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Abstract: Dye wastewater, as a kind of refractory wastewater (with a ratio of biochemical oxygen
demand (BOD) and chemical oxygen demand (COD) of less than 0.3), still needs advanced treatments
in order to reach the discharge standard. In this work, the recycling-flow three-dimensional
(3D) electro-reactor system was designed for degrading synthetic rhodamine B (RhB) wastewater
as dye wastewater (100 mg/L). After 180 min of degradation, the removal of total organic
carbon (TOC) and chemical oxygen demand (COD) of RhB wastewater were both approximately
double the corresponding values in the recycling-flow two-dimensional (2D) electro-reactor system.
Columnar granular activated carbon (CGAC), as micro-electrodes packed between anodic and cathodic
electrodes in the recycling-flow 3D electro-reactor system, generated an obviously characteristic
peak of anodic catalytic oxidation, increased the mass transfer rate and electrochemically active
surface area (EASA) by 40%, and rapidly produced 1.52 times more hydroxyl radicals (·OH) on
the surface of CGAC electrodes, in comparison to the recycling-flow 2D electro-reactor system.
Additionally, the recycling-flow 3D electro-reactor system can maintain higher current efficiency (CE)
and lower energy consumption (Es).

Keywords: recycling-flow; three-dimensional electro-reactor system; two-dimensional electro-reactor
system; rhodamine B; wastewater treatment

1. Introduction

Nowadays, the unsafe disposal of dye wastewater, which still contains lots of complex pollutants
and toxic matter, such as aromatic, chloric, and azo compounds, is seriously threating environmental
and ecological systems and human health [1–5]. The reason is that dye wastewater, as a kind of
refractory wastewater (with a ratio of biochemical oxygen demand (BOD) and chemical oxygen demand
(COD) of less than 0.3), is severely difficult to degrade in order to fall under discharge standards
in the activated sludge process using traditional and biological wastewater treatment methods [6].
Therefore, there is a definite urgent need for methods which efficiently degrade dye wastewater after
biological treatment [7–10].

In comparison to the two-dimensional (2D) electro-reactor, consisting of an anode electrode,
cathode electrode, and electrolyzer, the three-dimensional (3D) electro-reactor contains a certain
number of small granular substances, such as activated carbon particles and diatomite particles,
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charged by an electric field to form micro-electrodes and then acquires an electrochemically oxidative
ability with a third electrode, which is placed between the anode and the cathode electrodes [11–14].
Simultaneously, the degradation of dye pollutants from wastewater can occur on the surface of
these small granular electrodes and anode and cathode electrodes in the 3D electro-reactor [15,16].
Hence, the 3D electro-reactor theoretically shows more brilliant promise in the advanced treatment of
dye wastewater as effluent than the 2D electro-reactor.

Currently, the number of researchers [17–19] who pay attention to the study of 3D electrode
technology is growing dramatically, but they are always focusing on the novel methods of granular
electrode modification in order to improve the oxidative degradation ability of the 3D electro-reactor
instead of the design and amendment of the 3D electro-reactor system. However, the processes of
granular electrode modification normally require quite serious and extreme conditions, such as high
temperature and pressure, and special materials, such as noble gases and metal [20,21].

As is well known, the fixed bed 3D electro-reactor system and the fluid bed 3D electro-reactor
system are usually used to treat dye wastewater. The former system has the main disadvantage of low
treatment efficiency due to extremely a high hydraulic retention time (HRT) and, meanwhile, the main
disadvantage of the latter system is effluent’s high total organic carbon (TOC) and COD above the
discharged standard due to a low HRT [22–24]. Therefore, a recycling-flow 3D electro-reactor system,
taking advantages of the strong oxidative degradation ability, high treatment efficiency, no secondary
pollution, and being operated under normal temperature and atmosphere pressure, is designed for
degrading dye wastewater in our work.

Choosing RhB wastewater as one kind of dye wastewater, this paper is going to analyze the
mechanism of the TOC and COD degradation of RhB wastewater in the aspect of mass transfer,
the electrochemically active surface area (EASA) of electrodes, the instant concentration of hydroxyl
radicals (·OH), current efficiency (CE), and energy consumption (Es) in the recycling-flow 3D electro-reactor
system, compared with the recycling-flow 2D electro-reactor system. Additionally, it carries on, finding
out the mechanism of TOC and COD degradation with different voltages, with different electrolytes, and
at different HRTs in the recycling-flow 3D electro-reactor system.

