Bed-Load Collision Sound Filtering through Separation of Pipe Hydrophone Frequency Bands
Abstract
:1. Introduction
2. Bed-load Discharge Estimation Method Using Pipe Hydrophone
2.1. Classification of Sediment Transport
2.2. Principles of Bed-Load Discharge Estimation Using Pipe Hydrophone
2.3. Acoustic Signal Filtering and Bed-Load Discharge Estimation Method
2.4. Bed-Load Analysis via Bandpass (BP) Method
3. Experimental Setup and Method
3.1. Experimental Setup
3.1.1. Pipe Hydrophone
3.1.2. Experimental Equipment
3.1.3. Sediment-Grain Characteristics
3.2. Experimental Method
4. Laboratory Experiment Results and Analysis
4.1. Collision Sound Analysis for Each Bed-Load Particle Size
4.2. Collision Sound Analysis by Frequency Band
4.2.1. Representative Collision Sound Frequency-Band Analysis by Particle
4.2.2. Detection Rate Analysis Result by Bandpass Method
5. Conclusions
- The conventional method that measures pulses above the threshold for the acoustic amplification channel could not detect particles of 4.75-mm size. Furthermore, this method resulted in excessive detection for bed-load particle sizes above 12.70 mm. Conversely, although the threshold-setting method exhibited consistent detection overall, the detection rate was considerably low with an average of 45.5%.
- Setting the threshold for individual particles having a confidence level of 95% enhanced the bed-load collision sound-detection rate by 11.2% in comparison with the previously reported improved method.
- The detection rate of the amplification channel method was substantially lower than when the magnitude of the collision sound pressure was high.
- Under the conditions of this experiment, the sound-pressure distribution was observed to be concentrated in the frequency range of 5–6 kHz.
- By the proposed BP method, the sound-pressure threshold in the frequency range of 5–6 kHz was calculated at 0.181 and 0.417 Pa for 9.53 and 12.70 mm bed-load particle sizes, respectively. The sum of the sound-pressure values of the 12.70-mm particles in the 5–6 kHz range was 33% higher than that of the 9.53 mm particles in the same frequency range.
- The BP method detection rate for sound pressure in the 5–6 kHz frequency band was calculated at 87% and 90% for particle sizes of 9.53 and 12.70 mm, respectively, which showed better performance than the existing filtering method. In particular, the proposed BP method yielded better detection rates than the other methods under bed-load conditions of low flow rate and small particle size. The proposed method is effective for measuring bed load with low flow rates and small particle sizes.
Author Contributions
Funding
Conflicts of Interest
References
- Claude, N.; Rodrigues, S.; Bustillo, V.; Bréhéret, J.G.; Macaire, J.J.; Jugé, P. Estimating bed-load transport in a large sand–gravel bed river from direct sampling, dune tracking and empirical formulas. Geomorphology 2012, 179, 40–57. [Google Scholar] [CrossRef]
- Johnson, C.W.; Hanson, C.L.; Smith, J.P.; Engleman, R.L. Helley-Smith bed-load samplers. J. Hydraul. Eng. 1977, 103, 1217–1221. [Google Scholar]
- Andrews, E.D. Measurement and computation of bed-material discharge in a shallow sand-bed stream, Muddy Creek, Wyoming. Water Resour. Res. 1981, 17, 131–141. [Google Scholar] [CrossRef]
- Dietrich, W.E.; Smith, J.D. Bed-load transport in a river meander. Water Resour. Res 1984, 20, 1355–1380. [Google Scholar] [CrossRef]
- Andrews, E.D. Marginal bed load transport in a gravel bed stream, Sagehen Creek, California. Water Resour. Res. 1994, 30, 2241–2250. [Google Scholar] [CrossRef]
- Bunte, K.; Abt, S.R.; Potyondy, J.P.; Ryan, S.E. Measurement of coarse gravel and cobble transport using portable bedload traps. J. Hydraul. Eng. 2004, 130, 879–893. [Google Scholar] [CrossRef] [Green Version]
