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Abstract: In this study, the concentrations of seven heavy metals (Cr, Ni, Cu, Zn, As, Hg, and Pb) and
Pb isotope in a sediment core from the Shuanglong reservoir, Southwestern China, were investigated.
Based on the constant rate of supply (CRS) model, the age span of a 60 cm sediment sample was
determined to range from the years 1944 to 2015. Combined with chronology and heavy metal content,
the evolution of the sources and pollution levels of heavy metals showed a changing trend composed
of various stages. The sources of heavy metals transitioned from natural origins in 1944–1964 to
industrial origins in 1965–2004. The subsequent reduction in heavy metal content was mainly due
to the vigorous implementation of environmental protection policies from 2005 to 2012. In recent
years (2013–2015), the heavy metal content has increased due to frequent human activity. Principal
component analysis (PCA), correlation analysis, and the coefficient of variation (CV) analysis indicated
that Cr, Ni, Cu, Zn, and As were derived from natural processes, Pb mainly came from automobile
manufacturing, and Hg was mainly from industrial sources. The values of the geo-accumulation
index (Ig), single pollution index (Pi), and single potential ecological risk index (Er) showed that the
contamination of Hg and Pb was slight to moderate. Moreover, the values of the potential ecological
risk index (RI), pollution load index (PLI), and Nemerow index (PN) indicated that the Shuanglong
reservoir is under low ecological risk.

Keywords: typical water-supply reservoir; heavy metals; sediment sources; pollution evaluation

1. Introduction

Reservoirs are artificial freshwater ecosystems where pollutants can accumulate in the sediment
through multiple pathways, including surface runoff, underground runoff, and atmospheric deposition.
Therefore, reservoir sediments are large pools of environmental pollutants and important archives for
recording environmental changes in the watershed [1–3]. Heavy metals in sediments may have a
variety of sources, including rock weathering, traffic exhaust, domestic sewage, chemical fertilizers and
pesticides, and wastewater and other wastes from industrial and mining activities [4–6]. Heavy metals are
characterized by high toxicity, difficult degradation, bio-accumulation and amplification. When heavy
metals enter reservoirs, some dissolve in water and others accumulate in sediments. When the external
environment changes, heavy metals in sediments are easily released into the water, causing secondary
pollution and serious ecological harm to organisms and aquatic systems [7]. Thus, it is of great
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significance to study the influence of human activities and natural processes on the migration and fate
of heavy metals [8,9].

The Dianchi watershed is located in the central Yunnan–Guizhou plateau and southwest Kunming,
which is the most developed and densely populated area in Yunnan Province. In the last 30 years,
unreasonable land use has seriously affected the soil quality in the region and has become the
dominant factor of nonpoint source pollution in the Dianchi watershed [10]. The Shuanglong
reservoir belongs to the Dongda River small basin of the Dianchi watershed and is mainly used for
surface drinking-water supply, as well as irrigation, breeding, power generation, and flood control.
Compared with sediments in large basins, sediments in small basins are more sensitive to changes
in the surrounding environment, and can therefore be used to reconstruct paleo-environmental
information over long timescales (102–103 years) and short timescales (100 years). Additionally,
compared with large watersheds, small watersheds are capable of tending to human activities and
natural factors. Accordingly, the disturbed small watersheds contribute more to the downstream
aquatic environment than large ones [11]. Recently, with the rapid development of urbanization,
industrialization, and agriculturalization, the accumulation of heavy metals in the sediment of the
Shuanglong reservoir has caused harm to the aquatic ecosystem. Moreover, heavy metals can enter the
human body through the food chain and thereby threaten human health. Therefore, the control and
treatment of heavy metal pollution in reservoirs, especially typical water-supply reservoirs in small
basins, is urgently needed.