2. Materials and Methods

2.1. Materials

RhB as a dye has a molecular formula of C28H31ClN2O3 and a molecular weight of 479.01.
Columnar granular activated carbon (CGAC) from coconut shells (average size: 1.50 mm) was
purchased from Henan Lianhua Carbon Manufacturing Co. Two Ti/RuO2/TiO2 board electrodes
(size: 60 mm × 100 mm × 2 mm) were provided by the Second Research Institute of the China
Aerospace Science and Industry Group. Anhydrous sodium sulfate (Na2SO4), sodium chloride (NaCl),
mercury(II) sulfate (HgSO4), phosphoric acid (H3PO4), potassium dichromate (K2Cr2O7), sulfuric acid
(H2SO4), and potassium ferrocyanide (K4Fe(CN)6) were of analytical grade and used without any
further purification. Silver sulfate (Ag2SO4) was not less than 99.7%. Ammonium iron(II) sulfate
((NH4)2Fe(SO4)2 was not less than 99.5%. The ferroin indicator solution standard is Q/12NK4019-2011.

2.2. Experimental Setup and Procedure

A virtual diagram of the experimental setup is shown in Figure 1. The electro-reactor was a
plexiglass rectangular tank (Organic Glass Factory, Beijing, China) with two Ti/RuO2/TiO2 board
electrodes as the anode and cathode in the 2D electro-reactor. The anode and cathode were positioned
vertically and parallel to each other with an inter-electrode gap of 30 mm. The CGAC electrodes were
packed between the anode and cathode up to a height of 80 mm in the 3D electro-reactor; the liquid
level equaled the height of the packed bed.
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Figure 1. The virtual diagram of the recycling-flow 3D electro-reactor system.

In this recycling system, one peristaltic pump (Youji Keyi ZQ000S, Baoding, Hebei, China) was
used to pump the influent RhB wastewater from a beaker into the bottom of the electro-reactor.
Then the RhB wastewater flowed out from the upper outlet of the electro-reactor and was collected in
an Erlenmeyer flask. Simultaneously, the other peristaltic pump was used to pump the effluent RhB
wastewater from the Erlenmeyer flask back to the beaker.

Prior to commencing the electrochemical oxidation treatment, CGAC electrodes adsorbed RhB
solution until becoming saturated in order to minimize the effect of adsorption on TOC and COD
removal. All experiments used a digital DC power supply (DC 30 V/5 A; DH1716-6D). After completing
the experiment, all treated samples were collected and filtered through 0.45 mm filters. The filtrate was
then analyzed, as described in the next sub-sections.

2.3. Analytical Methods

TOC was measured by a Vario TOC analysis device. According to the instructions of the Vario
TOC analysis device, when carbonaceous compounds are burned in an oxygen-rich environment,
the carbon is completely converted into CO2, and then the non-scattering infrared detector (NDIR)
detects the amount of CO2 and converts it into total carbon (TC) in the sample. After the sample is
acidified by phosphoric acid (H3PO4) (1% v/v) and pH decreasing, the carbonate and bicarbonate in
the sample are converted into CO2, which is blown out and enters the NDIR, and then the detected
amount of CO2 is converted into total inorganic carbon (TIC). The value of TOC is TC minus TIC.

COD was measured by a microwave digestion method. According to the instructions of the
Kedibo microwave digestion device, mercury(II) sulfate (HgSO4) as a masking agent, 0.05 mol/L
potassium dichromate (K2Cr2O7) as a digestion solution, a mix of 10 g silver sulfate (Ag2SO4) and
1 L sulfuric acid (H2SO4) as a catalyst, ferroin solution as an indicator, and potassium ferrocyanide
(K4Fe(CN)6) as a standard solution were used.

Electrochemical measurements were performed using a conventional three-electrode cell and
a CHI 660E electrochemical workstation (CHI, Beijing, China). Ag/AgCl and Ti/RuO2/TiO2 board
electrodes served as the reference and counter electrodes, respectively.

