 0.973 | 1.000 |
Consistency check | λmax = 2.000 | C.R. < 0.1, α < 0.2, and β < 0.1 |
The Fuzzy Judgment Matrix of Evaluation Index D15–D16. | ||
Evaluation Indices | D15 | D16 |
D15 | 1.000 | 1.087 |
D16 | 0.920 | 1.000 |
Consistency check | λmax = 2.000 | C.R. < 0.1, α < 0.2, and β < 0.1 |
The Fuzzy Judgment Matrix of Evaluation Index D18–D19. | ||
Evaluation Indices | D18 | D19 |
D18 | 1.000 | 1.052 |
D19 | 0.951 | 1.000 |
Consistency check | λmax = 2.000 | C.R. < 0.1, α < 0.2, and β < 0.1 |
The Fuzzy Judgment Matrix of Evaluation Index D20–D22. | ||
Evaluation Indices | D20 | D21 |
D20 | 1.000 | 1.079 |
D21 | 0.927 | 1.000 |
D22 | 1.015 | 1.005 |
The Fuzzy Judgment Matrix of Evaluation Index D23–D24. | ||
Evaluation Indices | D23 | D24 |
D23 | 1.000 | 1.112 |
D24 | 0.899 | 1.000 |
Consistency check | λmax = 2.000 | C.R. < 0.1, α < 0.2, and β < 0.1 |
The Fuzzy Judgment Matrix of Evaluation Index D25–D28. | ||
Evaluation Indices | D25 | D26 |
D25 | 1.000 | 1.119 |
D26 | 0.894 | 1.000 |
D27 | 0.992 | 1.017 |
D28 | 0.878 | 0.987 |
Consistency check | λmax = 4.001 | C.R. < 0.1, α < 0.2, and β < 0.1 |
The Fuzzy Judgment Matrix of Evaluation Index D29–D30. | ||
Evaluation Indices | D29 | D30 |
D29 | 1.000 | 1.062 |
D30 | 0.942 | 1.000 |
Consistency check, | λmax = 2.000 | C.R. < 0.1, α < 0.2, and β < 0.1 |
Appendix C
Evaluation Criteria | Weight | Affecting Priority Factors | Local Weight | Total Weight | Evaluation Indices | Local Weight | Total Weight | ||
---|---|---|---|---|---|---|---|---|---|
B1 Physiographic criterion | 0.2018 | C1 | Source of water | 0.5274 | 0.1064 | D1 | Ratio of available water resources | 0.5133 | 0.0546 |
D2 | Water quality | 0.4867 | 0.0518 | ||||||
C2 | Regional impact | 0.4726 | 0.0954 | D3 | Distance index | 0.4803 | 0.0458 | ||
D4 | Superiority of geographical location | 0.5197 | 0.0496 | ||||||
B2 Social criterion | 0.2925 | C3 | Water shortage status | 0.1402 | 0.0410 | D5 | Water quantity shortage | 0.5147 | 0.0211 |
D6 | Poor water quality | 0.4853 | 0.0199 | ||||||
C4 | Population | 0.1210 | 0.0354 | D7 | Population growth rate | 0.5058 | 0.0179 | ||
D8 | Population density | 0.4942 | 0.0175 | ||||||
C5 | Average water allocation | 0.1298 | 0.0380 | D9 | Per capita water allocation | 0.4392 | 0.0167 | ||
D10 | Irrigation quota | 0.5608 | 0.0213 | ||||||
C6 | Adherence to the established water supply | 0.1348 | 0.0394 | D11 | Current water supply | 0.4983 | 0.0196 | ||
D12 | Agricultural facilities | 0.5017 | 0.0198 | ||||||
C7 | Water conservancyprojects | 0.1319 | 0.0386 | D13 | Water utilization efficiency | 0.5068 | 0.0195 | ||
D14 | Channel lining rate | 0.4932 | 0.0190 | ||||||
C8 | Water security | 0.1212 | 0.0355 | D15 | Agricultural water safety | 0.5208 | 0.0185 | ||
D16 | Degree of medical and health facilities | 0.4792 | 0.0170 | ||||||
C9 | Industrial structural change | 0.1116 | 0.0326 | D17 | Rate of industrial structure change | 0.0326 | 0.0326 | ||
C10 | Advanced productivity | 0.1095 | 0.0320 | D18 | Scientific and technological progress | 0.5126 | 0.0164 | ||
D19 | Water saving irrigation technology | 0.4874 | 0.0156 | ||||||
B3 Economic criterion | 0.2650 | C11 | Economic performance | 0.5179 | 0.1372 | D20 | Ratio of income generated by water conservancy to total GDP | 0.3401 | 0.0467 |
D21 | Ratio of income generated by grain to total GDP | 0.3244 | 0.0445 | ||||||
D22 | Income of per-water production unit | 0.3355 | 0.0460 | ||||||
