Influence of Dissolved Organic Matter Sources on In-Stream Net Dissolved Organic Carbon Uptake in a Mediterranean Stream
Abstract
:1. Introduction
2. Methods
2.1. Study Site
2.2. Field Sampling
2.3. Laboratory Analysis
2.4. Calculation of In-Stream Net DOC Uptake
2.5. Data Analysis
3. Results
3.1. Characterization of DOM Source Scenarios
3.2. Comparison of In-Stream Net DOC Uptake among DOM Source Scenarios
3.3. Factors Influencing In-Stream Net DOC Uptake Variability
4. Discussion
4.1. Variability of In-Stream Net DOC Uptake
4.2. Influence of DOM Availability and Composition on In-Stream Net DOC Uptake
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Battin, T.J.; Kaplan, L.A.; Findlay, S.; Hopkinson, C.S.; Martí, E.; Packman, A.I.; Newbold, J.D.; Sabater, F. Erratum: Biophysical controls on organic carbon fluxes in fluvial networks. Nat. Geosci. 2009, 2, 595. [Google Scholar] [CrossRef]
- Raymond, P.A.; Hartmann, J.; Lauerwald, R.; Sobek, S.; McDonald, C.; Hoover, M.; Butman, D.; Striegl, R.; Mayorga, E.; Humborg, C.; et al. Global carbon dioxide emissions from inland waters. Nature 2013, 503, 355–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cole, J.; Prairie, Y.; Caraco, N.F.; McDowell, W.H.; Tranvik, L.J.; Striegl, R.G.; Duarte, C.M.; Kortelainen, P.; Downing, J.A.; Middelburg, J.J.; et al. Plumbing the Global Carbon Cycle: Integrating Inland Waters into the Terrestrial Carbon Budget. Ecosystems 2007, 10, 172–185. [Google Scholar] [CrossRef] [Green Version]
- Fisher, S.G.; Likens, G.E. Stream Ecosystem: Organic Energy Budget. Bioscience 1972, 22, 33–35. [Google Scholar] [CrossRef]
- Vannote, R.L.; Minshall, G.W.; Cummins, K.W.; Sedell, J.R.; Cushing, C.E. The River Continuum Concept. Can. J. Fish. Aquat. Sci. 1980, 37, 130–137. [Google Scholar] [CrossRef]
- Hotchkiss, E.R.; Sponseller, R.A.; Butman, D.; Klaminder, J.; Laudon, H.; Rosvall, M.; Karlsson, J. Sources of and processes controlling CO2 emissions change with the size of streams and rivers. Nat. Geosci. 2015, 8, 696–699. [Google Scholar] [CrossRef]
- Catalán, N.; Casas-Ruiz, J.P.; Arce, M.I.; Abril, M.; Bravo, A.G.; del Campo, R.; Estévez, E.; Freixa, A.; Giménez-Grau, P.; González-Ferreras, A.M.; et al. Behind the Scenes: Mechanisms Regulating Climatic Patterns of Dissolved Organic Carbon Uptake in Headwater Streams. Glob. Biogeochem. Cycles 2018, 32, 1528–1541. [Google Scholar] [CrossRef]
- Cory, R.M.; Kaplan, L.A. Biological lability of streamwater fluorescent dissolved organic matter. Limnol. Oceanogr. 2012, 57, 1347–1360. [Google Scholar] [CrossRef]
- Bertilsson, S.; Jones, J.B.J. Supply of dissolved organic matter in aquatic ecosystems: Autochthonous sources. In Aquatic Ecosystems: Interactivity of Dissolved Organic Matter; Findlay, S.E.G., Sinsabaugh, R.L., Eds.; Academic Press: San Diego, CA, USA, 2003; pp. 3–19. [Google Scholar]
- Sun, L.; Perdue, E.M.; Meyer, J.L.; Weis, J. Use of elemental composition to predict bioavailability of dissolved organic matter in a Georgia river. Limnol. Oceanogr. 1997, 42, 714–721. [Google Scholar] [CrossRef] [Green Version]
- Gessner, M.O.; Chauvet, E.; Dobson, M. A Perspective on Leaf Litter Breakdown in Streams. Oikos 1999, 85, 377. [Google Scholar] [CrossRef]
- Kothawala, D.N.; Ji, X.; Laudon, H.; Agren, A.; Futter, M.; Köhler, S.J.; Tranvik, L.J. The relative influence of land cover, hydrology, and in-stream processing on the composition of dissolved organic matter in boreal streams. J. Geophys. Res. Biogeosci. 2015, 120, 1491–1505. [Google Scholar] [CrossRef]