CE (%) is the rate of the efficient current and total current in a period and Es (KW·h/kg TOC) is the
electricity consumption of 1 kg TOC degradation. They were calculated according to the following
equations [25–27]:

CE =
TOC0 − TOCt

480I
FQ (1)
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Es =
UI

60(TOC0 − TOCt)Q
(2)

where TOC0 (g/L) and TOCt (g/L) correspond to the total organic carbon at t = 0 min and t = t min,
respectively. I is the average current (A), F is the Faraday constant (96,485 C/mol), Q is the flow rate of
water (L/min), and U is the applied electric voltage (V).

3. Result and Discussion

3.1. Electrochemical Properties of TOC and COD Degradation in the Recycling-Flow Elecro-Reactor System

As shown in Figure 2, the TOC removal of RhB wastewater in the recycling-flow 3D electro-reactor
system was always higher than that in the recycling-flow 2D electro-reactor system, and the highest
TOC removal was 72.0%, which was 1.98 times that in the recycling-flow 2D electro-reactor system
(36.3%). From the perspective of COD, the COD removal of RhB wastewater in the recycling-flow 3D
electro-reactor system was much higher than that in the recycling-flow 2D electro-reactor system and
the highest COD removal was up to 86.9%. By the 30th minute, COD removal in the recycling-flow 3D
electro-reactor system had already reached 63.4%, meanwhile, the recycling-flow 2D electro-reactor
system just reached 41.9% by the 180th minute.

Water 2020, 12, x FOR PEER REVIEW 4 of 15 

 

𝐸𝑠 =
𝑈𝐼

60(𝑇𝑂𝐶0 − 𝑇𝑂𝐶𝑡)𝑄
 

(2) 

where TOC0 (g/L) and TOCt (g/L) correspond to the total organic carbon at t = 0 min and t = t min, 

respectively. I is the average current (A), F is the Faraday constant (96,485 C/mol), Q is the flow rate 

of water (L/min), and U is the applied electric voltage (V). 

3. Result and Discussion 

3.1. Electrochemical Properties of TOC and COD Degradation in the Recycling-Flow Elecro-Reactor System 

As shown in Figure 2, the TOC removal of RhB wastewater in the recycling-flow 3D electro-

reactor system was always higher than that in the recycling-flow 2D electro-reactor system, and the 

highest TOC removal was 72.0%, which was 1.98 times that in the recycling-flow 2D electro-reactor 

system (36.3%). From the perspective of COD, the COD removal of RhB wastewater in the recycling-

flow 3D electro-reactor system was much higher than that in the recycling-flow 2D electro-reactor 

system and the highest COD removal was up to 86.9%. By the 30th minute, COD removal in the 

recycling-flow 3D electro-reactor system had already reached 63.4%, meanwhile, the recycling-flow 

2D electro-reactor system just reached 41.9% by the 180th minute. 

 

Figure 2. Total organic carbon (TOC) and chemical oxygen demand (COD) removal of rhodamine B 

(RhB) wastewater in the recycling-flow 3D and 2D electro-reactor systems (RhB wastewater initial 

concentration is 100 mg/L; volume is 500 mL; initial pH is 7; Na2SO4 as an electrolyte, initial 

concentration is 2 g/L; voltage is 5 V; hydraulic retention time (HRT) is 20 min). 

It is normally considered that the mass transfer and EASA of the electrodes play major roles. 

Therefore, the higher TOC and COD removal in the recycling-flow 3D electro-reactor system is due 

to the presence of CGAC as conductive particles packed in the 3D electro-reactor and constitute a 

number of microelectrodes, which dramatically increase the area of the reaction electrode and benefit 

organic matter degradation easily and quickly in oxidative processes [28,29]. 

In order to obtain the mass transfer rate and EASA of the electrodes in the 2D and 3D electro-

reactors, respectively, cyclic voltammograms (CVs) of the 2D and 3D electro-reactors were measured 

in a 0.05 mol/L K4Fe(CN)6 + 0.45 mol/L Na2SO4 solution at different scan rates from 0.015 V/s to 0.1 

V/s by a CHI 660E electrochemical workstation (CHI, China). The 3D electro-reactor had a 

characteristic peak of anodic catalytic oxidation, as illustrated in Figure 3. Taking a sweep rate of 0.1 

V/s (red line) as an example, when the potential was 0.7 V, it should be 0.2 A if the potential and the 

corresponding current were in a linear relationship (demonstrated in Figure 3b). However, the Figure 

3a curve shows that the corresponding current is as high as 0.35 A at the potential of 0.7 V. This was 

because the corresponding current incurred a mutation at 0.7 V, which is called a characteristic peak 

of anodic catalytic oxidation. 

