Isotopic ‘Altitude’ and ‘Continental’ Effects in Modern Precipitation across the Adriatic–Pannonian Region
Abstract
:1. Introduction
2. Study Area and Main Moisture Sources
3. Data and Methods
4. Results and Discussion
4.1. ‘Altitude’ Effect
4.2. ‘Continental’ Effect
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Peixóto, J.P.; Oort, A.H. The Atmospheric Branch of the Hydrological Cycle and Climate. In Variations in the Global Water Budget; Street-Perrott, A., Beran, M., Ratcliffe, R., Eds.; Springer: Dordrecht, The Netherlands, 1983; pp. 5–65. [Google Scholar]
- Fórizs, I. Isotopes As Natural Tracers In The Water Cycle: Examples From The Carpathian Basin. Stud. Phys. 2003, 1, 69–77. [Google Scholar]
- Yoshimura, K. Stable Water Isotopes in Climatology, Meteorology, and Hydrology: A Review. J. Meteorol. Soc. Jan. Ser. II 2015, 93, 513–533. [Google Scholar] [CrossRef] [Green Version]
- Gat, J.R.; Mook, W.G.; Meijer, H.A. Environmental Isotopes in the Hydrological Cycle; International Atomic Energy Agency: Paris, France, 2001; Volume 2, p. 73. [Google Scholar]
- Coplen, T.B. Reporting of stable hydrogen, carbon and oxygen isotopic abundances. Pure App. Chem. 1994, 66, 273–276. [Google Scholar] [CrossRef]
- Dansgaard, W. Stable isotopes in precipitation. Tellus 1964, 16, 436–468. [Google Scholar] [CrossRef]
- Ambach, W.; Dansgaard, W.; Eisner, H.; Møller, J. The altitude effect on the isotopic composition of precipitation and glacier ice in the Alps. Tellus 1968, 20, 595–600. [Google Scholar] [CrossRef]
- Gonfiantini, R.; Roche, M.-A.; Olivry, J.-C.; Fontes, J.-C.; Zuppi, G.M. The altitude effect on the isotopic composition of tropical rains. Chem. Geol. 2001, 181, 147–167. [Google Scholar] [CrossRef]
- Poage, M.A.; Chamberlain, C.P. Empirical Relationships Between Elevation and the Stable Isotope Composition of Precipitation and Surface Waters: Considerations for Studies of Paleoelevation Change. Am. J. Sci. 2001, 301, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Rozanski, K.; Araguás-Araguás, L.; Gonfiantini, R. Isotopic patterns in modern global precipitation. In Climate Change in Continental Isotopic Records; American Geophysical Union: Washington, DC, USA, 1993; pp. 1–36. [Google Scholar]
- Clark, I.D.; Fritz, P. Environmental Isotopes in Hydrogeology; CRC Press Taylor & Francis Group: Boca Raton, FL, USA; London, UK; New York, NY, USA, 1997; p. 342. [Google Scholar]
- Sappa, G.; Vitale, S.; Ferranti, F. Identifying Karst Aquifer Recharge Areas using Environmental Isotopes: A Case Study in Central Italy. Geosciences 2018, 8, 351. [Google Scholar] [CrossRef] [Green Version]
- Jasechko, S.; Lechler, A.; Pausata, F.S.R.; Fawcett, P.J.; Gleeson, T.; Cendón, D.I.; Galewsky, J.; LeGrande, A.N.; Risi, C.; Sharp, Z.D.; et al. Late-glacial to late-Holocene shifts in global precipitation δ18O. Clim. Past 2015, 11, 1375–1393. [Google Scholar] [CrossRef] [Green Version]
- Blisniuk, P.M.; Stern, L.A. Stable isotope paleoaltimetry: A critical review. Am. J. Sci. 2005, 305, 1033–1074. [Google Scholar] [CrossRef]
- Kelly, S.; Heaton, K.; Hoogewerff, J. Tracing the geographical origin of food: The application of multi-element and multi-isotope analysis. Trends Food Sci. Technol. 2005, 16, 555–567. [Google Scholar] [CrossRef]
- Niewodnizański, J.; Grabczak, J.; Barański, L.; Rzepka, J. The Altitude Effect on the Isotopic Composition of Snow in High Mountains. J. Glaciol. 1981, 27, 99–111. [Google Scholar] [CrossRef] [Green Version]