The sources and pollution levels of heavy metals in sediments must be understood in order to
protect aquatic ecosystems. Chassiot et al. (2019) [12] found that the contamination levels of Ag,
Cr, Cu, Hg, and Pb were severe in sediments of the Saint Charles River and the Joseph-Samson
reservoir by using enrichment factors (EF), the geo-accumulation index (Ig), and the metallic pollution
index (MPI). Combining the historical literature and multivariate statistics (e.g., principal component
analysis/factor analysis (PAC/FA)), it was found that Pb and Ag exhibited different patterns, suggesting
that the pollution source was anthropogenic activities. Furthermore, Christophoridis et al. (2019) [13]
showed that human activities and natural processes could affect the input of heavy metals. The more
concentrated the human population, the higher the degree of heavy metal pollution in sediments.
Thus, the heavy metal content in sediments can reflect the development of local society. In recent years,
the pollution factor (CF), pollution load index (PLI), single potential ecological risk index (Er), potential
ecological risk index (RI), single pollution index (Pi), EF, and Ig have been widely used to evaluate the
pollution level of heavy metals in sediments [14–17]. Additionally, the Nemerow index (PN) has also
been used to evaluate the pollution level of the soil environment. This index has mainly been applied
for the spatial analysis of heavy metals in sediments, however, few studies have used PN to analyze
pollution levels in sediment cores at continuous depths [18]. Besides, many studies have focused on
the nutrient salts, organic matter, and heavy metals in sediments of the Dianchi watershed [19,20],
and sufficient reference data on heavy metals are not available for small basins, especially in typical
water-supply reservoirs. Therefore, the main objectives of this study were to (1) analyze the profile
distribution of heavy metals (Cr, Ni, Cu, Zn, As, Hg, and Pb) in the sediment of typical water-supply
reservoirs in a small watershed, (2) assess the contamination levels of heavy metals in the sediment
using multiple assessment indices (Ig, PLI, Pi, Er, RI, and PN), (3) infer the source of heavy metals
using statistical analysis (principal component analysis (PCA), correlation analysis, and coefficient
of variation (CV) analysis) and historical data in order to provide a valuable tool to improve the
management of aquatic environments and implement water and soil conservation.

2. Materials and Methods

2.1. Study Area

The Shuanglong reservoir is a typical water-supply reservoir which was built in 1956. It is located
in Jinning County, Kunming, China, and belongs to the Dianchi watershed. The reservoir has a
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total watershed area of 54 km2, a storage capacity of 1216 m3, and a maximum water depth of 19 m.
The terrain of the reservoir area is relatively flat, with a length of 1.5 km and a width of 80–100 m.
The Shuanglong drainage network is one of the main water systems which flows into Dianchi Lake.
Generally, the rainy season is from June to October, which accounts for about 75% of the annual rainfall,
and the maximum annual rainfall is 1243.8 mm. The watershed belongs to a subtropical monsoon
climate. The soil types are dominated by red soil, purple soil, and paddy soil. The agricultural land
is mainly used for planting corn, beans, and rice. Early development and serious anthropogenic
destruction have resulted in the scarcity of native vegetation, with the major vegetation types currently
being Yunnan pine forest, shrub initiation, and shrub-grassland.

2.2. Sample Collection

Three sediment cores (SR1, SR2, and SR3), each with a length of 60 cm, were collected from the
Shuanglong reservoir in August 2017 using a gravity core sampler (Figure 1). Samples were stored at
ultra-low temperature (−50 ◦C). Subsequently, the sediment cores were divided into 1 cm intervals and
then placed in sealed bags for freeze-drying. After the pretreatment, core SR3, which was located far
away from Dongda River, was selected for further analysis, since the inflowing rivers will affect the
heavy metal concentration of the sediment.
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2.3. Sample Analysis

2.3.1. Isotopic Determination and Dating

The pre-treated sediment samples were ground and passed through a 100-mesh sieve before being
placed in plastic containers. After the sample had been sealed for 20 days, the radioactivity of 210Pb
was measured with an HPGe γ-ray detector (EG&ORTEC, GWL-120-15, Oak Ridge, TN, USA) with a
determination time of 40,000 s. The 226Ra activity was detected by its emitted γ-rays at an energy of
351.9 keV for its daughter isotope 214Pb, the 210Pb activity was calculated from the peak area of 46.5 keV,
and the 210Pb excess (210Pbex) was calculated by subtracting the 226Ra activity from the 210Pb activity.