- Inamdar, S.; Finger, N.; Singh, S.; Mitchell, M.; Levia, D.; Bais, H.; Scott, D.; McHale, P. Dissolved organic matter (DOM) concentration and quality in a forested mid-Atlantic watershed, USA. Biogeochemistry 2011, 108, 55–76. [Google Scholar] [CrossRef]
- Bernal, S.; Lupon, A.; Catalán, N.; Castelar, S.; Martí, E. Decoupling of dissolved organic matter patterns between stream and riparian groundwater in a headwater forested catchment. Hydrol. Earth Syst. Sci. 2018, 22, 1897–1910. [Google Scholar] [CrossRef] [Green Version]
- Halvorson, H.M.; Scott, E.E.; Entrekin, S.A.; Evans-White, M.A. Light and dissolved phosphorus interactively affect microbial metabolism, stoichiometry, and decomposition of leaf litter. Freshw. Biol. 2016, 61, 1006–1019. [Google Scholar] [CrossRef]
- Ward, N.; Bianchi, T.S.; Sawakuchi, H.O.; Gagne-Maynard, W.; Cunha, A.C.; Brito, D.C.; Neu, V.; Valerio, A.M.; Silva, R.; Krusche, A.; et al. The reactivity of plant-derived organic matter and the potential importance of priming effects along the lower Amazon River. J. Geophys. Res. Biogeosci. 2016, 121, 1522–1539. [Google Scholar] [CrossRef]
- Kuehn, K.; Francoeur, S.N.; Findlay, R.H.; Neely, R.K. Priming in the microbial landscape: Periphytic algal stimulation of litter-associated microbial decomposers. Ecology 2014, 95, 749–762. [Google Scholar] [CrossRef]
- Bengtsson, M.M.; Attermeyer, K.; Catalán, N. Interactive effects on organic matter processing from soils to the ocean: Are priming effects relevant in aquatic ecosystems? Hydrobiology 2018, 822, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Acuña, V.; Giorgi, A.; Muñoz, I.; Uehlinger, U.; Sabater, S. Flow extremes and benthic organic matter shape the metabolism of a headwater Mediterranean stream. Freshw. Biol. 2004, 49, 960–971. [Google Scholar] [CrossRef]
- Ejarque, E.; Freixa, A.; Vazquez, E.; Guarch, A.; Amalfitano, S.; Fazi, S.; Romaní, A.M.; Butturini, A.; Roman?, A.M. Quality and reactivity of dissolved organic matter in a Mediterranean river across hydrological and spatial gradients. Sci. Total Environ. 2017, 599, 1802–1812. [Google Scholar] [CrossRef]
- Bernal, S.; Lupon, A.; Wollheim, W.M.; Sabater, F.; Poblador, S.; Martí, E. Supply, Demand, and In-Stream Retention of Dissolved Organic Carbon and Nitrate During Storms in Mediterranean Forested Headwater Streams. Front. Environ. Sci. 2019, 7, 60. [Google Scholar] [CrossRef] [Green Version]
- Guarch-Ribot, A.; Butturini, A. Hydrological conditions regulate dissolved organic matter quality in an intermittent headwater stream. From drought to storm analysis. Sci. Total Environ. 2016, 571, 1358–1369. [Google Scholar] [CrossRef] [Green Version]
- Bernal, S.; Lupon, A.; Ribot, M.; Sabater, F.; Marti, E. Riparian and in-stream controls on nutrient concentrations and fluxes in a headwater forested stream. Biogeosciences 2015, 12, 1941–1954. [Google Scholar] [CrossRef] [Green Version]
- Webster, J.R.; Gordon, N.D.; McMahon, T.A.; Finlayson, B. Stream Hydrology: An Introduction for Ecologists. Nancy D. Gordon, Thomas A. McMahon, Brian L. Finlayson. J. N. Am. Benthol. Soc. 1993, 12, 101–102. [Google Scholar] [CrossRef]