0 30 60 90 120 150 180

0

20

40

60

80

100

120

140

Time/min

T
O

C
 r
e

m
o

v
a

l %

3D reactor

2D reactor

Figure 2. Total organic carbon (TOC) and chemical oxygen demand (COD) removal of rhodamine
B (RhB) wastewater in the recycling-flow 3D and 2D electro-reactor systems (RhB wastewater initial
concentration is 100 mg/L; volume is 500 mL; initial pH is 7; Na2SO4 as an electrolyte, initial concentration
is 2 g/L; voltage is 5 V; hydraulic retention time (HRT) is 20 min).

It is normally considered that the mass transfer and EASA of the electrodes play major roles.
Therefore, the higher TOC and COD removal in the recycling-flow 3D electro-reactor system is due to
the presence of CGAC as conductive particles packed in the 3D electro-reactor and constitute a number
of microelectrodes, which dramatically increase the area of the reaction electrode and benefit organic
matter degradation easily and quickly in oxidative processes [28,29].

In order to obtain the mass transfer rate and EASA of the electrodes in the 2D and 3D electro-reactors,
respectively, cyclic voltammograms (CVs) of the 2D and 3D electro-reactors were measured in a
0.05 mol/L K4Fe(CN)6 + 0.45 mol/L Na2SO4 solution at different scan rates from 0.015 V/s to 0.1 V/s by
a CHI 660E electrochemical workstation (CHI, China). The 3D electro-reactor had a characteristic peak
of anodic catalytic oxidation, as illustrated in Figure 3. Taking a sweep rate of 0.1 V/s (red line) as an
example, when the potential was 0.7 V, it should be 0.2 A if the potential and the corresponding current
were in a linear relationship (demonstrated in Figure 3b). However, the Figure 3a curve shows that the
corresponding current is as high as 0.35 A at the potential of 0.7 V. This was because the corresponding
current incurred a mutation at 0.7 V, which is called a characteristic peak of anodic catalytic oxidation.
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Figure 3. Cyclic voltammograms of the 3D and 2D electro-reactors in a 50 mmol/L K4Fe(CN)6 +

0.45 mol/L Na2SO4 solution at different scan rates. (a) 3D electro-reactor, (b) 2D electro-reactor. Insets
show the plots of the peak current vs. the square root of the scan rate.

It was found that both the anodic peak current and the cathodic peak current increased as the
scan rate increased, indicating a reversible electrochemical reaction of the [Fe(CN)6]4−/[Fe(CN)6]3−

redox couple. At the same time, Figure 3 (insets) shows a brilliant linear relationship between the
oxidation peak current (Ip) and the square root of the scan rate (v1/2), according to the following
equation [21,30,31]:

Ip =
(
2.69× 105

)
n2/3AD1/2

R CRv1/2 (3)

where n is the number of transferred electrons, A is the EASA (cm2), DR is the diffusion coefficient of
the reduced species (cm2/s), CR is the bulk reduced species concentration (mmol/L), and v is the scan
rate (mV/s). The above equation can be simplified into the following equation:

Ip = kv1/2 (4)

where k is a coefficient only relevant to A and DR because n and CR are constant in this study.
As shown in the insets of Figure 3a,b, the slopes of the linear relationship between Ip and v1/2,

named as the value of k, representing the mass transfer rate, were obtained according to the linear
fitting of the plots. As expected, the k value of the 3D electro-reactor (0.3953) was larger than the
corresponding value of the 2D electro-reactor (0.2816). This demonstrates that the 3D electro-reactor
had greater mass transfer properties than the 2D electro-reactor [32,33].

In addition, the EASA can also be derived from the k value by assuming that the DR value of
[Fe(CN)6]4− is constant in this study. The obtained EASA value of the 3D electro-reactor is also higher
than that of the 2D electro-reactor. In particular, it was 1.40 times the corresponding value of the
2D electro-reactor. The higher EASA of the 3D electro-reactor means that the 3D electro-reactor will
provide much more electrochemically active sites for RhB oxidation, and thus will be beneficial in
improving the oxidation of organics on the electrode surface [34].