The dating methods for the sediment cores based on 210Pbex activity mainly included the constant
initial concentration (CIC) model and the constant rate of supply (CRS) model. The 210Pbex activity
is relatively volatile in the Dianchi watershed, presumably due to anthropogenic activities in recent
decades. Thus, the CRS model was adopted to establish the chronological sequence of the sedimentary
cores [21]. The equation of the CRS model is as follows

Tm = λ−1 ln
(
A0A−1

m

)
(1)

where Tm is the year corresponding to the mass depth m, λ is the decay constant of 210Pb (0.03114 y−1),
A0 is the 210Pbex accumulation of the whole sediment core (Bq/cm2), and Am is the 210Pbex accumulation
below the mass depth m (Bq/cm2).

2.3.2. Determination of Heavy Metals

Sediment samples (ca. 0.1 g) were digested in polyethylene containers containing a mixture of
HClO4, HCl, and HF (2.5 mL: 7.5 mL: 2 mL). The digested samples were then analyzed using inductively
coupled plasma mass spectrometry (Agilent, 7500ce, Tokyo, Japan) to obtain the concentrations of
heavy metals (Cr, Ni, Cu, Zn, and Pb) in the sediment. All samples were analyzed thrice in the
digesting procedure to obtain analytical precision and accuracy [17]. Concentrations of As and Hg
were determined using an atomic fluorescence spectrometer (CAGS, XGY-1011A, Langfang, Hebei,
China). Each sample was tested with three repetitions and the average value was used as the final
measurement value.

2.3.3. Determination of Physicochemical Parameters of Sediment

Sediment samples (ca. 10 g) were placed in beakers (50 mL). Then, distilled water (25 mL)
was added and the mixture was stirred with a glass rod for 30 min to disperse the soil completely.
Subsequently, the pH was measured with a calibrated acidimeter and the pH value was read after
15–20 min. The total organic carbon (TOC) was determined as the difference between the total carbon
(TC) and inorganic carbon (IC). The measurements were made using a total organic carbon analyzer
(Shimadzu, TOC-LCCSH, Tokyo, Japan).

2.4. Statistical Analysis

All experimental data were preliminarily processed using the Microsoft Excel 2017 software,
and Pearson correlation analysis and PCA were performed using the SPSS 20.0 software (IBM, Armonk,
NY, USA). The ArcGIS 10.2 (Esri, Redlands, CA, USA) and Ai 2018 software (Adobe, San Jose, CA,
USA) was used to draw figures and charts.
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2.5. Pollution Indices

2.5.1. Geo-accumulation Index (Ig)

The geo-accumulation index was first proposed by Muller (1969) [22], then of the Institute of
Sediment Research, University of Heidelberg, Germany. It is an evaluation index that is widely used to
study heavy metal pollution in modern sediments [23]. The formula for its calculation is as follows

Ig = log2 Ci/1.5Bi (2)

where Ci is the measured content of heavy metal i in the sediment, Bi is the geochemical background
content of heavy metal i (Yunnan soil background values, Table 1). According to the values of Ig,
the pollution levels are divided into seven grades (Table 2).

Table 1. Soil background values, toxic response coefficients, Consensus-Based Sediments’ Quality
Guidelines, and coefficient of variation of heavy metals in the sediment of the Shuanglong reservoir.

Heavy Metals As Cr Cu Hg Ni Pb Zn

Background values (mg/kg) 18.4 65.2 46.3 0.058 42.5 26.2 89.7
Ti

r 10 2 5 40 5 5 1
TEC (mg/kg) a 31.60 22.70 121.00 9.79 43.40 0.18 35.80
PEC (mg/kg) b 149.00 48.60 459.00 33.00 111.00 1.06 128.00

Coefficient of variation (CV) 0.31 0.26 0.26 0.38 0.25 0.44 0.34
a Thresholds’ effect concentration (TEC), adverse effects are not expected to occur; b Probable effects concentration
(PEC), adverse effects are expected to occur frequently.

2.5.2. Single Pollution Index (Pi) and Pollution Load Index (PLI)

The single pollution index can be used to determine the heavy metals that have the greatest impact
on the sedimentary environment. The pollution load index has been used to assess the ecological risks
caused by the accumulation of heavy metals in sediments [24]. These indices were calculated as follows

Pi = Ci/Bi (3)

PLI =
(∏n

i=1
Pi

)1/n
(4)

where n is the number of investigated elements. The pollution level of heavy metals in sediments were
classified following the classification shown in Table 2.