- Kern, Z.; Kohán, B.; Leuenberger, M. Precipitation isoscape of high reliefs: Interpolation scheme designed and tested for monthly resolved precipitation oxygen isotope records of an Alpine domain. Atmos. Chem. Phys. 2014, 14, 1897–1907. [Google Scholar] [CrossRef] [Green Version]
- Kong, Y.; Pang, Z. A positive altitude gradient of isotopes in the precipitation over the Tianshan Mountains: Effects of moisture recycling and sub-cloud evaporation. J. Hydrol. 2016, 542, 222–230. [Google Scholar] [CrossRef]
- Jiao, Y.; Liu, C.; Liu, Z.; Ding, Y.; Xu, Q. Impacts of moisture sources on the temporal and spatial heterogeneity of monsoon precipitation isotopic altitude effects. J. Hydrol. 2020, 583, 124576. [Google Scholar] [CrossRef]
- Rozanski, K.; Sonntag, C.; Münnich, K.O. Factors controlling stable isotope composition of European precipitation. Tellus 1982, 34, 142–150. [Google Scholar] [CrossRef] [Green Version]
- Winnick, M.J.; Chamberlain, C.P.; Caves, J.K.; Welker, J.M. Quantifying the isotopic ‘continental effect’. Earth Planet. Sci. Lett. 2014, 406, 123–133. [Google Scholar] [CrossRef]
- Torkar, A.; Brenčič, M.; Vreča, P. Chemical and isotopic characteristics of groundwater-dominated Radovna River (NW Slovenia). Environ. Earth Sci. 2016, 75, 1296. [Google Scholar] [CrossRef]
- Sodemann, H.; Zubler, E. Seasonal and inter-annual variability of the moisture sources for Alpine precipitation during 1995–2002. Int. J. Climatol. 2010, 30, 947–961. [Google Scholar] [CrossRef]
- Gómez-Hernández, M.; Drumond, A.; Gimeno, L.; Garcia-Herrera, R. Variability of moisture sources in the Mediterranean region during the period 1980–2000. Water Resour. Res. 2013, 49, 6781–6794. [Google Scholar] [CrossRef] [Green Version]
- Ciric, D.; Nieto, R.; Losada, L.; Drumond, A.; Gimeno, L. The Mediterranean Moisture Contribution to Climatological and Extreme Monthly Continental Precipitation. Water 2018, 10, 519. [Google Scholar] [CrossRef] [Green Version]
- Stojanovic, M.; Drumond, A.; Nieto, R.; Gimeno, L. Variations in Moisture Supply from the Mediterranean Sea during Meteorological Drought Episodes over Central Europe. Atmosphere 2018, 9, 278. [Google Scholar] [CrossRef] [Green Version]
- Bottyán, E.; Czuppon, G.; Weidinger, T.; Haszpra, L.; Kármán, K. Moisture source diagnostics and isotope characteristics for precipitation in east Hungary: Implications for their relationship. Hydrol. Sci. J. 2017, 62, 2049–2060. [Google Scholar] [CrossRef]
- Czuppon, G.; Bottyán, E.; Krisztina, K.; Weidinger, T.; Haszpra, L. Significance of the air moisture source on the stable isotope composition of the precipitation in Hungary. In Proceedings of the Conference The EGU General Assembly 2017, Vienna, Austria, 23–28 April 2017; p. 13458. [Google Scholar]
- LeGrande, A.N.; Schmidt, G.A. Global gridded data set of the oxygen isotopic composition in seawater. Geophys. Res. Lett. 2006, 33, L12604. [Google Scholar] [CrossRef] [Green Version]
- Gat, J.R.; Klein, B.; Kushnir, Y.; Roether, W.; Wernli, H.; Yam, R.; Shemesh, A. Isotope composition of air moisture over the Mediterranean Sea: An index of the air-sea interaction pattern. Tellus B: Chem. Phys. Meteorol. 2003, 55, 953–965. [Google Scholar] [CrossRef]
- Benetti, M.; Steen-Larsen, H.C.; Reverdin, G.; Sveinbjörnsdóttir, Á.E.; Aloisi, G.; Berkelhammer, M.B.; Bourlès, B.; Bourras, D.; de Coetlogon, G.; Cosgrove, A.; et al. Stable isotopes in the atmospheric marine boundary layer water vapour over the Atlantic Ocean, 2012–2015. Sci. Data 2017, 4, 160128. [Google Scholar] [CrossRef]
- Umweltbundesamt, H.O.F. Bundesministerium für Land-und Forstwirtschaft, U.u.W.B., Ed. 2019. Available online: https://wasser.umweltbundesamt.at/h2odb/ (accessed on 1 October 2019).