Based on the mass transfer rate and EASA result and discussion above, the 3D electro-reactor has
been demonstrated to possess a much higher electro-catalytic activity for degrading organic matter
(RhB) than the 2D electro-reactor.

It is well known that the hydroxyl radical (·OH), of which the oxidation potential (2.8 eV) is
the second highest and regarded as a powerful oxidizing chemical in nature, plays an important
role in the electrochemical oxidation of RhB wastewater [35]. Therefore, the production of ·OH was
detected by using the electron paramagnetic resonance (EPR) technique by adding the ·OH scavenger
5,5-dimenthyl,1-pyrroline-N-oxide (DMPO) to further reveal the underlying mechanism of the TOC
and COD degradation of RhB wastewater. As expected, typical EPR spectra of the DMPO–·OH adduct
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with a 1:2:2:1 quartet were acquired in the 3D and 2D electro-reactors when current and voltage were
applied, as shown in Figure 4. It is worth noting that the 3D electro-reactor achieved the higher EPR
intensity, which was nearly 2.52 times higher than the corresponding value of the 2D electro-reactor and
demonstrated that the electro-generation of ·OH occurred on the CGAC electrodes and the usage of the
CGAC electrodes could enhance ·OH generation effectively in electrochemical oxidation processes [36].
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Figure 4. Dimenthyl,1-pyrroline-N-oxide (DMPO) spin trapping the electron paramagnetic resonance
(EPR) spectra of hydroxyl radicals (OH) in the 3D and 2D electro-reactors.

Overall, the degradation of organic matter (RhB) by the 3D electro-reactor depends on more ·OH
being adsorbed on the surface of CGAC electrodes, forming more electrochemically active sites for RhB
oxidation. However, the 2D electro-reactor can just undergo less ·OH adsorption and the degradation
strength is also reduced due to the absence of CGAC as conductive particles.

The CE and Es of the recycling-flow 3D and 2D electro-reactor systems are shown in Figure 5.
Overall, the CE of the recycling-flow 3D and 2D electro-reactor systems both went up from 8.3%
and 2.5% to 14.4% and 7.6%, respectively, and the Es of the recycling-flow 3D and 2D electro-reactor
systems both decreased from 202.6 KW·h/kg TOC and 658.1 KW·h/kg TOC to 116.3 KW·h/kg TOC and
219.9 KW·h/kg TOC, respectively, during the electrochemical processes. The CE of the recycling-flow 3D
electro-reactor system was always nearly twice as much as the corresponding value of the recycling-flow
2D electro-reactor system in the treatment period. Additionally, the lowest CE value of the recycling-flow
3D electro-reactor system, by the 30th minute, had reached 8.3%, which approximately equaled the
highest CE value of the recycling-flow 2D electro-reactor system (7.6%).

From the perspective of Es, by the 30th minute, the Es of the recycling-flow 3D electro-reactor
system was 202.6 KW·h/kg TOC, which was less than one third the corresponding value of the
recycling-flow 2D electro-reactor system (658.1 KW·h/kg TOC). Although the Es of the recycling-flow
2D electro-reactor system reduced slightly, the minimum Es was still as high as 219.9 KW·h/kg TOC,
which was almost double the corresponding value of the recycling-flow 3D electro-reactor system
(116.3 KW·h/kg TOC).

This verified that the existence of CGAC electrodes in the recycling-flow 3D electro-reactor system
increased the mass transfer rate and EASA, rapidly generated much more ·OH on the surface of CGAC
electrodes, and improved CE and reduced Es.
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Figure 5. Energy consumption (Es) and current efficiency (CE) of the recycling-flow 3D and 2D
electro-reactor systems (RhB wastewater initial concentration is 100 mg/L; volume is 500 mL; initial pH
is 7, Na2SO4 as an electrolyte, initial concentration is 2 g/L; voltage is 5 V; HRT is 20 min; current density
is 60 mA/cm2).