2.5.3. Potential Ecological Risk Index (RI)

The potential ecological risk index, which was first put forward by Hakanson (1980) [25], takes into
account not only the impact of heavy metals on the ecology, but also the impact of the bio-toxicity level
of heavy metals [26]. The calculation formula is

RI =
∑n

i=1
Ei

r =
∑n

i=1
Ti

r × Pi (5)

where Er is a single potential ecological risk index, and Ti
r is the toxic response coefficient of heavy

metal i (Table 1).
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Table 2. Pollution levels of heavy metal based on different pollution indices in the sediment of the Shuanglong reservoir.

Rank Ig Pollution
Level PN

Pollution
Level Ei

r
Pollution

Level Pi
Pollution

Level RI Pollution
Level PLI Pollution

Level

0 (−∞ , 0) clean (0,0.7) clean (0, 40) low (0, 1] clean (0,150) low (−∞,1] Clean
1 [0, 1) slight [0.7,1) warn [40,80) moderate [1, 2) slight [150,300) moderate (1,+∞) Pollution
2 [1, 2) moderate [1 , 2) slight [80,160) considerable [2 , 3) medium [300,600) considerable
3 [2 , 3) medium [2 , 3) moderate [160,320) heavy (3,+∞) heavy [600,+∞) serious
4 [3 , 4) considerable (3,+∞) heavy [320,+∞) serious
5 [4 , 5) heavy
6 [5,+∞) serious
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2.5.4. Nemerow Index (PN)

The Nemerow index was used to comprehensively evaluate the composite pollution condition of
different heavy metals in sediments [18]. The index was calculated using the following equation

PN =
[(

P2
h + P2

hmax

)
/2

]1/2
(6)

where Ph is the average single pollution index of the investigated elements at the depth of h, and Phmax
is the maximum single pollution index among the heavy metals investigated at the depth of h.

3. Results and Discussion

3.1. Core Chronology

The 210Pbex activities were found to decrease exponentially with depth, ranging from 13.65 to
169.99 Bq/kg, and the sediment core was found to cover the period of 1944–2015 (Figure 2). Around
the time of the founding of the People’s Republic of China in 1949, the use of motor vehicles and the
level of productivity were low. After the completion of the Shuanglong reservoir in 1956, the reservoir
could effectively intercept the flow loss in the upstream of Dianchi. Thus, the 210Pbex activities of
−60~−51 cm were relatively low. From the period 1959 to 1961, the 210Pbex activities increased, which is
mainly attributed to the policy of ”sacrificing agriculture for industry“ and the ”Great Leap Forward“.
These social phenomena resulted in severe damage to the land structure and reduced vegetation
coverage [27]. Hence, soil erosion was particularly prone to occur. Therefore, it was considered
reasonable to define the core depth of −52 cm as 1961 by CRS model. Since 1980, with China’s ”Reform
and Opening“, a large number of factories, such as insecticide factories, paper mills, and smelters,
have emerged around the Dianchi, resulting in the discharge of wastewater and residues containing
large amounts of heavy metals and, as a result, the 210Pbex activities have increased significantly.
Therefore, the core depth of −35 cm was defined as 1980 [28]. In 1984, the Chinese state set up the
Ministry of Ecology and Environment, which stipulated that attention should be paid not only to
economic laws but also to natural laws. Meanwhile, in 1988, the Kunming government enacted a
regulation for the protection of the Dianchi watershed to strengthen the management [29]. Thus,
since the 210Pbex activities decreased for a short time at −30~−20 cm, a core depth of −30 cm was
defined in 1984.
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Figure 2. (a) Profile distributions of unsupported 210Pb activity (210Pbex) in the core SR3.
(b) 210Pb-derived chronology from the core SR3 in the Shuanglong reservoir.
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3.2. Heavy Metals in Vertical Profile

The concentrations of Cu, Ni, Zn, As, Cr, Hg, and Pb varied from 14.90–38.29, 14.92–34.93, 28.02–104.90,
5.95–16.76, 51.20–129.70, 0.03–0.13, and 16.47–76.54 mg/kg, respectively (Figure 3). From bottom to top,
the concentrations first increased, then declined, and finally increased again. According to the chronology,
the changes in the heavy metal contents are divided into the following four stages:

(1) 1944–1964 (−60~−49 cm). This stage covers the earliest years of the People’s Republic of China.
The heavy metal content was generally low and rising, and the contents of As, Cr, and Hg
fluctuated slightly;

(2) 1965–2004 (−48~−13 cm). This stage exhibited a wide range of heavy metal contents.
Most elements’ content increased as a result of the implementation of the ”Great Leap Forward“
and ”Reform and Opening“, with the overall concentrations of Cu, Ni, Zn, As, and Cr being
higher than in the first stage. With increasing time, the Hg content first increased and then
decreased. During the 1970s, serious incidents of Hg pollution occurred in Northeast China and
Hebei Province due to the extensive exploitation of Hg ore and the usage of Hg in industrial
processes [30]. Thus, the relevant departments have strengthened the prevention and management
of Hg pollution. Furthermore, before the 1980s, Pb concentrations increased as a result of soil
erosion caused by the widespread destruction of forests in the Dianchi watershed during the
Cultural Revolution. Later, as land use was rationalized, Pb pollution decreased;

(3) 2005–2012 (−12~−4 cm). During this stage, in China, the living standards significantly improved,
the area of green land and environmental investment gradually increased, land-use patterns
were rationalized, and environmental policies and regulations achieved specific effects [31].
For instance, in January 2005, the first wave of environmental protection events was officially
launched, during which 30 illegal engineering projects were stopped. Moreover, many industrial
policies were promulgated to promote the sustainable development of eco-industrial parks and
implement the basic national policy of resource conservation and environmental protection [16].
Moreover, eight sewage treatment plants were built in the Dianchi watershed. Thus, measures for
the control of pollution sources and contaminant treatment were vigorously implemented, so that
the concentration of heavy metals was significantly reduced in the reservoir. Furthermore, in the
1990s, the reconstruction and expansion of urban roads promoted the increase in the number of
motor vehicles in operation, which increased the Pb emissions [32,33];

(4) 2013–2015 (−3~−1 cm). In this stage, the increase in per capita income led to large changes in
lifestyle, and the rise of tourism in Yunnan drove the development of scenic spots and economies
around the Shuanglong reservoir. This, combined with the effects of the vast tributaries that
flow through urban areas, industrial enterprises, and agricultural areas, led to an increase in the
content of seven heavy metals.

According to the Consensus-Based Sediments Quality Guidelines (CBSQGs) index of the US
Environmental Protection Agency (EPA), there are two thresholds for each heavy metal, namely the
Thresholds Effect Concentration (TEC) and the Probable Effect Concentration (PEC) (TEC-adverse effects
are not expected to occur, while PEC-adverse effects are expected to occur frequently) (Table 1) [34].
The results showed the following: in the first stage, the sediments in the Shuanglong reservoir were
mainly from natural processes, and the contents of the seven elements was lower than the TEC, indicating
that the sediments were not polluted. In the second stage, due to industrial development, the content of
most heavy metals was higher than the TEC and lower than the PEC, that is, the Shuanglong reservoir
was polluted. In the third stage, as a result of environmental protection policies, the pollution level
returned to the pollution-free state that was observed in the first stage. In the fourth stage, due to the
need for economic growth, it was difficult to further promote governance work, and the heavy metal
content increased.
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Figure 3. Heavy metal concentrations in the sediment core.