- Jaffé, R.; McKnight, D.M.; Maie, N.; Cory, R.; McDowell, W.H.; Campbell, J.L. Spatial and temporal variations in DOM composition in ecosystems: The importance of long-term monitoring of optical properties. J. Geophys. Res. Space Phys. 2008, 113, 1–15. [Google Scholar] [CrossRef]
- Huguet, A.; Vacher, L.; Relexans, S.; Saubusse, S.; Froidefond, J.; Parlanti, E. Properties of fluorescent dissolved organic matter in the Gironde Estuary. Org. Geochem. 2009, 40, 706–719. [Google Scholar] [CrossRef]
- Zsolnay, Á.; Baigar, E.; Jiménez, M.; Steinweg, B.; Saccomandi, F. Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying. Chemosphere 1999, 38, 45–50. [Google Scholar] [CrossRef]
- Fellman, J.B.; Hood, E.; Spencer, R.G.M. Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: A review. Limnol. Oceanogr. 2010, 55, 2452–2462. [Google Scholar] [CrossRef]
- Stedmon, C.; Markager, S.; Bro, R. Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Mar. Chem. 2003, 82, 239–254. [Google Scholar] [CrossRef]
- Murphy, K.R.; Stedmon, C.; Graeber, D.; Bro, R. Fluorescence spectroscopy and multi-way techniques. PARAFAC. Anal. Methods 2013, 5, 6557. [Google Scholar] [CrossRef] [Green Version]
- Zar, J.H. Biostatistical Analysis, 5th ed.; Pearson: Upper Saddle River, NJ, USA, 2010. [Google Scholar]
- Fusaroli, R.; Weed, E.; Fein, D.; Naigles, L. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019; Volume 183. [Google Scholar]
- Von Schiller, D.; Graeber, D.; Ribot, M.; Timoner, X.; Acuña, V.; Martí, E.; Sabater, S.; Tockner, K.; Bermejo, M.R. Hydrological transitions drive dissolved organic matter quantity and composition in a temporary Mediterranean stream. Biogeochemistry 2015, 123, 429–446. [Google Scholar] [CrossRef]
- Lee, M.-H.; Payeur-Poirier, J.-L.; Park, J.-H.; Matzner, E. Variability in runoff fluxes of dissolved and particulate carbon and nitrogen from two watersheds of different tree species during intense storm events. Biogeosciences 2016, 13, 5421–5432. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Inamdar, S.; Mitchell, M.; McHale, P. Seasonal pattern of dissolved organic matter (DOM) in watershed sources: Influence of hydrologic flow paths and autumn leaf fall. Biogeochemistry 2013, 118, 321–337. [Google Scholar] [CrossRef]
- Fasching, C.; Ulseth, A.J.; Schelker, J.; Steniczka, G.; Battin, T.J. Hydrology controls dissolved organic matter export and composition in an Alpine stream and its hyporheic zone. Limnol. Oceanogr. 2015, 61, 558–571. [Google Scholar] [CrossRef] [Green Version]
- Dent, C.L.; Grimm, N.B.; Martí, E.; Edmonds, J.W.; Henry, J.C.; Welter, J.R. Variability in surface-subsurface hydrologic interactions and implications for nutrient retention in an arid-land stream. J. Geophys. Res. Space Phys. 2007, 112, 04004. [Google Scholar] [CrossRef] [Green Version]
- Kothawala, D.N.; Stedmon, C.; Müller, R.A.; Weyhenmeyer, G.A.; Köhler, S.J.; Tranvik, L.J. Controls of dissolved organic matter quality: Evidence from a large-scale boreal lake survey. Glob. Chang. Biol. 2014, 20, 1101–1114. [Google Scholar] [CrossRef] [Green Version]
- Palmer, S.M.; Evans, C.D.; Chapman, P.; Burden, A.; Jones, T.G.; Allott, T.E.H.; Evans, M.; Moody, C.; Worrall, F.; Holden, J.; et al. Sporadic hotspots for physico-chemical retention of aquatic organic carbon: From peatland headwater source to sea. Aquat. Sci. 2015, 78, 491–504. [Google Scholar] [CrossRef] [Green Version]