3.2. Mechanism of TOC and COD Degradation with Different Electrolytes in the Recycling-Flow
Electro-Reactor System

An electrolyte is frequently added to wastewater to enhance the conductivity of the solution and
reduce impedance in an electrochemical reaction. It is actually necessary to research the effect of the
electrolyte on the degradation of RhB wastewater, as shown in Figure 6.
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Figure 6. TOC and COD removal of RhB wastewater in the recycling-flow 3D electro-reactor system
(NaCl and Na2SO4 as electrolytes, initial concentration is 2 g/L; RhB wastewater initial concentration is
100 mg/L; volume is 500 mL; initial pH is 7; voltage is 7 V; HRT is 20 min).

From the beginning to the 75th min as Part 1, the TOC removal of RhB wastewater (NaCl) was
higher than that of RhB wastewater (Na2SO4). The reason was that Cl− in the RhB wastewater (NaCl)
dramatically generated lots of active chlorine (Cl), which reacted with ·OH in a synergistic process to
increase TOC removal through electrochemical reaction processes. However, from the 75th min to
the 180th min as Part 2, the TOC removal of RhB wastewater (Na2SO4) started to go beyond that of
RhB wastewater (NaCl). The former and the latter peak rates reached 72.8% and 67.3%, respectively.
As some active chlorine (Cl) was converted into chlorine (Cl2) in the RhB wastewater (NaCl), Cl2
partially escaped into the air. The electrons lost during the formation of Cl2 could no longer be used
due to the balance of electron gain and loss. Therefore, RhB wastewater (NaCl) had a final TOC
removal lower than that of RhB wastewater (Na2SO4) [37].



Water 2020, 12, 1853 8 of 15

Additionally, the COD removal of RhB wastewater (NaCl) increased gradually and then reached
89.3%. Meanwhile, the COD removal of RhB wastewater (Na2SO4) first increased and then dropped
to 43.9%. The highest value could just reach 77.6%. RhB decomposed into small molecules which
could not be oxidized by potassium dichromate (K2Cr2O7) in the solution (Na2SO4) from the 60th min,
whilst a side reaction occurred in the solution (NaCl) to generate ClO− which had strong oxidizing
properties, and enhanced the ability to degrade COD [38].

Obviously, the CE of the recycling-flow 3D electro-reactor system with NaCl was higher than
the corresponding value of the recycling-flow 3D electro-reactor system with Na2SO4 before the 75th
minute, but the CE of the recycling-flow 3D electro-reactor system with Na2SO4 was higher than the
corresponding value of the recycling-flow 3D electro-reactor system with NaCl up to the 180th min,
as illustrated in Figure 7. Overall, the CE of the recycling-flow 3D electro-reactor systems with NaCl
and Na2SO4 both went up smoothly and then got to the highest value (12.2% and 11.3%, respectively).
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electrolytes (NaCl and Na2SO4 initial concentration is 2 g/L; RhB wastewater initial concentration is
100 mg/L; volume is 500 mL; initial pH is 7; voltage is 7 V; HRT is 20 min; current density is 60 mA/cm2).

Meanwhile, the Es of the recycling-flow 3D electro-reactor system with Na2SO4 was higher
than the corresponding value of the recycling-flow 3D electro-reactor system with NaCl up to the
80th min. In particular, the Es of the recycling-flow 3D electro-reactor system with Na2SO4 was
483.5 KW·h/kg TOC, which was 68.3% higher than the corresponding value of the recycling-flow
3D electro-reactor system with NaCl (287.2 KW·h/kg TOC) by the 30th min. However, the Es of the
recycling-flow 3D electro-reactor system with Na2SO4 started to be lower than the corresponding value
of the recycling-flow 3D electro-reactor system with NaCl from the 80th min. In addition, the Es of the
recycling-flow 3D electro-reactor systems with NaCl and Na2SO4 both declined to the lowest value
(192.7 KW·h/kg TOC and 206.7 KW·h/kg TOC, respectively) in this period.

These again indicate that NaCl, as an electrolyte, had a high conductive efficiency in the former
period due to active chlorine (Cl) generation and then changed to low conductive efficiency due to Cl2
escaping into the air in the latter period from CE and Es [22].