3.3. Sources of Heavy Metal Pollution

The sources of heavy metals in sediments are complex, however they mainly stem from two
pathways: one is natural sources, and the other is anthropogenic sources [35]. PCA, correlation analysis,
and CV analysis were used to estimate the sources of heavy metal contamination in the sediment.
The three-dimensional spatial load graph of substantial metal factors and TOC in the sediment deposits
of the Shuanglong reservoir directly showed the discrete degree of pollutants (Figure 4). Among the
studied heavy metals, Cr, Ni, Cu, Zn, and As were relatively concentrated, suggesting that these
heavy metals may have originated from the same pollution source and had a similar transport route.
Meanwhile, Pb and Hg were discrete and far from each other, indicating that they were controlled by
different pollution sources. The results showed that the extracted three principal components (PC1, PC2,
and PC3) gave good expressions to the initial eight variables, and that these three principal components
could explain 92.382% of the total variance, which can reflect the primary pollution sources of the
sediment core. The contribution of PC1 was the highest of the three principal components (55.230%),
and Cr, Ni, Cu, Zn, and As were found to have relatively high positive loads on PC1. The contents of
Cr, Ni, Cu, Zn, and As showed extremely significant correlations with each other (P < 0.01, Table 3),
with the correlation coefficient ranging from 0.636 to 0.977. The concentrations of Ni, Cu, Zn, and As
were generally lower than the background values (Table 1). Meanwhile, the concentrations of Zn
and Cu in the sediment of the Shuanglong reservoir were lower than those in most drinking water
reservoirs in China and foreign countries [36,37]. This result suggests that the changes in the contents of
seven heavy metals are mainly due to natural processes, such as rock weathering, erosion, and leaching.
PC2 represented 23.977% of the information of the initial variables, and the load of Pb was 0.773,
which was little correlated with the other six heavy metals. The Pb contents of the surface sediment
were generally higher than the background value. Previous studies have verified that the development
of the automobile industry plays a key role in the accumulation of Pb in sediments. This can be
attributed to the widespread use of Pb in the automotive industry as a raw material to produce
lubricating oil, airbag detonators, sensors, and glass and alloy materials, and to the fact that lead
particles can be discharged into the soil through vehicle exhaust [38]. In the last decade, the number
of vehicles in Kunming has been increasing (in 2015, the number of vehicles in Kunming was over
1.72 million), which has led to the continued release of Pb (Table 3 and Figure 5a). The correlation
coefficient between vehicles and Pb reached 0.802 (P < 0.01, Table 3). The positive load of TOC was
0.948, indicating that TOC has a high affinity to heavy metals in sediments. This is due to the fact that
TOC can affect the ecological toxicity, environmental migration, and geochemical behavior of heavy
metals in sediments. On the one hand, humus has a high surface activity and can therefore increase the
content of heavy metals in sediments through adsorption [39]. On the other hand, the degradation of
TOC releases metal ions [16]. Meanwhile, TOC can also change the pH value, and the increase in TOC
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will promote mineralization and decomposition, which produce CO2 and organic acids and thereby
lead to a decrease in pH [40]. The results suggested that pH is negatively correlated with the heavy
metal content (Table 3). Accordingly, the high positive loads of Pb and TOC in PC2 can be concluded
to represent the contributions of the automobile industry and the influence of TOC on heavy metal
sources. PC3 represented 13.175% of the information of the initial variables. Additionally, the load
of Hg was 0.934, and Hg content was unrelated to the other six metal elements: between 2014 and
2015 and before the 1990s, the concentrations of this metal were higher than the background value in
Yunnan soil, and Hg accumulation in the Shuanglong reservoir was relatively large. Hg contamination
may have been derived from mineral exploration, smelting, and the production of mercury-containing
products such as polyvinyl chloride (PVC), cement, chemical fertilizer, pesticides, batteries, fluorescent
lamps, thermometers, sphygmomanometers, etc. [41]. Meanwhile, improper emissions from the above
production processes have led to the enrichment of Hg in the sediment [42]. This finding is similar to the
findings of Bonotto (2018) [43] for the Madeira River basin, Portugal; Drevnick (2016) [44] for western
North America; and Zhang (2019) [45] for Chao Lake, China. Therefore, the concentration of Hg in
the sediment of the Shuanglong reservoir was closely related to the level of industrial development,
and Hg had an extremely significant positive correlation with gross industrial output (P < 0.01, Table 3).
Due to the continuous development of industrialization in recent years, the content of Hg in the
sediments increased year by year (Table 3 and Figure 5a). It can be concluded that PC3 was the factor
that was most indicative of industrial pollution. The CV analysis further verified that Hg and Pb were
mainly controlled by anthropogenic activities, while Zn, As, Cu, Cr, and Ni were derived from natural
processes. This is because the CV values of Hg and Pb are significantly higher than those of the other
five studied heavy metals (Table 1).
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The Dianchi watershed is the center of the economic development of Kunming, and contributes
the majority of its GDP. The Shuanglong reservoir is a part of the Dianchi watershed, and therefore the
GDP data of Kunming can be used to represent the economic development of the reservoir region.
This GDP data can be used to analyze the impact of social activities on the sources of heavy metals in the
sediment of the Shuanglong reservoir [46]. Economic development and the expansion of urbanization
can promote the increase in Hg and Pb (Table 3 and Figure 5b,c). Steel, nonferrous metallurgy,
electric power, and the chemical industry represent the majority of the industrial output of Yunnan
Province [47]. These industries are characterized by high energy consumption and high pollution
discharge, and most of them are concentrated in major urban areas, thus placing severe ecological
pressure on the Shuanglong reservoir region. The expansion of the population has increased the food
requirements, and hence the fertilizer rate has increased continuously (Figure 5d). However, the results
suggest that, of the studied heavy metals in the sediment of the Shuanglong reservoir, only Hg and Pb
had a significant positive correlation with crop fertilization (Table 3). These observations suggest a
strong relationship between heavy metal contamination and economic development. Besides, rainfall
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was found to be negatively correlated with Hg and Pb contents and positively correlated with the
contents of the other five studied heavy metals. It was further verified that anthropogenic activities
were the dominant source of Hg and Pb, while the other five heavy metals mainly originated from
natural inputs (Table 3 and Figure 5c). This result is consistent with the finding of Mil-Homens
(2013) [48] for sediments in the central Portuguese Margin.