C12 | Investment in waterconservancy | 0.4821 | 0.1278 | D23 | Investment dynamics | 0.5266 | 0.0673 | ||
D24 | Water price on cost | 0.4734 | 0.0605 | ||||||
B4 Ecological environment criterion | 0.2407 | C13 | Ecological environment | 0.5030 | 0.1211 | D25 | Land salinization control | 0.2659 | 0.0322 |
D26 | River cut-off | 0.2427 | 0.0294 | ||||||
D27 | Artificial groundwater recharge | 0.2517 | 0.0305 | ||||||
D28 | Influence of permafrost | 0.2397 | 0.0290 | ||||||
C14 | Ecological water use | 0.4970 | 0.1196 | D29 | Ratio of ecological water use to total water use | 0.5149 | 0.0616 | ||
D30 | Guaranteed rate of ecological water use | 0.4851 | 0.0580 |
References
- Chen, J.Q.; Jun, X. Facing the challenge: Barriers to sustainable water resources development in China. Hydrol. Sci. J. 1999, 44, 507–516. [Google Scholar]
- Liu, B.; Speed, R. Water resources management in the people’s republic of China. Int. J. Water Resour. Dev. 2009, 25, 193–208. [Google Scholar] [CrossRef]
- Goldberg, B.A.; Hutchins, W.A. The California Law of Water Rights. Stanf. Law Rev. 1957, 9, 420–423. [Google Scholar] [CrossRef]
- Hutchins, W.A.; Ellis, H.H.; DeBraal, J.P. Water Rights Laws in the Nineteen Western States; Lawbook Exchange: Washington, DC, USA, 2004. [Google Scholar]
- Diego, R.; Alex, G.F.; Mario, L. Legal disputes as a proxy for regional conflicts over water rights in Chile. J. Hydrol. 2016, 535, 36–45. [Google Scholar] [CrossRef]
- Singh, C. Water Rights and Pricinples of Water Resourses Managemengt; India Law Institute: New Delhi, India, 1991. [Google Scholar]
- John, F.; John, Q. Water Rights for Variable supplies: Working Paper of Murray Darling Program; The University of Queensland: Brisbane, Australia, 2005. [Google Scholar]
- Zhong, J.W.; Hang, Z.; Wang, X.F. A Harmonious Water Rights Allocation Model for shiyang river basin, Gansu Province, China. Water Resour. Dev. 2002, 25, 355–371. [Google Scholar] [CrossRef]
- Cobourn, K.M.; Ji, X.; Mooney, S.; Crescenti, N. Water right seniority, economic efficiency and land allocation decisions. In Proceedings of the Agricultural and Applied Economics Association, Chicago, IL, USA, 30 July–1 August 2017. [Google Scholar]
- Veldwisch, G.J.; Beekman, W.; Bolding, A. Smallholder Irrigators, Water Rights and Investments in Agriculture: Three Cases from Rural Mozambique. Water Altern. 2013, 6, 125–141. [Google Scholar]
- Warmsley, J.J. Market forces and the management of water for the environment. Water SA 1995, 21, 43–50. [Google Scholar]
- Kelman, J.; Kelman, R. Water Allocation for Economic Production in a Semi-arid Region. Int. J. Water Resour. Dev. 2002, 18, 391–407. [Google Scholar] [CrossRef]
- Kreutzwiser, R.D.; de Lo, R.C.; Durley, J.; Priddle, C. Water Allocation and the Permit to Take Water Program in Ontario: Challenges and Opportunities. Can. Water Resour. J. 2004, 29, 135–146. [Google Scholar] [CrossRef] [Green Version]
- Van Rijswick, M. Mechanisms for Water Allocation and Water Rights in Europe and The Netherlands-Lessons From a General Public Law Perspective. J. Water Law 2015, 24, 141–149. [Google Scholar]
- Zachary, P.S. An Equity Autopsy: Exploring the Role of Water Rights in Water Allocations and Impacts for the Central Valley Project during the 2012–2016 California Drought. Resource 2018, 7, 12. [Google Scholar] [CrossRef] [Green Version]