- Taniguchi, S.; Itakura, Y.; Miyamoto, K.; Kurihara, J. A new acoustic sensor for sediment discharge measurement. In Erosion and Sediment Transport Monitoring in River Basins; IAHS Publication: Rennes, France, 1992; Volume 210, pp. 135–142. [Google Scholar]
- Gaeuman, D.; Jacobson, R.B. Acoustic bed velocity and bed load dynamics in a large sand bed river. Jgr Earth Surf. 2006, 111, 1–14. [Google Scholar] [CrossRef]
- Rickenmann, D. New results from sediment transport measurements in two Alpine torrents. In Proceedings of the HeadWater ’98 Conference, Merano, Italy, April 1998; IAHS: Wallington, UK, 1998; Volume 248, pp. 283–289. [Google Scholar]
- Mizuyama, T.; Nonaka, M.; Fujita, M. Sediment measurement with a hydrophone at the Tsuno-ura Karyu Sabo Dam in the Joganji River. JSECE 2003, 55, 56–59. [Google Scholar]
- Oda, A.; Hasegawa, Y.; Mizuyama, T.; Miyamoto, K.; Nonaka, M. The application of bed load measurements to hydraulic model experiments using the hydrophones. JSECE 2005, 58, 15–25. [Google Scholar]
- Hoshino, K.; Sakai, T.; Mizuyama, T.; Satofuka, Y.; Kosugi, K.; Yamashita, S.; Nonaka, M. Sediment monitoring system and some results in the Rokko-Sumiyoshi River. JSECE 2004, 56, 27–32. [Google Scholar]
- Beylich, A.A.; Laute, K. Combining impact sensor field and laboratory flume measurements with other techniques for studying fluvial bedload transport in steep mountain streams. Geomorphology 2014, 218, 72–87. [Google Scholar] [CrossRef]
- Marineau, M.D.; Wright, S.A.; Gaeuman, D. Calibration of sediment-generated noise measured using hydrophones to bedload transport in the Trinity River, California, USA. In Proceedings of the River Flow Conference, Iowa City, IA, USA, 11–14 July 2016; Constantinescu, G., Garcia, M., Hanes, D., Eds.; Taylor & Francis Group: London, UK, 2016; pp. 143–157. [Google Scholar]
- Hegg, C.; McArdell, B.W.; Badoux, A. One hundred years of mountain hydrology in Switzerland by the WSL. Hydrol. Process. 2006, 20, 371–376. [Google Scholar] [CrossRef]
- Rickenmann, D.; Fritschi, B. Bedload transport measurements using piezoelectric impact sensors and geophones. In Bedload-Surrogate Monitoring Technologies; U.S. Geological Survey Scientific Investigations Report 5091; U.S. Geological Survey: Sunrise Valley Drive Reston, VA, USA, 2010; pp. 407–423. [Google Scholar]
- Kurihara, J.; Miyamoto, K. Equipment for Sediment Discharge with Acoustic Sensor. JSECE 1992, 44, 26–31. [Google Scholar]
- Rennie, C.; Church, M. Mapping spatial distributions and uncertainty of water and sediment flux in a large gravel bed river reach using an acoustic Doppler current profiler. Jgr: Atmos. 2010, 115, F03035. [Google Scholar] [CrossRef] [Green Version]
- Blanckaert, K.; Heyman, J.; Rennie, C.D. Measuring bedload sediment transport with an acoustic doppler velocity profiler. J. Hydraul. Eng. 2017, 143, 04017008. [Google Scholar] [CrossRef] [Green Version]
- Conevski, S.; Guerrero, M.; Ruther, N.; Rennie, C.D. Laboratory Investigation of Apparent Bedload Velocity Measured by ADCPs under Different Transport Conditions. J. Hydraul. Eng. 2019, 145, 04019036. [Google Scholar] [CrossRef]
- Geay, T. Mesure acoustique passive du transport par charriage dans les rivières. Ph.D. Thesis, Université Grenoble Alpes, Grenoble, France, 2013. [Google Scholar]
- Petrut, T.; Gervaise, C.; Belleudy, P.; Zanker, S. Passive acoustic measurement of bedload grain size distribution using self-generated noise. Hydrol. Earth Syst. Sc. 2018, 22, 767–787. [Google Scholar] [CrossRef] [Green Version]
- Rickenmann, D.; Turowski, J.M.; Fritschi, B.; Wyss, C.; Laronne, J.; Barzilai, R.; Habersack, H. Bedload transport measurements with impact plate geophones: Comparison of sensor calibration in different gravel-bed streams. Earth Surf. Proc. Land. 2014, 39, 928–942. [Google Scholar] [CrossRef]
- Rickenmann, D. Bed-load transport measurements with geophones and other passive acoustic methods. J. Hydraul. Eng. 2017, 143, 03117004-1-14. [Google Scholar] [CrossRef]