Table 3. Results of the correlation analysis among the heavy metals and other indicators in the sediment
of the Shuanglong reservoir.

Cr Ni Cu Zn As Hg Pb

Cr 1.000
Ni 0.957 ** 1.000
Cu 0.937 ** 0.977 ** 1.000
Zn 0.636 ** 0.748 ** 0.795 ** 1.000
As 0.754 ** 0.802 * 0.829 ** 0.866 ** 1.000
Hg 0.158 0.213 0.178 0.073 0.062 1.000
Pb 0.010 0.101 0.032 0.343 ** 0.292 * 0.153 1.000
pH −0.240 −0.290 * −0.337 ** −0.533 ** −0.625 ** −0.296 −0.305 *

TOC −0.193 −0.078 −0.036 0.533 ** 0.337 ** −0.199 0.647 **
Vehicles −0.368 −0.196 −0.198 −0.383 −0.002 0.898 ** 0.802 **

Gross Industrial output −0.660 ** −0.564 * −0.553 * −0.064 −0.388 0.791 ** 0.674 **
Gross production −0.736 ** −0.641 ** −0.641 ** −0.033 −0.265 0.032 0.596 **
Urban population −0.771 ** −0.675 ** −0.681 ** −0.164 −0.416 0.803 ** 0.631 **

Fertilizer −0.755 ** −0.668 ** −0.670 ** −0.191 −0.449 0.907** 0.544*
Nitrogen fertilizer −0.795 ** −0.721 ** −0.720 ** −0.265 −0.514 * 0.859 ** 0.498 *

Phosphate fertilizer −0.573 * −0.483 * −0.503 ** −0.067 −0.238 0.874 ** 0.500 *
Potassium fertilizer −0.507 * −0.386 −0.376 −0.080 −0.180 0.828 ** 0.599 **
Compound fertilizer −0.729 ** −0.626 ** −0.626 ** −0.112 −0.411 0.90 ** 0.612 **

Rainfall 0.319 0.322 0.270 0.232 0.274 −0.337 −0.147

* Correlation is significant at the 0.05 level (2−tailed); ** Correlation is significant at the 0.01 level (2−tailed).
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Figure 5. The possession of vehicles and gross industrial output (a), gross production (b),
total population, urban population and rainfall (c), and crop fertilization (d) in Kunming over time.