- Wesley, W. Drought Water Right Allocation Tool Applied to the San Joaquin River Basin. Master’s Thesis, University of California, CA, USA, 2011. [Google Scholar]
- Jefferson, L. Drought Water Rights Allocation Tool: Eel River Model Update and pyWRAT Application. Master’s Thesis, University of California Davis, Davis, CA, USA, 2018. [Google Scholar]
- Xiao, C.; Shao, D.; Yang, F.; Gu, W.; Wang, K. A new coupled chaos optimization-projection pursuit model for initial water rights allocation in the watershed. In Proceedings of the International Symposium on Water Resource & Environmental Protection, Xi’an, China, 20–22 May 2011; IEEE: Piscataway, NJ, USA, 2011. [Google Scholar]
- Ge, M.; Wu, F.P.; You, M. Initial provincial water rights dynamic projection pursuit allocation based on the most stringent water resources management: A case study of Taihu Basin, China. Water 2017, 9, 35–48. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.N.; Zhang, X.L.; Wu, F.P. Basin Initial Water Rights Allocation under Multiple Uncertainties: A Trade-off Analysis. Water Resour. Manag. 2020, 34, 955–988. [Google Scholar] [CrossRef]
- Wang, H.L.; Wen, J.H.; Wang, Y.T.; Wang, S.; Li, Q.; Zhang, Z.; Zhu, M. Analysis of trades water rights allocation at Si’an reservoir in Changxing County. Earth Environ. Sci. 2019, 227. [Google Scholar] [CrossRef]
- Wang, H.; Wen, J.; Wang, Y.; Wang, S.; Li, Q.; Zhang, Z.; Zhu, M. Grey Evaluation Model Based on Reformative Triangular Whitenization Weight Function and Its Application in Water Rights Allocation System. Open Cybern. Syst. J. 2013, 7, 1–10. [Google Scholar]
- Saaty, T.L. A scaling method for priorities in hierarchical structures. Math. Psychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
- Saaty, T.L. The Analytic Hierarchy Process; McGraw_Hill Company: New York, NY, USA, 1980. [Google Scholar]
- Saaty, T.L. Decision making-The analytic hierarchy and network processes (AHP/ANP). J. Syst. Sci. Syst. Eng. 2004, 13, 1–35. [Google Scholar] [CrossRef]
- Wu, D.T.; Li, D.F. Shortcomings of analytical hierarchy process and the path to improve the method. J. Beijing Norm. Univ. 2004, 40, 264–268. [Google Scholar]
- Cai, Y.H.; Lin, C.D. The status of and reflection on performance appraisal research. J. Beijing Norm. Univ. 2001, 4, 119–126. [Google Scholar]
- Alphonce, C.B. Application of the analytic hierarchy process in agriculture in developing countries. Agric. Syst. 1997, 53, 97–112. [Google Scholar] [CrossRef]
- Chowdary, V.M.; Chakraborthy, D.; Jeyaram, A.; Murthy, Y.K.; Sharma, J.R.; Dadhwal, V.K. Multi-Criteria Decision Making Approach for Watershed Prioritization Using Analytic Hierarchy Process Technique and GIS. Water Resour. Manag. 2013, 27, 3555–3571. [Google Scholar] [CrossRef]
- Chaudhary, P.; Chhetri, S.K.; Joshi, K.M.; Shrestha, B.M.; Kayastha, P. Application of an Analytic Hierarchy Process (AHP) in the GIS interface for suitable fire site selection: A case study from Kathmandu Metropolitan City, Nepal. Socio-Econ. Plan. Sci. 2016, 53, 60–71. [Google Scholar] [CrossRef]
- Erhan, Ş.; Şehnaz, Ş.; Ayşen, D. Groundwater potential mapping by combining fuzzy-analytic hierarchy process and GIS in Beyşehir Lake Basin, Turkey. Arab. J. Geosci. 2018, 11, 187–208. [Google Scholar]