- Shinichi, T.; Yasumasa, I. The Signal Analysis of an Acoustic Sensor for Sediment Discharge Measurement. Hikone Ronso 1992, 276, 323–346. [Google Scholar]
- Mizuyama, T.; Tomita, Y.; Nonaka, M.; Fujita, M. Observation of sediment discharge rate using a hydrophone. JSECE 1996, 49, 34–37. [Google Scholar]
- Tsutsumi, D.; Hirasawa, R.; Mizuyama, T.; Shida, M.; Fujita, M. Bed Load Observation in a Mountainous Watershed by Hydrophone Equipments. In Annuals of Disaster Prevention Research Institute; Kyoto University Annual 53 B: Kyoto, Japan, 2010; pp. 537–544. [Google Scholar]
- Hida, Y.; Ogawa, Y.; Kurokawa, N.; Matsuda, A. Local experiments on the bed load measurements by hydrophone. In Proceedings of the Annual Conference of the Japan Society of Erosion Control Engineering 04-25, Ehime, Japan, 7 September 2011. [Google Scholar]
- Uchida, T.; Yoshimura, N.; Hayashu, S.I.; Tsuruta, K.; Suzuki, T.; Hasegawa, Y.; Kanabara, J.; Mizuyama, T. An experiment for sediment collision ratio of hydrophone (pipe geophone). J. Jpn. Soc. Eros. Control. Eng. 2014, 67, 24–29. [Google Scholar]
- Tsutsumi, D.; Amano, Y.; Hasegawa, Y.; Ichida, K.; Nonaka, M. Bedload Monitoring Method Considering Vertical Concentration Profile. Kyoto Univ. Res. Inf. Repos. 2015, B(58), 332–334. [Google Scholar]
- Mao, L.; Carrillo, R.; Escauriaza, C.; Iroume, A. Flume and field-based calibration of surrogate sensors for monitoring bedload transport. Geomorphology 2016, 253, 10–21. [Google Scholar] [CrossRef] [Green Version]
- Wyss, C.R.; Rickenmann, D.; Fritschi, B.; Turowski, J.M.; Weitbrecht, V.; Boes, R.M. Laboratory flume experiments with the Swiss plate geophone bed load monitoring system: 1. Impulse counts and particle size identification. Water Resour. Res. 2016, 52, 7744–7759. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, T.; Uchida, T.; Okamoto, A.; Takahashi, K.; Yamashita, S.; Kosuge, Y.; Fukumoto, A. Applicability of Bed-load Observation Method Using Sound Pressure Data Obtained by a Hydrophone. J. Jpn. Soc. Eros. Control. Eng. 2013, 66, 4–14. [Google Scholar]
- Koshiba, T.; Sumi, T. Application of the wavelet transform to sediment grain sizes analysis with an impact plate for bedload monitoring in sediment bypass tunnels. E3S Web Conf. EDP Sci. 2018, 40, 04022. [Google Scholar] [CrossRef] [Green Version]
- Hasegawa, Y.; Miyata, S.; Imaizumi, F.; Nakatani, K.; Tsutsumi, D. Hydrophones Analysis Method Considering Sediment Collision Frequency and Application to Field. Jsce Ser. B1 (Hydraul. Eng.) 2017, 73. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.H.; Jun, K.W. Application of Hydrophone for Measuring Sediment Discharge. KSET 2018, 19, 175–183. [Google Scholar]
- Mizuyama, T.; Tomita, Y.; Nonaka, M.; Fujita, M. Observation of Sediment Discharge Using a Hydrophone. J. Jpn. Soc. Eros. Control Eng. 1998, 50, 44–47. [Google Scholar]
- Oda, A.; Hasegawa, Y.; Mizuyama, T.; Nonaka, M.; Miyamoto, K. Measurement of Bed Load Using Hydrophones in Hydraulic Model Experiments. Proc. Hydraul. Eng. 2004, 48, 745–750. [Google Scholar] [CrossRef]
- Nakaya, H. A case study of influences on the bed load detection rate of hydrophone system exerted by flow discharges. J. Jpn. Soc. Eros. Control Eng. 2008, 61, 12–20. [Google Scholar]
- Hasegawa, Y.; Miyamoto, K. Experimental study natural resonance modes of sound of a hydrophone and sediment discharge measurement. J. Jpn. Soc. Eros. Control. Eng. 2014, 66, 23–32. [Google Scholar]
- Belleudy, P.; Valette, A.; Graff, B. Passive hydrophone monitoring of bedload in river beds: First trials of signal spectral analyses. Usgs Sci. Invest. Rep. 2010, 5091, 67–84. [Google Scholar]
- Sneed, D.; Folk, R.L. Pebbles in the lower Colorado river, Texas: A study in particle morphogenesis. J. Geol. 1958, 66, 114–150. [Google Scholar] [CrossRef]