3.3. Mechanism of TOC and COD Degradation in Different Voltages in the Recycling-Flow Electro-Reactor System

As seen in Figure 8, the COD removal curve shows a smooth increase and then reaches 30.1%
with the voltage of 3 V. In addition, the COD removal of RhB wastewater rose dramatically with the
voltages of 5 V and 7 V up to the 60th min and then kept nearly flat between the 60th min and 120th
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min. Finally, COD removal with 5 V carried on increasing to 86.9%, whilst the corresponding value
with 7 V started decreasing to 43.9%. This could be explained by the equation below:

COD removal(%) =
COD0 −CODt

COD0
× 100% = 1−

CODt

COD0
× 100% (5)

where COD0 is the initial COD of RhB wastewater and CODt is the COD of RhB wastewater after
treating t minutes.Water 2020, 12, x FOR PEER REVIEW 9 of 15 
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Figure 8. TOC and COD removal of RhB wastewater with different voltages in the recycling-flow 3D
electro-reactor system (RhB wastewater initial concentration is 100 mg/L; volume is 500 mL; initial pH
is 7; Na2SO4 as an electrolyte, initial concentration is 2 g/L; HRT is 20 min).

The COD0 value was smaller than the actual value due to some macromolecular substances being
unable to be oxidized by K2Cr2O7 in the initial RhB wastewater, and then more macromolecules could
be oxidized into smaller molecules with the voltage of 7 V set in this experiment, compared with the
voltage of 5 V, which were easily oxidized by K2Cr2O7, resulting in a CODt value and COD removal
that are greater simultaneously [39].

From the perspective of TOC, as shown in Figure 8, the TOC removal of RhB wastewater grew the
most slowly and the final TOC removal just arrived at 61.0% when the voltage was 3 V. TOC removal was
always higher with the voltages of 7 V and 5 V, and the highest values were basically equivalent (72.2% and
72.0%, respectively), which were nearly 1.18 times the corresponding value with the voltage of 3V.

Interestingly, from the 0th min to the 70th min, TOC removal with the voltage of 5 V was higher
than that with the voltage of 7 V. TOC degradation processes are illustrated in Figure 9. First of all,
TOC was converted into TIC and then TIC was converted into CO2 and H2O. The concentration of
·OH in the RhB wastewater was higher, so that oxidation was stronger between the board electrodes
with 7 V. TIC was quickly oxidized into CO2 and H2O and TOC was converted into TIC as main
processes. With the voltage of 5 V, the oxidation was weaker [40–42]. Electron transfer processes were
normally used to convert TOC into TIC whilst only some of TIC was converted into CO2 and H2O.
Hence, TOC removal was higher with 5 V. After the 70th min, TOC removal with the voltage of 7 V
was beyond the corresponding value with the voltage of 5 V. TIC from TOC was basically converted
into CO2 and H2O with the voltage of 7 V, while TIC just started being rapidly converted into CO2 and
H2O as main processes with the voltage of 5 V. Hence, TOC removal was higher with 7 V. The final
TOC removal with 7 V was slightly higher than the corresponding value with 5 V since the potential of
7 V was higher than 5 V up to the 180th min [43,44].
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Figure 9. The diagram of TOC degradation processes in RhB wastewater with voltages of 7 V and 5 V.

CE with the voltage of 3 V rose the fastest from 8.0% by the 30th minute to 21.8% by the 180th
minute, which increased by nearly two times, meanwhile, the CEs with 5 V and 7 V both showed
gradually increasing trends to 14.1% and 12.2%, respectively, as indicated in Figure 10. Plus, the Es
with different voltages (3 V, 5 V, and 7 V) gradually decreased by 63.1%, 42.6%, and 60.2%, respectively,
from the 30th min up to the 180th min. In the whole electrolysis process, the higher the voltage was,
the higher the Es was. At the 180th min, Es with the voltage of 3 V was 46.1 KW·h/kg TOC, which was
39.6% of the corresponding value with 5 V (116.3 KW·h/kg TOC) and 23.9% of the corresponding value
with 7 V (192.7 KW·h/kg TOC).
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Figure 10. Es and CE of the recycling-flow 3D electro-reactor system with different voltages
(RhB wastewater initial concentration is 100 mg/L; volume is 500 mL; initial pH is 7; Na2SO4 as
an electrolyte, initial concentration is 2 g/L; HRT is 20 min; current density is 60 mA/cm2).