- Wu, C.; Liu, G.; Huang, C.; Liu, Q.; Guan, X. Ecological vulnerability assessment based on Fuzzy Analytical Method and Analytic Hierarchy Process in Yellow river delta. Int. J. Environ. Res. Public Health 2018, 15, 855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murat, K.; Can, B.K. Evaluation of irrigation water quality by data envelopment analysis and Analytic Hierarchy Process-Based water quality indices: The case of aksaray city, Turkey. Water Air Soil Pollut. 2020, 231, 55. [Google Scholar]
- Sun, H.; Wang, S.; Hao, X. An Improved Analytic Hierarchy Process Method for the evaluation of agricultural water management in irrigation districts of north China. Agric. Water Manag. 2017, 179, 324–337. [Google Scholar] [CrossRef]
- Karamouz, M.; Kerachian, R.; Zahraie, B.; Araghi-Nejhad, S. Monitoring and evaluation scheme using the multiple-criteria decision-making technique:application to irrigation projects. Irrig. Drain. Eng. ASCE 2002, 128, 341–350. [Google Scholar] [CrossRef]
- Okada, H.; Styles, S.W.; Grismer, M.E. Application of the Analytic HierarchyProcess to irrigation project improvement. Agric. Water Manag. 2008, 95, 199–204. [Google Scholar] [CrossRef]
- William, H.; Ma, X. The state-of-the-art integrations and applications of the analytic hierarchy process. Eur. J. Oper. Res. 2017, 267, 399–414. [Google Scholar]
- Adams, A.; Pelletier, D.; Duffield, C.; Nagy, S.; Crisp, J.; Mitten-Lewis, S.; Murphy, J. The Delphi method. Nurs. Res. 1997, 46, 116–118. [Google Scholar]
- Wang, J.; Zhang, J.S. Comparing several methods of assuring weight vector in synthetical evaluation. Hebei Univ. Technol. 2001, 30, 52–57. (In Chinese) [Google Scholar]
- Lu, Y.J.; Zhang, W. Kernel function of index scale in AHP scale system. J. Syst. Eng. 2003, 18, 452–456. (In Chinese) [Google Scholar]
Distinguish Scale | 1 | 3 | 5 | 7 | 9 | 2, 4, 6, 8 |
---|---|---|---|---|---|---|
Definition | Equal importance | Weak importance | Obvious importance | Intensely importance | Extreme importance | Intermediate value |
Priority | Priority Level (Membership Degree) | |||||
---|---|---|---|---|---|---|
Absolute Priority | Moderate Priority | Appropriate Priority | Properly Set Back | Set Back | Almost No Rights | |
1~9 scale | 9 | 7 | 5 | 4 | 2 | 1 |
exponential scale | q9 | q7 | q5 | q3 | q1 | q0 |
0.1~1.0 scale | 1.0 | 0.828 | 0.741 | 0.5 | 0.259 | 0.1 |
Evaluation Indices | Total Weight | Relative Membership Degree | Total Priority Coefficient | ||||||
---|---|---|---|---|---|---|---|---|---|
Residential | Agricultural | Non-Agricultural Production | Ecological | Residential | Agricultural | Non-Agricultural Production | Ecological | ||
Ratio of available water resources | 0.0546 | 0.00 | 0.99 | 0.00 | 0.00 | 0.0000 | 0.0541 | 0.0000 | 0.0000 |
Water quality | 0.0518 | 0.24 | 0.65 | 0.00 | 0.00 | 0.0125 | 0.0337 | 0.0000 | 0.0000 |
Distance index | 0.0458 | 0.00 | 1.00 | 0.00 | 0.00 | 0.0000 | 0.0457 | 0.0000 | 0.0000 |
Superiority of geographical location | 0.0496 | 0.00 | 1.00 | 0.00 | 0.00 | 0.0000 | 0.0496 | 0.0000 | 0.0000 |
Water quantity shortage | 0.0211 | 0.00 | 1.00 | 0.00 | 0.00 | 0.0000 | 0.0211 | 0.0000 | 0.0000 |
Poor water quality | 0.0199 | 0.02 | 0.88 | 0.00 | 0.00 | 0.0005 | 0.0176 | 0.0000 | 0.0000 |
Population growth rate | 0.0179 | 0.11 | 0.79 | 0.00 | 0.00 | 0.0020 | 0.0141 | 0.0000 | 0.0000 |
Population density | 0.0175 | 0.09 | 0.88 | 0.00 | 0.00 | 0.0016 | 0.0153 | 0.0000 | 0.0000 |
Per capita water allocation | 0.0167 | 0.10 | 0.67 | 0.00 | 0.00 | 0.0017 | 0.0112 | 0.0000 | 0.0000 |
Irrigation quota | 0.0213 | 0.00 | 1.00 | 0.00 | 0.00 | 0.0000 | 0.0212 | 0.0000 | 0.0000 |