- Vreča, P.; Malenšek, N. Slovenian Network of Isotopes in Precipitation (SLONIP)—A review of activities in the period 1981–2015. Geologija 2016, 59, 67–84. [Google Scholar] [CrossRef]
- SLONIP. Slovenian Network of Isotopes in Precipitation. The SLONIP Database. Available online: https://slonip.ijs.si/ (accessed on 1 May 2020).
- Czuppon, G.; Breuer, H.; Bottyán, E.; Kern, Z.; Simon, G.; Mona, T.; Göndöcs, J. Role of Meteorological Processes and Isotope Effects on the Stable Isotope Composition of Precipitation Originated from the Mediterranean Region; Book of Abstracts, National Research and Development Institute for Cryogenics and Isotopic Technologies- ICSI Rm: Válcea, Romania, 2017; p. 64. [Google Scholar]
- Vodila, G.; Palcsu, L.; Futó, I.; Szántó, Z. A 9-year record of stable isotope ratios of precipitation in Eastern Hungary: Implications on isotope hydrology and regional palaeoclimatology. J. Hydrol. 2011, 400, 144–153. [Google Scholar] [CrossRef]
- Marković, T.; Karlović, I.; Perčec Tadić, M.; Larva, O. Application of Stable Water Isotopes to Improve Conceptual Model of Alluvial Aquifer in the Varaždin Area. Water 2020, 12, 379. [Google Scholar] [CrossRef] [Green Version]
- IAEA. IAEA/GNIP precipitation sampling guide V2; International Atomic Energy Agency: Vienna, Austria, 2 September 2014; p. 19. Available online: http://www-naweb.iaea.org/napc/ih/documents/other/gnip_manual_v2.02_en_hq.pdf (accessed on 15 May 2020).
- Mann, H.B.; Whitney, D.R. On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other. Ann. Math. Statist. 1947, 18, 50–60. [Google Scholar] [CrossRef]
- Merlivat, L.; Jouzel, J. Global climatic interpretation of the deuterium-oxygen 18 relationship for precipitation. J. Geophys. Res. Oceans 1979, 84, 5029–5033. [Google Scholar] [CrossRef]
- Bershaw, J. Controls on Deuterium Excess across Asia. Geosciences 2018, 8, 257. [Google Scholar] [CrossRef] [Green Version]
- Craig, H. Isotopic Variations in Meteoric Waters. Science 1961, 133, 1702–1703. [Google Scholar] [CrossRef] [PubMed]
- Gat, J. Isotope Hydrology: A Study of the Water Cycle; Imperial College Press: London, UK, 2010. [Google Scholar]
- Stewart, M.K. Stable isotope fractionation due to evaporation and isotopic exchange of falling waterdrops: Applications to atmospheric processes and evaporation of lakes. J. Geophys. Res. 1975, 80, 1133–1146. [Google Scholar] [CrossRef]
- Moser, H.; Stichler, W. Die Verwendung des Deuterium- und Sauerstoff-18-Gehalts bei hydrologischen Untersuchungen, in English: Application of deuterium and oxygen-18 content measurements in hydrological investigations. Geol. Bavarica 1971, 64, 7–35. [Google Scholar]
- Krajcar Bronić, I.; Horvatinčić, N.; Obelić, B. Two decades of environmental isotope records in Croatia: Reconstruction of the past and prediction of future levels. Radiocarbon 1998, 40, 399–416. [Google Scholar] [CrossRef] [Green Version]
- Vreča, P.; Bronić, I.K.; Horvatinčić, N.; Barešić, J. Isotopic characteristics of precipitation in Slovenia and Croatia: Comparison of continental and maritime stations. J. Hydrol. 2006, 330, 457–469. [Google Scholar] [CrossRef]
- Malík, P.; Michalko, J. Oxygen Isotopes in Different Recession Subregimes of Karst Springs in the Brezovské Karpaty Mts. (Slovakia). Acta Carsologica 2010, 39. [Google Scholar] [CrossRef] [Green Version]