3.4. Assessment of Heavy Metal Contamination

In this study, the Ig, Pi, and Er values of Ni, Cu, Zn, and As were generally less than 0, 1, and 40,
respectively (Figure 6), indicating that these heavy metals displayed little or no enrichment and were
almost unaffected by human activities. According to the Ig and Pi values, Cr showed a low ecological
risk in the Shuanglong reservoir. However, the above analysis of heavy metal sources suggests that Cr
mainly comes from natural processes, since the pollution level of Cr was low during the study period.
The Ig, Pi, and Er values of Pb and Hg changed in a similar manner. The analysis of the Ig and Pi
values showed that Pb pollution was mainly concentrated at depths of −1~−5 cm and −32~−43 cm.
Moderate Pb contamination was observed in the surface sediment layer, which can be explained by a
sharp increase in demand for vehicles as a means of transportation in 2001. Hg pollution was slight
to moderate at depths of −1~−2 and −26~−60 cm. This is probably due to the fact that, in the 1980s,
the Dianchi watershed contained a high concentration of industrial activity, resulting in the aggravation
of Hg enrichment in the sediment of the Shuanglong reservoir. Thus, Pb and Hg are likely to have had
adverse biological effects on the reservoir. These metals are particularly toxic to human beings [49],
and therefore automobile manufacturing and other industries must be subjected to priority regulation
in the Shuanglong reservoir.
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The RI, PLI, and PN were used to comprehensively evaluate the pollution levels of multiple heavy
metals in the aquatic system of the Shuanglong reservoir. It was found that these three pollution
assessment indices have the same profile changes. At depths of −60 to −12 cm (1944–2004), the indices
generally showed an upward trend, which was interpreted to be related to the development of industry
and agriculture. Moreover, there were obvious troughs in the indices at depths of −13 to −4 cm
(2005–2012), which was attributed to the vigorous implementation of environmental protection policies.
Furthermore, at depths of −3 to –1 cm (2013–2015), the indices rose again, indicating that frequent
human activities aggravated soil erosion near the reservoir. The RI and PLI values indicated that the
sediment had a low level of contamination during the research period (except at a depth of −1 cm),
whereas the PN values showed that the sediment was slightly contaminated in some stages: for example,
from 1944 to 2004, the PN values were generally between 1 and 2, indicating slight contamination;
from 2005 to 2012, the values were less than 1, indicating an alarming level of contamination in
the reservoir; while between 2013 and 2015, the PN values were between 1 and 2, the sediments
were slightly polluted. The level of pollution inferred from PN was higher than the levels inferred
from RI and PLI. This is due to the fact that the calculation of PN takes into account the maximum
pollution factor (Phmax), which was obtained from Pi in its calculation. Therefore, future studies
should investigate how to choose a reasonable pollution assessment method in different research areas.
In addition, this study only considered the additive effect of composite pollutants, while other joint
effects (synergistic effect, antagonistic effect, and independent effect) need future research. The results
of different pollution assessment indices showed that the pollution level of the Shuanglong reservoir
was low in this study area.

In summary, using different pollution assessment methods, it was found that the ecological risks
of Ni, Cu, Zn, As, and Cr were relatively lower in the whole deposition process, followed by Pb and Hg.
The ecological risk posed by sediment in the Shuanglong reservoir (a typical water supply reservoir)
was found to be low.
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4. Conclusions

Heavy metals (Cr, Ni, Cu, Zn, As, Hg, and Pb) in a sediment core from the Shuanglong reservoir,
as a typical water−supply reservoir, were investigated. Four stages of the lacustrine environment in
the Shuanglong reservoir were identified using the CRS model. In the first stage, the heavy metals
in sediments mainly came from natural processes. In the second stage, industrial development led
to an increase in the contents of most heavy metals and moderate sediment pollution. In the third
stage, under the support of an environmental protection policy, the pollution level was restored. In the
fourth stage, heavy metal contents increased, which was likely a consequence of frequent human
activities. The results showed that the changes in human activities can influence the changes in heavy
metals in the sediment. According to PCA, correlation analysis, and CV analysis, the sources of
heavy metals were divided into three main categories. The first category is Ni, Cu, Zn, As, and Cr,
which were principally derived from natural processes. The second category is Pb, which is ascribed
to the development of automobile manufacturing. The third category is Hg, which mainly came from
industrial sources. Meanwhile, the possession of vehicles and gross industrial output, gross production,
urban population, total population, rainfall and crop fertilization proved that human activities were
closely related to the accumulation of Pb and Hg in the sediment. The Ig, Pi, and Er values of Ni, Cu,
Zn, As, and Cr indicated no or weak pollution in the sediment, whereas that of Pb and Hg in some
stages showed slight or moderate pollution. The results of comprehensive pollution evaluation indices
(RI, PLI, and PN) showed that the pollution level of the Shuanglong reservoir was low in this study
area. The study suggests that effective measures should be taken to control the emissions of heavy
metals from the automotive industry and other industries to reduce Pb and Hg pollution, so as to
further guarantee the sustainable development of the water environment and the safety of human life.
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