Current water supply | 0.0196 | 0.00 | 0.98 | 0.03 | 0.02 | 0.0000 | 0.0193 | 0.0006 | 0.0004 |
Agricultural facilities | 0.0198 | 0.00 | 1.00 | 0.00 | 0.00 | 0.0000 | 0.0198 | 0.0000 | 0.0000 |
Water utilization efficiency | 0.0195 | 0.00 | 0.99 | 0.00 | 0.00 | 0.0000 | 0.0194 | 0.0000 | 0.0000 |
Channel lining rate | 0.0190 | 0.00 | 1.00 | 0.00 | 0.00 | 0.0000 | 0.0190 | 0.0000 | 0.0000 |
Agricultural water safety | 0.0185 | 0.00 | 1.00 | 0.00 | 0.00 | 0.0000 | 0.0185 | 0.0000 | 0.0000 |
Degree of medical and health facilities | 0.0170 | 0.00 | 0.98 | 0.00 | 0.00 | 0.0000 | 0.0166 | 0.0000 | 0.0000 |
Rate of industrial structure change | 0.0326 | 0.01 | 0.95 | 0.03 | 0.00 | 0.0003 | 0.0309 | 0.0010 | 0.0000 |
Scientific and technological progress | 0.0164 | 0.00 | 0.89 | 0.02 | 0.00 | 0.0000 | 0.0146 | 0.0003 | 0.0000 |
Water saving irrigation technology | 0.0156 | 0.00 | 1.00 | 0.00 | 0.00 | 0.0000 | 0.0156 | 0.0000 | 0.0000 |
Ratio of income generated by water conservancy to total GDP | 0.0467 | 0.00 | 0.92 | 0.04 | 0.00 | 0.0000 | 0.0429 | 0.0019 | 0.0000 |
Ratio of income generated by grain to total GDP | 0.0445 | 0.00 | 1.00 | 0.00 | 0.00 | 0.0000 | 0.0445 | 0.0000 | 0.0000 |
Income of per-water production unit | 0.0460 | 0.00 | 0.90 | 0.07 | 0.00 | 0.0000 | 0.0414 | 0.0032 | 0.0000 |
Investment dynamics | 0.0673 | 0.00 | 1.00 | 0.00 | 0.00 | 0.0000 | 0.0673 | 0.0000 | 0.0000 |
Water price on cost | 0.0605 | 0.04 | 0.98 | 0.13 | 0.00 | 0.0023 | 0.0593 | 0.0080 | 0.0000 |
Land salinization control | 0.0322 | 0.00 | 1.00 | 0.00 | 0.02 | 0.0000 | 0.0322 | 0.0000 | 0.0006 |
River cut-off | 0.0294 | 0.00 | 0.84 | 0.00 | 0.00 | 0.0000 | 0.0247 | 0.0000 | 0.0000 |
Artificial groundwater recharge | 0.0305 | 0.00 | 0.78 | 0.00 | 0.00 | 0.0000 | 0.0238 | 0.0000 | 0.0000 |
Influence of permafrost | 0.0290 | 0.00 | 0.96 | 0.00 | 0.03 | 0.0000 | 0.0279 | 0.0000 | 0.0009 |
Ratio of ecological water use to total water use | 0.0616 | 0.00 | 0.00 | 0.00 | 0.05 | 0.0000 | 0.0000 | 0.0000 | 0.0031 |
Guaranteed rate of ecological water use | 0.0580 | 0.00 | 0.00 | 0.00 | 0.03 | 0.0000 | 0.0000 | 0.0000 | 0.0017 |
Industry comprehensive weight | 0.0240 | 0.9508 | 0.0173 | 0.0078 |
Computing Method | Residential | Agricultural | Non-Agricultural Production | Ecological Environment |
---|---|---|---|---|
The five-year average weight of water actual rights | 0.0191 | 0.9780 | 0.0024 | 0.0004 |
The improved fuzzy AHP | 0.0240 | 0.9508 | 0.0173 | 0.0078 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, J.; He, H.; An, Q.; Xie, J.; Cui, Y.; Xie, X. An Improved Fuzzy Analytic Hierarchy Process for the Allocation of Water Rights to Industries in Northeast China. Water 2020, 12, 1719. https://doi.org/10.3390/w12061719
Gao J, He H, An Q, Xie J, Cui Y, Xie X. An Improved Fuzzy Analytic Hierarchy Process for the Allocation of Water Rights to Industries in Northeast China. Water. 2020; 12(6):1719. https://doi.org/10.3390/w12061719
Chicago/Turabian StyleGao, Juanjuan, Huaxiang He, Qiang An, Jiqiang Xie, Yingjie Cui, and Xinmin Xie. 2020. "An Improved Fuzzy Analytic Hierarchy Process for the Allocation of Water Rights to Industries in Northeast China" Water 12, no. 6: 1719. https://doi.org/10.3390/w12061719
APA StyleGao, J., He, H., An, Q., Xie, J., Cui, Y., & Xie, X. (2020). An Improved Fuzzy Analytic Hierarchy Process for the Allocation of Water Rights to Industries in Northeast China. Water, 12(6), 1719. https://doi.org/10.3390/w12061719