- Holko, L.; Dóša, M.; Michalko, J.; Šanda, M. Isotopes of oxygen-18 and deuterium in precipitation in Slovakia. J. Hydrol. Hydromech. 2012, 60, 265–276. [Google Scholar] [CrossRef]
- Fórizs, I.; Makfalvi, Z.; Deák, J.; Kármán, K.; Vallasek, I.; Süveges, M. Izotópgeokémiai vizsgálatok a Csíki-medence ásványvizeiben/Isotope geochemical investigations of the mineral waters in the Ciuc Basin. Miskolc. Egy. Közl. Sor. Bány. 2011, 81, 59–67. [Google Scholar]
- Salati, E.; Dall’Olio, A.; Matsui, E.; Gat, J.R. Recycling of water in the Amazon Basin: An isotopic study. Water Resour. Res. 1979, 15, 1250–1258. [Google Scholar] [CrossRef]
- Gat, J.R.; Matsui, E. Atmospheric water balance in the Amazon basin: An isotopic evapotranspiration model. J. Geophys. Res. Atmos. 1991, 96, 13179–13188. [Google Scholar] [CrossRef]
- Wang, X.-F.; Yakir, D. Temporal and spatial variations in the oxygen-18 content of leaf water in different plant species. Plant Cell Environ. 1995, 18, 1377–1385. [Google Scholar] [CrossRef]
Name | Latitude (°) | Longitude (°) | Elevation (m a.s.l.) | No. of Monthly Data (δ2H; δ18O) | Country | Used in |
---|---|---|---|---|---|---|
Villacher Alpe | 46.603 | 13.672 | 2164 | 35; 35 | AT | Alt |
Seeberg | 46.417 | 14.533 | 940 | 11; 11 | AT | Alt |
Hrašćica | 46.3 | 16.292 | 177 | 18; 18 | HR | Cont |
Farkasfa | 46.910 | 16.309 | 312 | 35; 35 | HU | Cont |
Budapest | 47.432 | 19.187 | 139 | 36; 36 | HU | Cont |
Rakamaz | 48.128 | 21.470 | 103 | 24; 24 | HU | Cont |
Debrecen | 47.475 | 21.494 | 110 | 36; 34 | HU | Cont |
Tornyospálca | 48.273 | 22.177 | 108 | 24; 24 | HU | Cont |
Portorož | 45.475 | 13.616 | 2 | 35; 35 | SI | Cont |
Rateče | 46.497 | 13.713 | 864 | 32; 33 | SI | Alt |
Kredarica | 46.379 | 13.849 | 2514 | 34; 34 | SI | Alt |
Zg. Radovna | 46.428 | 13.943 | 750 | 35; 35 | SI | Alt |
Ljubljana | 46.095 | 14.597 | 282 | 35; 35 | SI | Alt/Cont |
Sv. Urban | 46.184 | 15.591 | 283 | 34; 34 | SI | Cont |
Murska Sobota | 46.652 | 16.191 | 186 | 33; 32 | SI | Cont |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kern, Z.; Hatvani, I.G.; Czuppon, G.; Fórizs, I.; Erdélyi, D.; Kanduč, T.; Palcsu, L.; Vreča, P. Isotopic ‘Altitude’ and ‘Continental’ Effects in Modern Precipitation across the Adriatic–Pannonian Region. Water 2020, 12, 1797. https://doi.org/10.3390/w12061797
Kern Z, Hatvani IG, Czuppon G, Fórizs I, Erdélyi D, Kanduč T, Palcsu L, Vreča P. Isotopic ‘Altitude’ and ‘Continental’ Effects in Modern Precipitation across the Adriatic–Pannonian Region. Water. 2020; 12(6):1797. https://doi.org/10.3390/w12061797
Chicago/Turabian StyleKern, Zoltán, István Gábor Hatvani, György Czuppon, István Fórizs, Dániel Erdélyi, Tjaša Kanduč, László Palcsu, and Polona Vreča. 2020. "Isotopic ‘Altitude’ and ‘Continental’ Effects in Modern Precipitation across the Adriatic–Pannonian Region" Water 12, no. 6: 1797. https://doi.org/10.3390/w12061797
APA StyleKern, Z., Hatvani, I. G., Czuppon, G., Fórizs, I., Erdélyi, D., Kanduč, T., Palcsu, L., & Vreča, P. (2020). Isotopic ‘Altitude’ and ‘Continental’ Effects in Modern Precipitation across the Adriatic–Pannonian Region. Water, 12(6), 1797. https://doi.org/10.3390/w12061797