- Mavis, F.T.; Laushey, L.M. Formula for velocity at beginning of bed-load movement is reappraised. Civ. Eng. ASCE 1949, 19, 38–39. [Google Scholar]
- Yang, C.T. Incipient Motion and Sediment Transport. J. Hydraul. Eng. 1973, 99, 1679–1704. [Google Scholar]
Specification | |
---|---|
Frequency response | 20–20,000 Hz |
Sensitivity | 39.7 mV/Pa |
Inherent noise (A weighted) | <30 dB |
Dynamic range (3% distortion limit) | >122 dB |
Temperature range | −10–50 °C |
Excitation voltage | 18–30 VDC |
Constant current excitation | 2–20 mA |
Output bias voltage | 5.5–14 VDC |
Output impedance | <150 Ω |
Division | Long (mm) | Intermediate (mm) | Short (mm) | Shape Factor | Sphericity | ||
---|---|---|---|---|---|---|---|
(a) | (b) | (c) | |||||
D (mm) | Average | 12.72 | 9.09 | 5.88 | 0.56 | non-sphere | |
9.53 | Standard deviation | 2.73 | 1.69 | 1.42 | 0.13 | s | 6 |
t | 11 | ||||||
n | 13 | ||||||
D (mm) | Average | 18.85 | 13.7 | 9.17 | 0.58 | transition | |
12.70 | Standard deviation | 4.72 | 1.74 | 2.24 | 0.15 | s | 4 |
t | 15 | ||||||
n | 11 |
D (mm) | Q (L/s) | h (m) | ||
---|---|---|---|---|
9.53 | 28.15 | 0.185 | 0.54 | 0.66 |
12.7 | 0.61 | 0.77 |
D (mm) | Number of Runs | Number of Failed Collisions | Number of Collisions with the Pipe Microphone |
---|---|---|---|
9.53 | 140 180 | 35 75 | 105 |
12.7 | 105 |
Discharge (L/s) | Filtering Method | Detection Rate | CV (%) | ||||
---|---|---|---|---|---|---|---|
4.75 mm | 9.53 mm | 12.70 mm | 19.05 mm | 25.40 mm | |||
14.30 | Amplification | 0.00 | 0.55 | 1.00 | 1.20 | 1.63 | 71.26 |
Threshold estimation (based on average sound pressure) | 0.35 | 0.40 | 0.48 | 0.55 | 0.40 | 17.99 | |
Threshold estimation (based on confidence level 95%) | 0.53 | 0.50 | 0.63 | 0.65 | 0.50 | 12.86 | |
30.91 | Amplification | 0.00 | 0.90 | 1.00 | 1.15 | 1.35 | 59.13 |
Threshold estimation (based on average sound pressure) | 0.48 | 0.43 | 0.53 | 0.53 | 0.40 | 12.13 | |
Threshold estimation (based on confidence level 95%) | 0.58 | 0.55 | 0.58 | 0.60 | 0.55 | 3.67 |
Slope | Discharge (L/s) | Water Level (cm) | Velocity (m/s) | Sound Pressure (mV) | |
---|---|---|---|---|---|
9.53 mm | 12.70 mm | ||||
0.033 | 14.30 | 2.52 | 1.42 | 8.36 (±1.00) | 17.42 (±2.23) |
30.91 | 4.38 | 1.76 | 13.02 (±2.30) | 26.83 (±3.31) | |
0.012 | 28.15 | 18.45 | 0.76 | 0.26 (±0.12) | 0.66 (±0.29) |
Slope | Discharge (L/s) | Water Level (cm) | Velocity (m/s) | Filtering Method | Detection Rate | |
---|---|---|---|---|---|---|
9.53 mm | 12.70 mm | |||||
0.012 | 28.15 | 18.45 | 0.76 | Amplification | 0.00 | 0.05 |
Threshold estimation (based on average sound pressure) | 0.33 | 0.37 | ||||
Threshold estimation (based on confidence level 95%) | 0.41 | 0.48 |
Slope | Discharge (L/s) | Water Level (cm) | Velocity (m/s) | Filtering Method | Detection Rate | |
---|---|---|---|---|---|---|
9.53 mm | 12.70 mm | |||||
0.012 | 28.15 | 18.45 | 0.76 | By amplification | 0.00 | 0.05 |
Threshold estimation (based on average sound pressure) | 0.33 | 0.37 | ||||
Threshold estimation (based on confidence level 95%) | 0.41 | 0.48 | ||||
Bandpass | 0.87 | 0.90 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, J.-H.; Jun, K.-W.; Jang, C.-D. Bed-Load Collision Sound Filtering through Separation of Pipe Hydrophone Frequency Bands. Water 2020, 12, 1875. https://doi.org/10.3390/w12071875
Choi J-H, Jun K-W, Jang C-D. Bed-Load Collision Sound Filtering through Separation of Pipe Hydrophone Frequency Bands. Water. 2020; 12(7):1875. https://doi.org/10.3390/w12071875
Chicago/Turabian StyleChoi, Jong-Ho, Kye-Won Jun, and Chang-Deok Jang. 2020. "Bed-Load Collision Sound Filtering through Separation of Pipe Hydrophone Frequency Bands" Water 12, no. 7: 1875. https://doi.org/10.3390/w12071875
APA StyleChoi, J. -H., Jun, K. -W., & Jang, C. -D. (2020). Bed-Load Collision Sound Filtering through Separation of Pipe Hydrophone Frequency Bands. Water, 12(7), 1875. https://doi.org/10.3390/w12071875