3.4. Mechanism of TOC and COD Degradation at Different HRTs in the Recycling-Flow Electro-Reactor System

HRT refers to the residence time of wastewater in the reactor, which can be calculated according
to the following equation [45]:

HRT =
V
Q

(6)
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where V is the reactor volume or pool capacity and Q is the influent flow rate.
In this experiment, the flow rate was controlled by operating the pumps in order to study the

effect of HRT on the degradation of RhB wastewater.
COD removal curves were almost growing coincidently at different HRTs (20 min, 40 min,

and 60 min), as illustrated in Figure 11. Finally, COD removal (86.9%) at HRT = 20 min was slightly
higher than the corresponding values at HRT = 40 min (80.1%) and HRT = 60 min (83.4%). This indicated
that HRT had little effect on the degradation of COD in the RhB wastewater.
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Figure 11. TOC and COD removal of RhB wastewater at different HRTs in the recycling-flow 3D
electro-reactor system (RhB wastewater initial concentration is 100 mg/L; volume is 500 mL; initial pH
is 7; Na2SO4 as an electrolyte, initial concentration is 2 g/L; voltage is 5 V).

TOC removal at different HRTs (20 min, 40 min, and 60 min) gradually increased and then reached
the maximum value at the 180th min. The highest TOC removal (85.0%) at HRT = 60 min was 13.8%
and 6.8% higher than the corresponding value (71.2% and 78.2%) at HRT = 20 min and HRT = 40 min,
respectively. In the comparisons of TOC removal, it can be concluded that HRT = 60 min had a better
removal effect.

However, HRT is equal to V/Q and the pool capacity of HRT = 60 min is three times that of
HRT = 20 min, which means that the construction cost must be more, as the influent flow rate is
constant. In addition, the initial concentration of RhB wastewater was 100 mg/L and the corresponding
COD was 215 mg/L. The final COD removal (86.9%) at HRT = 20 min was that of the COD of the
effluent, which was 28.2 mg/L after treatment, which reached the Grade A standard (< 50 mg/L) of the
Pollutant Discharge Standard for Urban Sewage Treatment Plants [46]. In summary, HRT = 20 min,
with less construction cost, is the optimal HRT.

The CE at HRT = 20 min (8.3–14.8%) was always higher than that at HRT = 40 min (CE: 2.4–12.4%)
and HRT = 60 min (CE: 2.5–8.7%), as shown in Figure 12. The maximum CE (14.8%) at HRT = 20 min
was 1.2 times and 1.7 times the corresponding values at HRT = 40 min (12.4%) and HRT = 60 min
(8.7%), respectively. From the perspective of Es, Es at HRT = 20 min was always lower than that at
HRT = 40 min and HRT = 60 min, and the minimum Es at HRT = 20 min, 40 min, and 60 min were
116.3 KW·h/kg TOC, 135.3 KW·h/kg TOC, and 192.4 KW·h/kg TOC, respectively.
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Figure 12. Es and CE of the recycling-flow 3D electro-reactor system at different HRTs (RhB wastewater
initial concentration is 100 mg/L; volume is 500 mL; initial pH is 7; Na2SO4 as an electrolyte,
initial concentration is 2 g/L; voltage is 5 V; current density is 60 mA/cm2).

4. Conclusions

In conclusion, CGAC, as micro-electrodes between anodic and cathodic electrodes in the
recycling-flow 3D electro-reactor system, generated an obviously characteristic peak of anodic catalytic
oxidation, increased the mass transfer rate and EASA by 40%, and rapidly produced 1.52 times more
·OH on the surface of CGAC electrodes so that the TOC and COD removal of RhB wastewater were
both approximately double the corresponding values in the recycling-flow 2D electro-reactor system
after 3 h of treatment in the same experimental conditions, with higher a CE and lower Es.

Treating RhB wastewater in the recycling-flow 3D electro-reactor system, Na2SO4 as an electrolyte
was more beneficial for TOC degradation, and got higher CE and lower Es, in long electrolyzing times
(more than 75 min and less than 180 min). On the contrary, NaCl as an electrolyte could improve
COD removal more, and get higher a CE and lower Es in short electrolyzing times (less than 75 min).
Plus, TOC and COD removal were the best in the proper voltage (5 V), not the highest one or lowest
one. Normally, the higher the voltage, the lower the CE and the more the Es. The HRT condition had
little effect on COD removal but high HRT was good for TOC degradation.
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