- Casas-Ruiz, J.P.; Catalán, N.; Gómez-Gener, L.; von Schiller, D.; Obrador, B.; Kothawala, D.N.; López, P.; Sabater, S.; Arce, M.I. A tale of pipes and reactors: Controls on the in-stream dynamics of dissolved organic matter in rivers. Limnol. Oceanogr. 2017, 62, S85–S94. [Google Scholar] [CrossRef]
- Fellman, J.B.; Hood, E.; D’Amore, D.V.; Edwards, R.T.; White, D. Seasonal changes in the chemical quality and biodegradability of dissolved organic matter exported from soils to streams in coastal temperate rainforest watersheds. Biogeochemistry 2009, 95, 277–293. [Google Scholar] [CrossRef]
- Lupon, A.; Denfeld, B.A.; Laudon, H.; Leach, J.A.; Karlsson, J.; Sponseller, R.A. Groundwater inflows control patterns and sources of greenhouse gas emissions from streams. Limnol. Oceanogr. 2019, 64, 1545–1557. [Google Scholar] [CrossRef]
- Abril, M.; Muñoz, I.; Menéndez, M. Heterogeneity in leaf litter decomposition in a temporary Mediterranean stream during flow fragmentation. Sci. Total Environ. 2016, 553, 330–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayer, L.M.; Keil, R.G.; Macko, S.A.; Ruttenberg, K.C.; Aller, R.C.; Joye, S. Importance of suspended participates in riverine delivery of bioavailable nitrogen to coastal zones. Glob. Biogeochem. Cycles 1998, 12, 573–579. [Google Scholar] [CrossRef]
- Arrieta, J.; Mayol, E.; Hansman, R.; Herndl, G.J.; Dittmar, T.; Duarte, C.M. Dilution limits dissolved organic carbon utilization in the deep ocean. Science 2015, 348, 331–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Catalán, N.; Pastor, A.; Borrego, C.M.; Casas-Ruiz, J.P.; Hawkes, J.A.; Gutiérrez, C.; von Schiller, D.; Marcé, R. The relevance of environment versus composition on dissolved organic matter degradation in freshwaters. Under review in Limnology and Oceanography. J. Geophys. Res. Biogeosci. 2018. [Google Scholar] [CrossRef] [Green Version]
- D’Andrilli, J.; Junker, J.; Smith, H.J.; Scholl, E.A.; Foreman, C.M. DOM composition alters ecosystem function during microbial processing of isolated sources. Biogeochemistry 2019, 142, 281–298. [Google Scholar] [CrossRef] [Green Version]
- Wei, H.; Xiao, G.; Guenet, B.; Janssens, I.A.; Shen, W. Soil microbial community composition does not predominantly determine the variance of heterotrophic soil respiration across four subtropical forests. Sci. Rep. 2015, 5, 7854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Battin, T.; Butturini, A.; Sabater, F. Immobilization and metabolism of dissolved organic carbon by natural sediment biofilms in a Mediterranean and temperate stream. Aquat. Microb. Ecol. 1999, 19, 297–305. [Google Scholar] [CrossRef]
- Ruiz-González, C.; Niño-García, J.P.; del Giorgio, P.A. Terrestrial origin of bacterial communities in complex boreal freshwater networks. Ecol. Lett. 2015, 18, 1198–1206. [Google Scholar] [CrossRef]
- Lupon, A.; Martí, E.; Sabater, F.; Bernal, S. Green light: Gross primary production influences seasonal stream N export by controlling fine-scale N dynamics. Ecology 2016, 97, 133–144. [Google Scholar] [CrossRef] [Green Version]
- Burrows, R.M.; Laudon, H.; McKie, B.G.; Sponseller, R.A. Seasonal resource limitation of heterotrophic biofilms in boreal streams. Limnol. Oceanogr. 2016, 62, 164–176. [Google Scholar] [CrossRef]
- Massicotte, P.; Frenette, J.-J. Spatial connectivity in a large river system: Resolving the sources and fate of dissolved organic matter. Ecol. Appl. 2011, 21, 2600–2617. [Google Scholar] [CrossRef] [PubMed]
- Zeglin, L.H. Stream microbial diversity in response to environmental changes: Review and synthesis of existing research. Front. Microbiol. 2015, 6, 454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pastor, A.; Riera, J.L.; Peipoch, M.; Cañas, L.; Ribot, M.; Gacia, E.; Martí, E.; Sabater, F.; Bermejo, M.R. Temporal Variability of Nitrogen Stable Isotopes in Primary Uptake Compartments in Four Streams Differing in Human Impacts. Environ. Sci. Technol. 2014, 48, 6612–6619. [Google Scholar] [CrossRef] [PubMed]
- Abril, M.; Bastias, E.; von Schiller, D.; Martí, E.; Menéndez, M.; Muñoz, I. Uptake and trophic transfer of nitrogen and carbon in a temperate forested headwater stream. Aquat. Sci. 2019, 81, 75. [Google Scholar] [CrossRef] [Green Version]
Variable | UP | GW | LL | LL + GW |
---|---|---|---|---|
Discharge and temperature | ||||
Q (L s−1) | 54 ± 39 A | 62 ± 46 A | 85 ± 59 A | 78 ± 53 A |
(L s−1 km−2) | 6 ± 4 A | 8 ± 5 AB | 7 ± 5 AB | 10 ± 6 B |
QGW (L s−1) | −12 ± 15 A | 14 ± 20 B | −17 ± 15 A | 15 ± 24 B |
Temp (°C) | 12.3 ± 3.7 A | 11.4 ± 4.0 AB | 8.9± 2.1 B | 8.8 ± 1.8 B |
Stream water chemistry | ||||
NO3 (µg N L−1) | 187 ± 71 A | 202 ± 56 A | 236 ± 145 A | 272 ± 149 A |
NH4 (µg N L−1) | 11 ± 5 A | 11 ± 3 A | 8 ± 4 A | 9 ± 4 A |
SRP (µg P L−1) | 14 ± 6 A | 13 ± 9 A | 12 ± 6 A | 13 ± 7 A |
DON (µg N L−1) | 65 ± 78 A | 52 ± 32 A | 138 ± 357 A | 49 ± 39 A |
DOC (µg C L−1) | 403 ± 139 A | 435 ± 196 A | 1644 ± 1703 B | 1161 ± 1070 B |
Spectroscopic metrics | ||||
FI | 2.60 ± 0.10 A | 2.50 ± 0.10 A | 2.80 ± 0.40 B | 2.80 ± 0.60 B |
BIX | 0.67 ± 0.08 A | 0.70 ± 0.20 A | 0.62 ± 0.11 A | 0.63 ± 0.11 A |
HIX | 1.01 ± 0.23 A | 0.94 ± 0.25 A | 1.08± 0.55 A | 0.98 ± 0.43 A |
HDOM | 0.60 ± 0.11 A | 0.55 ± 0.10 A | 0.94 ± 0.39 B | 0.85 ± 0.30 B |
27% ± 6% | 26% ± 6% | 26% ± 7% | 35% ± 12% | |
PDOM | 1.92 ± 0.60 A | 1.85 ± 0.49 A | 2.79 ± 1.25 B | 2.47 ± 1.27 AB |
73% ± 14% | 74% ± 13% | 74% ± 7% | 65% ± 25% |
Scenario | Model Only with DOM Variables | Model with all Variables |
---|---|---|
UP | UDOC = 28 − 71 × DOC | UDOC = 53 − 102 × DOC − 126 × HDOM − 910 × QGW + 4 × Temp |
GW | UDOC = −788 + 328 × FI | UDOC = −962 + 358 × FI + 1848 × QGW + 5 × + 594 × DON |
LL | UDOC = −422 + 141 × FI | UDOC = 480 + 270 × FI − 54082 × NH4 |
LL + GW | UDOC = 271 − 193 × DOC | UDOC = 498 − 230 × DOC − 646 × NO3 |
All data | UDOC = 3 − 58 × DOC + 90 × HDOM | UDOC = −8 − 61 × DOC + 98 × HDOM + 2083 × QGW |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lupon, A.; Catalán, N.; Martí, E.; Bernal, S. Influence of Dissolved Organic Matter Sources on In-Stream Net Dissolved Organic Carbon Uptake in a Mediterranean Stream. Water 2020, 12, 1722. https://doi.org/10.3390/w12061722
Lupon A, Catalán N, Martí E, Bernal S. Influence of Dissolved Organic Matter Sources on In-Stream Net Dissolved Organic Carbon Uptake in a Mediterranean Stream. Water. 2020; 12(6):1722. https://doi.org/10.3390/w12061722
Chicago/Turabian StyleLupon, Anna, Núria Catalán, Eugènia Martí, and Susana Bernal. 2020. "Influence of Dissolved Organic Matter Sources on In-Stream Net Dissolved Organic Carbon Uptake in a Mediterranean Stream" Water 12, no. 6: 1722. https://doi.org/10.3390/w12061722
APA StyleLupon, A., Catalán, N., Martí, E., & Bernal, S. (2020). Influence of Dissolved Organic Matter Sources on In-Stream Net Dissolved Organic Carbon Uptake in a Mediterranean Stream. Water, 12(6), 1722. https://doi.org/10.3390/w12061722